

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

СВИДЕТЕЛЬСТВО

об утверждении типа средств измерений

RU.C.31.010.A № 48335

Срок действия до 02 октября 2017 г.

Н<mark>АИМЕНО</mark>ВАНИЕ ТИПА СРЕДСТВ ИЗМЕРЕНИЙ Комплексы универсальные ртутеметрические УКР-1МЦ

ИЗГОТОВИТЕЛЬ

Общество с ограниченной ответственностью "Научно-производственная Экологическая Фирма "ЭкОН", г. Москва

РЕГИСТРАЦИОННЫЙ № 13455-12

ДОКУМЕНТ НА ПОВЕРКУ ИП 1707-2012

ИНТЕРВАЛ МЕЖДУ ПОВЕРКАМИ 1 год

Тип средств измерений утвержден приказом Федерального агентства по техническому регулированию и метрологии от **02 октября 2012 г.** № **824**

Описание типа средств измерений является обязательным приложением к настоящему свидетельству.

Заместитель Руководителя	Ф.В.Булыги
Федерального агентства	
	"" 2012 г.

Серия СИ № 006838

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Комплексы универсальные ртутеметрические УКР-1МЦ

Назначение средства измерений

Комплексы универсальные ртутеметрические УКР-1МЦ (далее по тексту - комплексы) предназначены для измерения содержания ртути в атмосферном воздухе населенных мест и закрытых помещений, в воздухе рабочей зоны промышленных предприятий, в воде, почве и других средах (биосредах, продуктах питания и т. д.).

Описание средства измерений

В основу работы комплексов положен беспламенный атомно-абсорбционный метод, основанный на измерении поглощения излучения с длиной волны 253,7 нм атомами ртути, содержащимися в воздухе или выделенными из анализируемой твердой или жидкой пробы путем восстановления до элементного состояния.

Комплексы представляют собой модульные конструкции, состоящие из блока анализа и индикации (газортутного анализатора), систем аналитического выделения паров ртути из исследуемых образцов, блоков питания.

Блок анализа и индикации представляет собой преобразователь фототоков, пропорциональных количеству ртути в прокачиваемом через прибор воздухе, в пропорциональный электрический сигнал. Анализатор является компактным переносным устройством, содержит в себе элементы двухлучевого атомно-абсорбционного фотометра: источник излучения, измерительные кюветы, амальгаматор, фотоприемники с максимумом спектральной чувствительности на длине волны 220-260 нм, микронасос, датчик расхода анализируемого воздуха, измерительный блок.

Микропроцессорный блок обработки данных состоит из электронной микропроцессорной платы и платы жидкокристаллического графического дисплея (с регулируемой подсветкой), монтируется внутри блока анализа и индикации. Блок обеспечивает управление процессом измерения, формирование результата измерений на основе промежуточных вычислений, цифровую индикацию результатов измерения, связь прибора с компьютером через RS-232. Результат измерения выдается непосредственно на табло в единицах концентрации массы ртути (нг/дм^3 или мг/м^3) для проб воздуха и единицах массы ($\text{нг} = \text{мг} \cdot 10^{-6}$) для конденсированных сред, а при работе в программе «УКР-Аналитика» результат выводится на дисплей компьютера.

Блок аналитический ПАР-3М предназначен для выделения паров ртути из жидких проб с помощью химического восстановителя. Блок состоит из опорного штатива, на котором помещаются: аналитическая ячейка, устройство ввода проб с барботером, обратный холодильник и ловушка для нейтрализации кислых газов и осушки паров ртути.

Устройство возгонки и накопления УВН-1А предназначено для выделения паров ртути из твердых минеральных образцов (почвы, строительные материалы и др.) путем термического разложения пробы.

Количественные измерения содержания ртути проводятся на основе предварительной калибровки газоанализатора с помощью аттестованных генераторов ртутно-воздушных смесей, калибровочных растворов, приготовленных из стандартных образцов раствора солей ртути, а также порошкообразных стандартных образцов массовой доли ртути.

Внешний вид блока анализа и индикации комплекса приведён на рисунке 1.

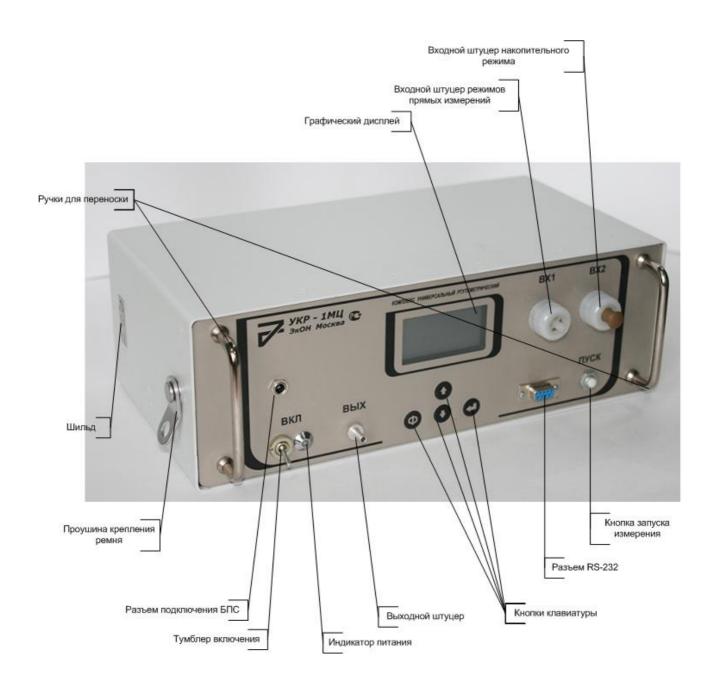


Рисунок 1.

Программное обеспечение

Внутреннее (встроенное) программное обеспечение (ПО), устанавливаемое при изготовлении прибора и не имеющее возможности считывания и модификации, отображено в таблице 1.

Таблина 1

			Цифровой	Алгоритм
Наименование программного обеспечения	Идентификационное	Номер версии	идентификатор	вычисления
	наименование	(идентификационный	программного	цифрового
	программного	номер) программного	обеспечения (кон-	идентификатора
	обеспечения	обеспечения	трольная сумма ис-	программного
			полняемого кода)	обеспечения
UKRMC firmware	Contr_v.2_03.hex		afa79a0a	
	Disp_v.2_03.hex	v.2.03*	c018df36	CRC32
	Graph_v.2.03.bin		8c47e61d	

^{* –} v.2.03 – метрологически значимая часть ПО.

Уровень защиты встроенного ΠO от непреднамеренных и преднамеренных изменений – A, по M M 3286-2010.

ПО комплекса идентифицируется датой создания, номером версии и контрольной суммой при программировании прибора на предприятии-изготовителе. После программирования осуществляется дополнительный визуальный контроль номера версии ПО, который при каждом запуске комплекса отображается на экране.

Метрологические и технические характеристики

Метрологические и технические характеристики комплекса приведены в таблицах 2 и 3.

 Таблица 2

 Метрологические характеристики

Наименование	Характеристики УКР-1МЦ
1	2
Диапазоны измерений массовой концентрации ртути:	
- в воздухе, мг/м ³	от 0,00001 до 0,05
- в жидких средах, мг/дм ³	от 0,00001 до 0,025
- в твердых минеральных веществах, мг/кг	от 0,02 до 10
Пределы допускаемого значения относительной погреш-	
ности измерения ртути в воздухе, воде и твердых средах,	±20
%, не более *	
Объем исследуемой пробы:	
- воздуха, дм ³	0,5; 1,0; 5,0; 10,0
- жидкости, см ³	1,0-20,0
- твердого минерального вещества, мг	2,5-50,0

^{*} Пределы допускаемого значения относительной погрешности измерения содержания ртути в твердых и жидких средах (органических и минеральных) относятся непосредственно к процедуре анализа минерализата органических продуктов и воздушно-сухих проб минеральных веществ. Дополнительная погрешность, связанная с процессами отбора и подготовки проб, настоящим документом не определена и регламентируется нормативными документами по конкретному виду продукции.

Технические характеристики

Наименование	Характеристики УКР-1МЦ	
Время прогрева комплексов, мин, не более	10	
Время непрерывной работы, час, не более	8	
Время проведения одного измерения при анализе:		
- воздуха, мин, не более	от 0,5 до 10	
- жидких сред, мин, не более	2	
- твердых минеральных веществ, мин, не более	6	
Мощность, потребляемая		
- блоком анализа и индикации, Вт, не более	40	
- устройством возгонки и накопления УВН-1А,		
Вт, не более	120	
Напряжение питания, В	12 ± 0.5	
Габаритные размеры, мм, не более		
- блока анализа и индикации	340×110×190	
- блока аналитического ПАР-3М	410×115×160	
- устройства возгонки и накопления УВН-1А	250×230×220	
Масса, кг, не более		
- блока анализа и индикации	3,80	
- блока аналитического ПАР-3М	1,65	
- устройства возгонки и накопления УВН-1А	5,20	
Рабочие условия применения и показатели надежности:		
-температура окружающего воздуха, °С	от плюс 10 до плюс 35	
-атмосферное давление, кПа	84 – 106	
-относительная влажность, % при 35 °C, не более	80	
-средняя наработка на отказ, часов, не менее	200	
-средний срок службы, лет, не менее	5	

Знак утверждения типа

Знак утверждения типа средств измерений наносится фотохимическим способом на лицевую панель блока анализа и индикации.

Комплектность средства измерений

Комплектность средства измерения приведена в таблице 4.

Таблица 4

Наименование	
Комплекс универсальный ртутеметрический УКР-1МЦ в составе:	
Блок анализа и индикации со встроенными аккумуляторами и комплектом ЗИП	1 шт.
Блок аналитический ПАР-3М с комплектом ЗИП	1 шт.
Устройство возгонки и накопления УВН-1А с комплектом ЗИП	1 шт.
Сетевой адаптер	1 шт.
Щуп поисковый	1 шт.
Программное обеспечение, кабель RS-232.	1 шт.
Паспорт	1 шт.
Руководство по эксплуатации,	1 шт.
Инструкция по поверке.	1 шт.

Составные части комплекса могут поставляться отдельно.

Поверка

Поверка комплекса универсального ртутеметрического УКР-1МЦ проводится в соответствии с Инструкцией по поверке ИП 1707-2012, утверждённой ГЦИ СИ ФБУ «Ростест-Москва» 12 июля 2012 г.

Основные средства поверки:

- генераторы паров ртути ГПР-2, пределы допускаемой относительной погрешности $\pm 10\%$ (Госреестр № 20695-00).

Сведения о методиках (методах) измерений

Сведения о методиках (методах) измерений изложены в Руководстве по эксплуатации.

Нормативные и технические документы, устанавливающие требования к комплексам универсальным ртутеметрическимо УКР-1МЦ

Технические условия ТУ 4317-008-41987679-10.

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

Выполнение работ по обеспечению безопасных условий и охраны труда.

Изготовитель

Общество с ограниченной ответственностью «Научно-производственная Экологическая Фирма «ЭкОН», Россия.

Юридический адрес: 115598, г. Москва, Загорьевская ул., д.10, к.4.

Фактический адрес: 125480, г. Москва, ул. Героев Панфиловцев, д.20, стр.1.

Тел. (495) 944-17-01, 944-19-01.

E-mail: sales@econ.ru

Испытательный центр

ГЦИ СИ ФБУ «Ростест–Москва», регистрационный номер 30010-10 от 15.03.2010 г. 117418, г. Москва, Нахимовский проспект, д. 31.

Тел. (495) 544-00-00, (499) 129-19-11, факс (499) 124-99-96.

E-mail: info@rostest.ru, web: www.rostest.ru.

Заместитель	
Руководителя Федерального	
агентства по техническому	
регулированию и метрологии	
	М.п.

	Ф.В.Булыгин	
"	»	2012 г