

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

СВИДЕТЕЛЬСТВО

об утверждении типа средств измерений

DE.C.31.001.A № 48359

Срок действия до 22 октября 2017 г.

НАИМЕНОВАНИЕ ТИПА СРЕДСТВ ИЗМЕРЕНИЙ Комплекты газоаналитические TUBE

ИЗГОТОВИТЕЛЬ

Фирма "Dräger Safety AG & Co.KGaA", Германия

РЕГИСТРАЦИОННЫЙ № 15027-12

ДОКУМЕНТ НА ПОВЕРКУ МП 242-1334-2012

интервал между поверками 1 год

Тип средств измерений утвержден приказом Федерального агентства по техническому регулированию и метрологии от 22 октября 2012 г. № 869

Описание типа средств измерений является обязательным приложением к настоящему свидетельству.

Заместитель Руководителя		1
Федерального агентства		

Ф.В.Булыгин

"...... 2012 г.

№ 006976

Серия СИ

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Комплекты газоаналитические TUBE

Назначение средства измерений

Комплекты газоаналитические TUBE (далее –комплекты TUBE) предназначены для периодического экспрессного измерения объемной доли (или массовой концентрации) кислорода, диоксида углерода, паров воды и вредных газов и паров в воздушных средах.

Описание средства измерений

Комплекты TUBE обеспечивают контроль содержания измеряемых компонентов в воздухе рабочей зоны производственных помещений и контроль воздуха для дыхания, из баллонов под давлением и из компрессорных установок, могут применяться для технологического контроля.

Комплекты TUBE представляют собой набор индикаторных трубок и устройств для просасывания (или пропускания) газовой пробы и отличаются по составу в зависимости от способа отбора проб (активного или пассивного), а также назначения.

Комплекты TUBE при активном пробоотборе состоят из набора индикаторных трубок для кратковременных и долговременных измерений и аспираторов модели Drager Accuro для прокачивания проб анализируемого воздуха через индикаторные трубки в ручном режиме.

Аспиратор модели Drager Accuro представляет собой сильфонный насос. При сжатии сильфона аспиратор приводится в рабочее положение. После отбора 100 см³ анализируемого воздуха корпус насоса возвращается в стандартное исходное положение, включается индикатор на корпусе насоса и на счетчике указывается количество выполненных рабочих ходов насоса (качков).

Комплекты TUBE при пассивном отборе проб состоят только из набора индикаторных трубок.

Индикаторные трубки представляют собой стеклянные трубки, заполненные индикаторной массой, которая удерживается пористыми фильтр-прокладками. Трубки герметизируют путем запаивания их концов. Технические и метрологические характеристики индикаторных трубок приведены в таблицах 1 - 3.

Комплекты TUBE, предназначенные для контроля воздуха для дыхания из баллонов под давлением и из компрессорных установок, представляют собой тест-комплекты модели Aerotest Simultan HP или Aerotest Alpha. Тест-комплекты состоят из набора индикаторных трубок для определения компонентов в газах и специальных дозирующих устройств для отбора проб с заданным объемным расходом - предохранительного клапана и вентиля тонкой регулировки. Технические и метрологические характеристики индикаторных трубок, используемых в комплектах модели Aerotest, приведены в таблице 2.

Принцип действия индикаторных трубок - колористический, позволяющий измерять содержание вещества в анализируемой газовой среде, просасываемой (или пропускаемой) через индикаторную трубку. Длина слоя индикаторного порошка, изменившего окраску в результате прошедшей химической реакции с определяемым газом или паром, является функцией содержания определяемого компонента и объема анализируемой пробы.

Для долговременных измерений с активным отбором проб в газоаналитическом комплекте TUBE используются исполнения индикаторных трубок, которые позволяют измерить интегральную или среднюю концентрацию компонента за период отбора пробы.

Долговременные измерения проводятся с использованием экспозиционных индикаторных трубок с пассивным пробоотбором без аспиратора (диффузионные трубки).

Диффузионные трубки могут применяться в пластиковых держателях, служащих для закрепления трубок на поверхности или одежде.

На индикаторные трубки нанесена шкала для прямого отсчета показаний, при наличии двух поддиапазонов измерений – две шкалы.

Внешний вид комплектов TUBE представлен на рисунках 1 - 4.

Рисунок 1 – Внешний вид индикаторных трубок

Рисунок 2 — Внешний вид индикаторных трубок (активный пробоотбор) с аспиратором Drager Accuro

Рисунок 3 — Внешний вид индикаторных трубок для долговременных измерений (пассивный пробоотбор)

Рисунок 4 Комплект TUBE для контроля воздуха для дыхания (Drager Aerotest Simultan HP)

Метрологические и технические характеристики

1 Технические и метрологические характеристики комплектов TUBE приведены в таблицах 1 - 4.

Таблица 1 Метрологические характеристики комплектов TUBE при активном

пробоотборе (индикаторные трубки для кратковременных измерений)

	Прессетс	ре (индикаторные	Труски для	кратковремс	I		
№ п/п	Исполнение инди- каторной трубки, код	Определяемый компонент (ПДК) ¹⁾ , ppm	Диапазон показаний, ppm	Диапазон измерений, ррт	Число ходов аспира- тора	Пределы до- пускаемой основной относитель- ной погреш- ности, %	На- значе ние ⁶⁾
1	2	3	4	5	6	7	8
1.	Alcohol 25/a 8101631 Ethanol	Этанол (521)	25 – 2000	500 – 2000	10	± 25	К
2.	Ammonia 0.25/a 8101711	Аммиак (28)	0,25 - 3	1 – 3	10	± 25	В
3.	Ammonia 2/a 6733231	- « –	2 – 30	5 – 30	5	± 25	К
4.	Ammonia 5/a CH20501	- « -	5 – 70	10 – 70	10	± 25	К
5.	Ammonia 5/b 8101941	- « -	5 – 100	10 – 100	1	± 25	К
6.	Acetaldehyde 100/a 6726665	Ацетальдегид (2)	100 – 1000	400 – 1000	20	± 25	A
7.	Arsine 0.05/a CH25001	Арсин (0,03)	0.05 - 3	0,5-3	20	± 30	A
8.	Benzene 0.5/a 6728561	Бензол (5,0/1,5)	0,5 – 10	1,5 – 10 ³⁾	40 – 2	± 25	К
9.	Benzene 0.5/c 8101841	- « -	0,5 – 10	1,5 – 10	20	± 25	К
10.	Benzene 2/a 8101231	- « -	2 – 60	20 – 60	20	± 25	A
11.	Benzene 5/a 6718801	- « -	5 – 40	$10-40^{3}$	15 - 2	± 30	Α
12.	Benzene 5/b 6728071	- « -	5 – 50	10 – 50	20	± 25	A
13.	Benzene 15/a 8101741	- « -	15 – 420	$30 - 420^{3)}$	20 – 2	± 25	A
14.	Chlorine 0.2/a CH24301	Хлор (0,35)	0,2-3	0,3 – 3	10	± 25	К
15.	Chlorine 0.3/b 6728411	- « -	0,3 – 5	0,5 – 3	20	± 25	A
16.	Chlorine 50/a CH20701	- « -	50 – 500	100 – 500	1	± 25	A
17.	Chlorobenzene 5/a (5) 6728761	Хлорбензол (15/7,5)	5 – 200	20 – 200	10	± 25	A
18.	Diethyl Ether 100/a 6730501	Диэтиловый эфир (98)	100 – 4000	400 – 4000	10	± 30	A
19.	Dimethyl Sulphide 1/a (5) 6728451	Диметил- сульфид (19)	1 – 15	5 – 15	20	± 25	В
20.	Acetic Acid 5/a 6722101	Уксусная кислота (1,3)	5 – 80	10 – 80	3	± 25	A

1	2	3	4	5	6	7	8
21.	Epichlorohydrin 5/c 6728111 ⁴⁾	Эпихлоргидрин (0,2)	5 – 80	10 – 80	20	± 25	A
22.	Ethyl Acetate 200/a CH20201	Этилацетат (41)	200 – 3000	200 – 3000	20	± 30	A
23.	Ethyl Benzene 30/a 6728381	Этилбензол (11,4)	30 – 400	50 – 400	6	± 25	A
24.	Ethylene 50/a 6728051	Этилен (86,2)	50 – 2500	500 – 2500	3	± 25	A
25.	Ethylene Glycol 10 (5) 8101351	Этиленгликоль (1,9)	10 – 180	50 – 180	10	± 30	A
26.	Ethylene Oxide 1/a (5) 67 28961	Этиленоксид (0,5) 1 – 15 2 – 15		2 – 15	20	± 25	A
27.	Ethylene Oxide 25/a 67 28241	- « - 25 - 500 50 - 500 Формальдегил 0.5 - 5 2 - 5		30	± 30	A	
28.	Formaldehyde 0.2/a 67 33081	Формальдегид (0,4)	0.5 - 5 0.2 - 2.5	2-5 0,5 - 2,5	10 20	± 30 ± 30	A
29.	Hexane 100/a 67 28391	Гексан (81)	100 – 3000	300 – 3000	6	± 25	A
30.	Carbon Monoxide 2/a 6733051	Оксид углерода (17,2)	2-60 $25-300$	10 - 60 $50 - 300$	10 2	± 25	К
31.	Carbon Monoxide 5/c CH 25601	- « -	5 – 150 100 – 700	30 – 150 200 – 700	10 2	± 25	A
32.	Carbon Monoxide 8/a CH 19701	- « -	8 – 150	20 – 150	10	± 25	A
33.	Carbon Monoxide 10/b CH 20601	- « -	10 – 300 100 – 3000	50 – 300 500 – 3000	10 1	± 25	A
34.	Carbon Monoxide 0.3%/b CH 29901	- « -	(0,3 – 7) % об.	(1 – 7) % об.	1	± 25	A
35.	Mercaptan ⁵⁾ 0.1/a 81 03281	Меркаптаны: Метилмеркаптан (0,41) Этилмеркаптан (0,39)	0,25 – 2,5 3 – 15	0,5 - 2,5 6 - 15	10 2	± 25	A
36.	Mercaptan 0.5/a 67 28981	- « -	0,5 – 5	1 – 5	20	± 25	A
37.	Mercaptan 20/a 81 01871	- « -	20 – 100	20 – 100	10	± 25	A
38.	Methyl Bromide 0.5/a 81 01671	Метилбромид (0,25)	0.5 - 5 $5 - 30$	2-5 $10-30$	5 2	± 25	A
39.	Methyl Bromide 3/a (5) 67 28211	- « -	3 – 35 10 – 100	5 – 35 20 – 100	5 2	± 25	A
40.	Methyl Bromide 5/b CH 27301	- « -	5 – 50	10 – 50	5	± 25	A

1	2	3	4	5	6	7	8
41.	Nitrous Fumes 0.5/a CH 29401	Сумма оксидов азота NO, NO ₂ ²⁾ (2,5)	0,5 – 10	1 – 10	5	± 25	К
42.	Nitrous Fumes 2/a CH 31001	- « -	2-50 5 - 100	5 - 50 10 - 100	10 5	± 25	A
43.	Nitrous Fumes 20/a 67 24001	- « -	20 – 500	100 – 500	2	± 25	A
44.	Nitrous Fumes 50/a 81 01921	- « -	50 – 1000 200 – 2000	200 – 1000 800 – 2000	2 1	± 25	A
45.	Nitrous Fumes 100/c CH 27701	- « -	100 – 1000 500 – 5000	200 – 1000 1000 – 5000	5 1	± 25	A
46.	Ozone 0.05/b 6733181	Озон (0,05)	0,05 – 0,7	0,1 – 0,7	10	± 25	A
47.	Perchloroethy – lene 0.1/a 81 01551 ⁴⁾	Перхлорэтилен (тертрахлорэти- лен) (1,50)	$0,1-1 \\ 0,5-4$	0,3 – 1 1 – 4	9 3	± 25	К
48.	Perchloroethylene 2/a 81 01501	- « -	2-40 $20-300$	10 – 40 100 – 300	5 1	± 25	A
49.	Perchloroethy – lene 10/b CH 30701	- « -	10 – 500	25 – 500	3	± 25	A
50.	Phosgene 0.02/a 81 01521	Фосген (0,1)	0.02 - 0.6 0.02 - 1	0,1-15 0,1-1	40 20	± 25	К
51.	Phosgene 0.05/a CH 19401	- « -	0,04 – 1,5	$0,1-1,5^{(3)}$	33 – 1	± 25	К
52.	Phosgene 0.25/c CH 28301	- « -	0,25 – 5	1 – 5	5	± 25	A
53.	Phosphine 0.01/a 81 01611	Фосфин (0,07)	0.01 - 0.3 0.1 - 1.0	0.05 - 0.3 0.5 - 1.0	10 3	± 25	K, A
54.	Phosphine 0.1/a CH CH31 101	- « -	0,1 – 4	0,5 – 4	10	± 25	A
55.	Nitric Acid 1/a 6728311	Азотная кислота (0,8)	1 - 15 5 - 50	3 - 15 10 - 50	20 10	± 25	A
56.	Oxygen 5%/B (8) 67 28081	Кислород	(5 – 23) % об.	(5 – 23) % об.	1	± 25	В
57.	Oxygen 5%/C 81 03261	Кислород	(5 – 23) % об.	(5 – 23) % об.	1	± 25	В
58.	Hydrochloric Acid 1/a CH29501	Хлористый водород (3,3)	1 – 10	2 – 10	10	± 25	К
59.	Hydrochloric Acid 50/a 6728181	Хлористый водород (3,3)	50 – 500 500 – 5000	100 - 500 $1000 - 5000$	10 1	± 25 -	A
60.	Hydrochloric Acid Nitric Acid	Хлористый водород (3,3)	1 – 10	3 – 10	10	± 25	К
00.	81 01681 ⁴⁾	Азотная кислота (0,8)	1 – 15	3 – 15	20	± 30	A
61.	Hydrocyanic Acid 2/a CH 25701	Синильная кисло- та (0,27)	2 – 30	2 – 10	5	± 25	A

1	2	3	4	5	6	7	8
62.	Sulphur Dioxide 0.5/a 67 28491	Диоксид серы (3,8)	0.5 - 5 $1 - 25$	1-5 $2-25$	20 10	± 25	К
63.	Sulphur Dioxide 1/a CH 31701	- « -	1 – 25	2,5 – 25	10	± 25	К
64.	Sulphur Dioxide 20/a CH 24201	- « -	20 – 200	50 – 200	10	± 25	A
65.	Sulphur Dioxide 50/b 8101531	- « -	50 – 500 400 – 8000	$100 - 200 \\ 800 - 8000$	10 1	± 25	A
66.	Hydrogen Sulphide 0.5/a 6728041	Сероводород (7,0)	0,5 – 15	2 – 15	10	± 25	К
67.	Hydrogen Sulphide 1/c 6719001	- « -	1 - 20 $10 - 200$	2-20 $20-200$	10 1	± 25	К, А
68.	Hydrogen Sulphide 1/d 8101831	- « -	1 - 20 $10 - 200$	3 - 20 $30 - 200$	10 1	± 25	К, А
69.	Hydrogen Sulphide 2/a 6728821	- « -	2-20 $20-200$	4 - 20 $4 - 200$	10 1	± 25	К, А
70.	Hydrogen Sulphide 2/b 8101961	- « -	2 – 60	5 – 60	1	± 25	К
71.	Hydrogen Sulphide 5/b CH29801	- « -	5 – 60	5 – 60	10	± 25	К
72.	Hydrogen Sulphide 100/a CH29101	- « -	100 – 2000	200 – 2000	1	± 25	A, T
73.	Nitrogen Dioxide 0.5/c CH30001	Диоксид азота (1,0)	0.5 - 10 $5 - 25$	0.5 - 10 $5 - 25$	5 2	± 25	K, A
74.	Nitrogen Dioxide 2/c 6719101	- « -	2 – 50 5 – 100	5 – 50 10 – 100	10 5	± 25	A
75.	Styrene 10/a 6723301	Стирол (6,9)	10 – 200	$20 - 200^{3}$	15 – 2	± 25	A
76.	Styrene 10/b 6733141	- « -	10 – 250	50 – 250	20	± 25	A
77.	Styrene 50/a CH27601	- « -	50 – 400	100 – 400 3)	11 – 2	± 25	A
78.	Toluene 5/b 8101661	- « -	5 - 80 50 - 300	10 - 80 $100 - 300$	10 2	± 25	К, А
79.	Toluene 50/a 8101701	- « -	50 – 400	100 – 400	5	± 25	A
80.	Toluene 100/a 8101731	- « -	100 – 1800	400 – 1800	10	± 25	A
81.	Trichloroethylene 2/a 6728541	Трихлорэтилен (2)	2-50 $20-250$	5 - 50 10 - 250	5 3	± 25	A
82.	Trichloroethylene 50/a 8101881	- « -	50 – 500	100 – 500	5	± 25	A
83.	Triethylamine 5/a 6718401	Триэтиламин (3,5)	5 – 60	10 – 60	5	± 25	A

1	2	3	4	5	6	7	8
84.	Vinyl Chloride 0.5/b 8101721	Винилхлорид (2/0,4)	0.5 - 5 $5 - 30$	1-5 $10-30$	5 1	± 25	K, A
85.	Xylene 10/a 6733161	Ксилол (10)	10 – 400	50 – 400	5	± 30	A
86.	Carbon Dioxide 100/a 8101811	Диоксид углерода	100 – 3000	200 – 3000	10	± 25	В
87.	Carbon Dioxide 0.1%/a CH23501	- « -	(0,1 – 1,2) % об. (0,5 – 6) % об.	(0,2 – 1,2) % об. (1 – 6) % об.	5 1	± 25	В
88.	Carbon Dioxide 0.5%/a CH31401	- « -	- « - (0,5 - 10) (1 - 10) % об. об.		1	± 25	В
89.	Carbon Dioxide 1%/a CH25101	- « -	(1 – 20) % об.	(2 – 20) % об.	1	± 25	В
90.	Carbon Dioxide 5%/a CH20301	- « -	(5 – 60) % об.	(10 – 60) % об.	1	± 25	В
91.	Carbon Disulphide 3/a 8101891	Сероуглерод (0,3)	3 – 95	9 – 95 3)	15 – 1	± 25	A
92.	Carbon Disulphide 5/a 6728351	- « -	5 – 60	10 – 60	11	± 25	A
93.	Carbon Disulphide 30/a CH23201	- « -	0,1 – 10	1 – 10	6	± 25	A
94.	Carbon Tetrachloride 1/a 8101021	Четыреххло- ристый углерод (20/10)	1 – 15	3 – 15	5	± 25	A
95.	Chloroform 2/a (5) 6728861	Хлороформ (2)	2 – 10	4 – 10	10	± 30	A
96.	Chloroprene 5/a 6718901	Хлоропрен (0,01)	5 – 60	10 – 60	3	± 25	A
97.	Cyclohexane 100/a 6725201	Циклогексан (14,3)	100 – 1500	200 – 1500	10	± 25	A
98.	Dimethyl Formamide 10/b 6718501	Диметилформамид (2,2)	10 – 40	20 – 40	10	± 25	A
99.	Formic Acid 1/a 6722701	Муравьиная ки- слота (0,3)	1 – 15	3 – 15	20	± 25	A
100.	Hydrazine 0,01/a 8103351	Гидразин (0,08)	0.01 - 0.4 0.5 - 6	0.06 - 0.4 1.5 - 6	10 5	± 25	К, А
101.	Hydrazine 0.25/a CH31801	- « -	0.25 - 10 $0.1 - 5$	1 - 10 0,2 - 5	10 20	± 25	К, А
102.	Halogenated 100/a ⁵⁾	Галогенсодержа- щие углеводороды					
	8101601 ⁴⁾	Трихлортрифторэ- тан фреон R113 (649,4)	200 – 2600	400 – 2600	3	± 25	К

1	2	3	4	5	6	7	8
		Дихлортетрафто- рэтан фреон R114 (422,5)	200 – 2600	400 – 2600	3	± 30	К
		Трихлорфторметан фреон R11 (175,4)	100 – 1400	200 – 1400	3	± 30	A
		Дифторхлорметан фреон R22 (833,3)	200 – 2800	200 – 2800	3	± 30	A
		Тетрафтор – этан фреон R134a	1000 – 4000	1000 – 4000	3	± 30	В
103.	Hydrogen Fluoride 0.5/a 8103251	Фтористый водо- род (0,6)	0,5 – 15 10 – 90	2 – 15	20 2	± 30 -	A
104.	Hydrogen Fluoride 1.5/b CH30301	- « -	1,5 – 15	3 – 15	20	± 25	A
105.	Methyl Acrylate 5/a 6728161	Метилакрилат (1,4)	5 – 200	5 – 200	20	± 40	A
106.	Methylene Chloride 100/a 6724601	Метиленхлорид (14,2)	100 – 2000	300 – 2000	10	± 25	A
107.	Natural Gas Odorization, Tertiary Butylmercaptan 8103071	Третичный бутил- меркаптан	$(1-10)$ $M\Gamma/M^3$ $(3-15)$ $M\Gamma/M^3$	$(2-10)$ $M\Gamma/M^3$ $(4-15)$ $M\Gamma/M^3$	5 2	± 25	В
108.	Pentane 100/a 6724701	Пентан (100)	100 – 1500	100 – 1500	5	± 25	К
109.	Phenol 1/b 8101641	Фенол (0,08)	1 – 20	2,5 – 20	20	± 25	A
110.	Pyridine 5/A 6728651	Пиридин (1,5)	5	5	20	± 30	A
111.	Tetrahydro- thiophene 1/b (5) 8101341	Тетрагидротиофен	1 – 10	2 – 10	30	± 25	В
112.	Water Vapour 0.1 CH23401	Пары воды	$(1-40)$ мг/дм 3	$(2-40)$ мг/дм 3	10	± 25	В
113.	Water Vapour 0.1/a 8101321	- « -	$(0,1-1,0)$ мг/дм 3	$(0,2-1,0)$ мг/дм 3	3	± 25	В
114.	Water Vapour 1/b 8101781	- « -	$(1-15)$ мг/дм 3 $(20-40)$ мг/дм 3	$(3-15)$ $M\Gamma/ДM^3$ $(20-40)$ $M\Gamma/ДM^3$	2 1	± 25	В
115.	Acrylonitrile 0.5/a 67 28591	Акрилонитрил (0,2)	0.5 - 10 $1 - 20$	2 - 10 $4 - 20$	20 10	± 25	A
116.	Acrylonitrile 5/b CH 26901	- « -	5 – 30	10 – 30	3	± 25	A
117.	Ethyl Glycol Acetate 50/a 6726801	Этилгликольаце- тат	50 – 700	100 – 700	10	± 25	В

1	2	3	4	5	6	7	8
118.	Toluene Diisocyanate 0.02/A (9) 6724501	Толуиленди- изоцианат 0,02/A (0,01)	0,02 – 0,2	0,04 – 0,2	25	± 30	В
119.	Carbon Tetrachloride 0.1/a 8103501	Тетрахлорид углерода (3,1)	0,1 – 5	0,5 – 5	5	± 30	К
120.	Diesel Fuel 8103475	Пары дизельного топлива (по ундекану)	$(25 - 200)$ $M\Gamma/M^3$	$(50-200)$ $M\Gamma/M^3$	5	± 25	Т
		Углеводороды	(0.1.1.0)	(0.0.1.0)			
121.	Hydrocarbon 0,1%/c	Пропан	(0,1 – 1,3) % oб.	(0,3 – 1,3) % oб.	1	± 25	Т
	8103571 ⁴⁾	Бутан	(0,1 – 1,3) % об.	(0,3 – 1,3) % об.	1	± 25	Т
122.	Hydrocarbon 2/a 8103581 ⁷⁾	Октан	тан $(2-24)$ $(4-24)$ $M\Gamma/ДM^3$ $M\Gamma/ДM^3$		3	± 25	Т
123.	Methylene Chloride 20/a 8103591	Метиленхлорид (14,2)			8	± 25	A
124	Acetone 40/a 8103381	Ацетон (83)	40 – 800	100 – 800	1	± 25	A
125	Cyanide 2/a 6728791	Цианиды (синильная кисло- та)	$(2-15)$ $M\Gamma/M^3$	$(4-15)$ $M\Gamma/M^3$	10	± 30	Т
126	Ethylene 0,1/a 8101331	Этилен (86,2)	0,2-5	1 – 5	3	± 30	Т
127	Formaldehyde 2/a 8101751	Формальдегид (0,4)	2 – 40	20 – 40	5	± 30	A
128	Hydrochloric Acid 0,2/a 8103481	Хлористый водород (3,3)	0,2 – 3	0,5 – 3	10	± 25	Т
129	Hydrocyanic Acid 0,5/a 8103601	Синильная кислота (0,27)	0.5 - 5 $5 - 50$	1-5 $10-50$	10 2	± 25	A
130	Hydrogen Sulphide 0.2/a 8101461	Сероводород (7,0)	0,2 – 5	0,5 – 5	10	± 25	Т
131	Hydrogen Sulphide 0.2/b 8101991	Сероводород (7,0)	0,2 – 6	1 – 6	1	± 25	Т
132	Hydrogen Sulphide 0.2%/A CH28101	Сероводород (7,0)	(0,2 – 7) % (об.)	(1 – 7) % (οδ.)	1 (+2)	± 25	A, T
133	Ozone 10/a CH 21 001	Озон (0,05)	20 – 300	50 – 300	1	± 25	Т
134	Petroleum Hydrocarbons 10/a 8101691 ⁷⁾	Октан	10 – 300	50 – 300	2	± 25	A, T
135	Phosphine 1/a 8101801	Фосфин (0,07)	1 – 20	1 – 20 3 – 20		± 25	A
136	Sulphur Dioxide 0.1/a 6727101	Диоксид серы (3,8)	0,1 – 3	0,5 – 3	100	± 25	Т

Примечания:

- $1.^{1}$ ПДК предельно допустимая концентрация вредного вещества в воздухе рабочей зоны в соответствии с ГОСТ 12.1.005 88;
- $^{2)}$ в пересчете на NO₂;
- ³⁾для индикаторных трубок с переменным количеством качков шкала приведена в паспорте в виде таблицы или графика зависимости массовой концентрации от числа качков;
- ⁴⁾ применяется при условии наличия в контролируемой среде только одного определяемого компонента;
- 5) приводится шкала на каждый определяемый компонент;
- $^{6)}$ в графе «Назначение» указаны: К контроль ПДК воздуха рабочей зоны; А контроль при аварийных ситуациях; В определение компонента в воздухе рабочей зоны (при отсутствии ПДК),
- Т технологический контроль;
- ⁷⁾ При использовании трубок поз. 122 для определения предельных углеводородов и поз.134 для определения углеводородов нефти (C_3 C_{10}), за исключением (C_8), погрешность не нормируется.;
- 2. Пределы допускаемой основной относительной погрешности нормированы при условии отсутствия неизмеряемых компонентов или их содержания в пределах, указанных в паспорте на индикаторные трубки.
- 3. Объем пробы за 1 ход аспиратора модели Drager Accuro составляет 100 см³.

Таблица 2 Основные метрологические характеристики комплектов TUBE, предназначенных для контроля воздуха для дыхания из баллонов под давлением и из компрессорных установок

№ п/п	Исполнение инди- каторной трубки, код	Определяе- мый компо- нент	Диапазон пока- заний	Диапазон измерений	Объем про- пускаемой пробы, дм ³	Пределы допускаемой основной относительной погрешности,
1	Carbon Monoxide 5/a-P 67 28511	Оксид углерода СО	(5 – 150) ppm	(30 – 150) ppm	1	± 25
2	Carbon Dioxide 100/a-P 67 28521	Диоксид углерода CO ₂	(100 – 3000) ppm	(400 – 3000) ppm	1	± 25
3.	Water Vapour 5/a-P 6728531	Водяные пары H_2O	$(5-200) \text{ M}\Gamma/\text{M}^3$	(30 – 200) _{МГ/М} ³	50	± 25
4.	Water Vapour 20/a-P 8103061	- « -	$(20-100)$ $M\Gamma/M^3$ $(100-500)$ $M\Gamma/M^3$	$(40-100)$ $M\Gamma/M^3$ $(200-500)$ $M\Gamma/M^3$	40 20	± 25
5.	Oil 10/a-P 67 28371	Пары масла	$(0,1-1) \text{ M}\Gamma/\text{M}^3$	-	Приведено в РЭ	-
6.	Oil PN 81 03111	Пары масла	5 мг/м ³	5 мг/м ³	Приведено в РЭ	± 25

Примечания:

- 1. Контроль сжатого воздуха проводится только при понижении давления до атмосферного значения;
- 2. Индикаторные трубки используются в составе тест-комплектов Aerotest Simultan HP или Aerotest Alpha.
- 3. Индикаторные трубки Oil 10/a-P (поз.5) и устройство Ol Impactor используются в качестве индикаторов.

Таблица 3 Основные метрологические характеристики комплекта TUBE для долговременных измерений с пассивным пробоотбором (без аспиратора)

№ п/п	Исполнение индикаторной трубки, код	Определяе- мый компо- нент (ПДК, ppm)	Диапазон по- казаний, ppm	Диапазон из- мерений, ppm	Время изме- рений, ч	Пределы допускаемой основной относительной погрешности, %	На- значе- ние ⁶⁾
1	2	3	4	5	6	7	8
1.	Acetic Acid 10/a-D 81 01071	Уксусная кислота (1,3)	10 – 200 5 – 100 2,5-50 1,3 – 25	30 – 200 15 – 100 7,5 – 50 3,9 – 25	1 2 4 8	± 25	A
2.	Ammoniak 20/a-D 81 01301	Аммиак (28)	20 - 1500 $10 - 750$ $4 - 300$ $2,5 - 200$	$ \begin{array}{r} 100 - 1500 \\ 50 - 750 \\ 20 - 300 \\ 12,5 - 200 \end{array} $	1 2 5 8	± 25	К, А
3.	Butadiene 10/a-D 81 01161	Бутадиен	10 – 300 5 – 150 2,5 – 75 1,3 – 40	50 – 300 25 – 150 12,5 – 75 6,5 – 40	1 2 4 8	± 25	В
4.	Carbon Dioxide 500/a-D 81 01381	Диоксид уг- лерода	500 - 20000 250 - 10000 125 - 5000 65 - 2500	2000 - 20000 1000 - 10000 500 - 5000 250 - 2500	1 2 4 8	± 25	В
5.	Carbon Dioxide 1 %/a-D 81 01051	Диоксид уг- лерода	(1 – 30) % oб. (0,3–10) % oб. (0,2 – 6) % oб. (0,13–4) % oб.	(5 – 30) % oб. (1,5–10)% oб. (1 – 6) % oб. (0,6–4) % oб.	1 3 5 8	± 25	В
6.	Carbon Monoxide 50/a-D 67 33191	Оксид углерода (17,2)	50 - 600 25 - 300 10 - 120 6 - 75	200 - 600 100 - 300 40 - 120 25 - 75	1 2 5 8	± 25	A
7.	Ethanol 1000/a-D 81 01151	Этанол (521)	1000 - 25000 500 - 12500 200 - 5000 125 - 3100	3000 - 25000 1500 - 12500 600 - 5000 375 - 3100	1 2 5 8	± 25	K, A
8.	Hydrochloric Acid 10/a-D 67 33111	Хлористый водород (соляная кислота) (3,3)	$ \begin{array}{r} 10 - 200 \\ 5 - 100 \\ 2,5 - 50 \\ 1,3 - 25 \end{array} $	50 – 200 25 – 100 7,5 – 50 6,5 – 25	1 2 4 8	± 25	A
9.	Hydrocyanic Acid 20/a-D 67 33221	Синильная кислота (0,27)	20 - 200 $10 - 100$ $5 - 50$ $2,5 - 25$	50 - 200 30 - 100 15 - 50 6,5 - 25	1 2 4 8	± 25	A
10.	Hydrogen Sulphide 10/a-D 67 33091	Сероводород (7)	10 – 300 5 – 150 2,5 – 75 1,3 – 40	50 – 300 25 – 150 12,5 – 75 6,5 – 40	1 2 4 8	± 25	К, А
11.	Nitrogen Dioxide 10/a-D 81 01111	Диоксид азо- та (1)	10 - 200 5 - 100 2,5 - 50 1,3 - 25	30 – 200 15 – 100 7,5 – 50 4,2 – 25	1 2 4 8	± 25	A

1	2	3	4	5	6	7	8
12.	Perchloroethy- lene 200/a-D 81 01401	Перхлор- этилен (1,5)	200 - 1500 $100 - 750$ $50 - 380$ $25 - 200$	200 - 1500 $100 - 750$ $50 - 380$ $25 - 200$	1 2 4 8	± 25	A
13.	Sulphur Dioxide 5/a-D 81 01091	Диоксид серы (3,8)	5 - 150 2,5 - 75 1,3 - 38 0,7 - 19	20 - 150 $10 - 75$ $5,2 - 38$ $2,8 - 19$	1 2 4 8	± 25	K, A
14.	Toluene 100/a-D 81 01421	Толуол (13)	100 – 3000 50 – 1500 25 – 750 13 – 380	600 – 3000 300 – 1500 150 – 750 78 – 380	1 2 4 8	± 25	A
15.	Trichoroethy- lene 200/a-D 81 01441	Трихлорэти- лен (2)	200 - 1000 $100 - 500$ $50 - 250$ $25 - 125$	200 - 1000 $100 - 500$ $50 - 250$ $25 - 125$	1 2 4 8	± 25	A

Примечание: ⁶⁾ см. примечание к таблице 1.

2 Время прокачивания пробы за один ход аспиратора для всех трубок, указанных в таблице 1, находится в пределах от 10 до 70 с (трубки индикаторные для кратковременных измерений).

Время отбора пробы (для долговременных измерений): от 1 до 8 ч.

- 3 Метрологические и технические характеристики аспираторов и пробоотборного устройства приведены в таблице 4.
 - 4 Дополнительные погрешности:
- 4.1 Суммарная дополнительная погрешность от влияния неизмеряемых компонентов, перечень и концентрации которых указаны в Руководстве по эксплуатации на каждое исполнение индикаторных трубок, и содержание которых не более санитарных норм по ГОСТ 12.1.005, в долях от пределов допускаемой основной относительной погрешности, не более: 1,5.
- 4.2~ Пределы допускаемой дополнительной погрешности от влияния изменения температуры анализируемой среды на каждые 10~ °C от номинального значения температуры 20~ °C в рабочих условиях эксплуатации, в долях от пределов допускаемой основной относительной погрешности: не более 0,5.

Таблица 4 Метрологические и технические характеристики аспираторов и устройств для отбора проб с заданным объемным расходом.

Модель аспиратора (устройства для отбора проб)	Номинальное значение объема всасываемой пробы за один рабочий ход, см ³	Номинальное значение объемного расхода, дм ³ /мин	Число ходов	Масса, кг, габаритные размеры: длина, ширина, высота, мм, не более
Аспиратор модели Drager Accuro	100	-	1	0,25 кг длина 170 ширина 45 высота 85
Aerotest Simultan HP*	-	0,2 4,0	-	2,0 кг длина 350*** ширина 180 высота 62
Aerotest Alpha **	-	0,2 4,0	-	3,0 кг длина 350*** ширина 300 высота 85

Примечания:

- * используются для высоких давлений;
- ** используются для низких давлений;
- *** приведены габаритные размеры чемодана, в котором находится комплект TUBE Aerotest Simultan HP или Aerotest Alpha (с набором трубок индикаторных)
- 5 Пределы допускаемой основной относительной погрешности аспираторов (пробоотборных устройств), %: \pm 5.
- 6 Габаритные размеры трубок индикаторных, входящих в состав комплектов, мм, не более: длина: 220; диаметр: 8,0.
 - 7 Масса индикаторных трубок (упаковка 10 шт.), г, не более:

160.

- 8 Полный срок службы комплектов, лет, не менее: 8.
- 9 Средний срок сохраняемости трубок индикаторных: 27 месяцев.
- 10 Средняя наработка на отказ, не менее: 5500 ч (при доверительной вероятности Р=0,95).
- 11 Условия эксплуатации:
- температура окружающей среды: от 0 до 60 °C;
- относительная влажность воздуха от 20 % при 10 °C до 80 % при 30 °C;
- атмосферное давление:
- измеренное значение концентрации определяемого компонента (объемная доля, ppm) должно умножаться на коэффициент F, который рассчитывается по формуле:

$$F = 101,3/P$$
 (1)

где Р – атмосферное давление в момент прокачивания пробы через трубку индикаторную, кПа.

Примечание: Приведены предельные значения температуры и относительной влажности окружающей среды для комплектов с различными трубками индикаторными. Конкретные значения указанных параметров приведены в руководстве по эксплуатации на каждую трубку индикаторную.

12 Условия хранения и транспортирования трубок индикаторных:

- температура окружающей среды, ° С
- от 2 до 25:
- комплекты должны быть защищены от воздействия света.

Знак утверждения типа

Знак утверждения типа наносится типографским способом на титульный лист Руководства по эксплуатации комплекта газоаналитического TUBE.

Комплектность средств измерений

Комплектность поставки комплектов газоаналитических TUBE представлена в таблице 5. Таблица 5

Наименование	Обозначение	Количество
Аспиратор модели		
Drager Accuro	64 00 260	1 шт.
с комплектом ЗИП в т.ч.	64 00 220	1 шт.
устройство для вскрытия ТИ,	83 17 186	1 шт.
чемодан переносной (мягкий или жесткий;	83 18 392	1 шт.
Тест-комплекты		
Aerotest Simultan HP (в комплекте с ТИ)	65 25 951	1 шт.
Aerotest Simultan HP (без ТИ)	65 25 937	1 шт.
Aerotest Alpha (в комплекте с ТИ)	65 27 150	1 шт.
Aerotest Alpha (без ТИ)	65 27 149	1 шт.
Набор индикаторных трубок, приведенных таблицах №№ 1 - 3	По документации	1 шт.
Комплекты ЗИП	По документации	3 комплекта
Руководство по эксплуатации	-	1 экз.
Методика поверки	МП-242-1334-2012	1 экз.

Примечание: Комплекты газоаналитические TUBE поставляются в соответствии с требованиями Заказчика в необходимом количестве (наборы индикаторных трубок, аспираторы или только наборы индикаторных трубок).

Поверка

осуществляется в соответствии с документом МП-242-1334-2012 «Комплекты газоаналитические TUBE. Методика поверки», разработанным и утвержденным ГЦИ СИ «ВНИИМ им. Д.И. Менделеева» «1» июня $2012~\Gamma$.

Основные средства поверки

- парофазные источники газовых смесей ПИГС по ТУ 4215 001 20810646 2010 (№ 44308 10 в Госреестре РФ);
- генератор газовых смесей ГГС-03-03 по ШДЕК.418313.001 ТУ (№ 46598-11 в Госреестре РФ) в комплекте со стандартными образцами поверочными газовыми смесями (ГСО-ПГС) в баллонах под давлением по ТУ 6-16-2956-92;
- рабочий эталон 1-го разряда генератор газовых смесей ГГС модификаций ГГС-Т или ГГС-К по ШДЕК.418319.009 ТУ (№ 45189-10 в Госреестре СИ РФ) в комплекте с источниками микропотоков ИМ газов и паров по ИБЯЛ.418319.013 ТУ (№ 15075-08 в Госреестре РФ) или по ШДЕК 418319.008 ТУ;
- рабочий эталон 1-го разряда калибратор газовых смесей модели 146i (озон) (№ 46818-11 в Госреестре СИ РФ);
 - генератор озона ОЗОН М50 (№ 19166-00 в Госреестре СИ РФ);
- газоаналитический комплекс «МОГАИ-6» ИРМБ.413426.001 РЭ (№ 19858-00 в Госреестре РФ) для получения ПГС на основе НСN;
- установка газодинамическая УВТ-Ф для получения ПГС на основе PH_3 (регистрационный № 60-A-89);
- установка газодинамическая УВТ-А для получения ПГС на основе AsH_3 (регистрационный № 59-A-89);
- -установка газодинамическая ГДУ-34 (№ 20616-00 в Госреестре РФ), обеспечивающая приготовление ПГС на основе фосгена, аэрозолей масла;
 - генератор влажного газа ГВГ-902 по ЩДЕК.418313.900ТУ (№ 42811-09 в Госреестре РФ);
 - расходомер-счетчик газа РГС-1 по ШДЕК 421322.001 ТУ;
- измеритель объема ИО-1М модификации ИО-1М (100), по РЮАЖ.407274.001 ТУ (№ 23806-09 в Госреестре СИ РФ).
- стенд испытательный г $\mathbf{\textit{F}}$.6433.00.00.000 ТО для получения ПГС на основе триэтиламина;
- поверочный нулевой газ воздух по ТУ 6-21-5-85, азот газообразный по ГОСТ 9293-74 в баллонах под давлением.

Допускается применение других средств поверки, не приведенных в перечне, но обеспечивающих определение метрологических характеристик с требуемой точностью.

Сведения о методиках (методах) измерений

Методика измерений приведена в документе «Комплекты газоаналитические TUBE. Руководство по эксплуатации».

Нормативные и технические документы, устанавливающие требования к комплектам газоаналитическим TUBE

- 1 ГОСТ 8.578-2008 ГСИ. Государственная поверочная схема для средств измерений содержания компонентов в газовых средах;
 - 2 ГОСТ Р 51712-2001 Трубки индикаторные. Общие технические условия.
- 3 ГОСТ 12.1.005-88 Общие санитарно-гигиенические требования к воздуху рабочей зоны.
- 4 Техническая документация фирмы-изготовителя на комплекты газоаналитические TUBE.

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

выполнение работ по обеспечению безопасных условий и охраны труда и осуществление деятельности по обеспечению безопасности при чрезвычайных ситуациях.

Изготовитель

фирма «Dräger Safety AG & Co.KGaA», Германия. Revalstrasse 1, 23560, Luebeck, Germany, Tel +49 451 882 0 Fax +49 451 882 2080

Испытательный центр

ГЦИ СИ ФГУП «ВНИИМ им. Д.И. Менделеева», 190005, Санкт-Петербург, Московский пр., д.19, тел. (812) 251-76-01, факс: (812) 713-01-14, электронная почта: info@vniim.ru, аттестат аккредитации № 30001-10.

Заместитель
Руководителя Федерального
агентства по техническому
регулированию и метрологии

Ф.В.Булыгин

М.П. «___»____2012 г.