ОПИСАНИЕ ТИПА СРЕДСТВ ИЗМЕРЕНИЙ

Приложение к свидетельству
№ 44348 об утверждении типа
средств измерений

Радиометры-спектрометры универсальные портативные «МКС-А»

Внесен в Государственный реестр средств измерений.

Регистрационный № <u>17406 - 10</u>

Взамен № 17406-05

Выпускаются по техническим условиям ДЦКИ.411168.002 ТУ

Назначение и область применения

Радиометры-спектрометры универсальные портативные МКС-А (далее по тексту — радиометры) включают в себя две модификации: МКС-А02 и МКС-А03 с различными вариантами исполнения. Радиометры предназначены: для поиска (обнаружение, локализация) радиоактивных материалов; измерения количественных характеристик ядерных излучений по альфа-, бета-, гамма- и нейтронному каналам, для идентификации гамма-излучающих радионуклидов путем обработки гамма-спектров; для хранения измеренных гамма-спектров для их возможной обработки на компьютере. Радиометры позволяют проводить измерения плотности потока альфа-, бета излучения, мощности амбиентного эквивалента дозы гамма- и нейтронного излучения.

Основные области применения радиометров:

- проходные и контрольно-пропускные пункты таможенного контроля, а также различных объектов хозяйственной деятельности и военного назначения для обнаружения, поиска, локализации и идентификации несанкционированно перемещаемых делящихся и радиоактивных материалов в грузах, багаже, ручной клади и транспортных средствах;
- лаборатории служб внешней дозиметрии, экологические службы различных министерств и ведомств, радиологические лаборатории Госсанэпиднадзора, ветеринарных и сельскохозяйственных служб для оперативного контроля различных объектов окружающей среды на содержание радионуклидов;

Описание

В основу работы радиометров по гамма-каналу положен принцип преобразования энергии гамма-квантов в чувствительном объеме сцинтилляционного детектора в электрические импульсы пропорциональной амплитуды с последующей их регистрацией и анализом многоканальным амплитудным анализатором. Гамма-спектр является исходной информацией для идентификации гамма-излучающих радионуклидов, а также для расчета МАЭД гамма-излучения. Радиометры также могут иметь два встроенных детектора на ³Не-трубках для регистрации нейтронного излучения и внешний полупроводниковый детектор для регистрации альфа и бета излучения.

Радиометры предназначены для эксплуатации в лабораторных и полевых условиях. Условия эксплуатации радиометров соответствуют группе В2а ГОСТ 27451-87 с расширением диапазона в сторону низких температур до минус 20 °C, относительной влажности до 95 % при

температуре окружающего воздуха 35 °C. По устойчивости к воздействию вибрации радиометры соответствуют группе исполнения L3 ГОСТ 27451-87.

Радиометры могут выпускаться в различных исполнениях. Общее название радиометров: «Радиометры-спектрометры универсальные портативные МКС-A02» и «Радиометры-спектрометры универсальные портативные МКС-A03». Примеры записи обозначения радиометров в соответствии с вариантами исполнения каждой модификации приведены в таблице 1.

Таблица 1

Наименование и условное обозначение	Обозначение	Характеристика варианта исполнения по типу детекторов
1	2	3
Радиометр-спектрометр универсальный портативный МКС-А02-1М	ДЦКИ.411168.007	Встроенные: - сцинтилляционный гамма детектор; - нейтронный детектор. Выносной: - альфа-бета-детектор БДС-АБ1.
Радиометр-спектрометр универсальный портатив- ный MKC-A02-2M	ДЦКИ.411168.008	Встроенный: - сцинтилляционный гамма детектор. Выносной: - альфа-бета-детектор БДС-АБ1.
Радиометр-спектрометр универсальный портатив- ный МКС-A02-3	ДЦКИ.411168.004	Встроенные: - сцинтилляционный гамма детектор; - нейтронный детектор.
Радиометр-спектрометр универсальный портатив- ный МКС-А02-4	ДЦКИ,411168.005	Встроенный: - сцинтилляционный гамма детектор.
Радиометр-спектрометр универсальный портатив- ный МКС-А03-1 (МКС-А03-1Н)	ДЦКИ.411168.009 (ДЦКИ.411168.009-04)	Встроенные: - сцинтилляционный гамма-детектор; - гамма-детектор на основе счетчика Гейгера- Мюллера; - нейтронный детектор. Выносные: - альфа-бета детектор БДС-АБ2 для МКС-А03-1; - детектор БДН-06М для МКС-А03-1Н.
Радиометр-спектрометр универсальный портатив- ный МКС-A03-1E (МКС-A03-1EN)	ДЦКИ.411168.009-08 (ДЦКИ.411168.009-09)	Встроенные: - сцинтилляционный гамма-детектор; - гамма-детектор на основе счетчика Гей- гера-Мюллера, - нейтронный детектор в экспортном ис- полнении. Выносные: - альфа-бета детектор БДС-АБ2 для МКС-А03-1E; - БДН-06М для МКС-А03-1EN.
Радиометр-спектрометр универсальный порта- тивный МКС-А03-2 (МКС-А03-2H)	ДЦКИ.411168.009-01 (ДЦКИ.411168.009-05)	Встроенные: - сцинтилляционный гамма-детектор; - гамма-детектор на основе счетчика Гейгера- Мюллера. Выносные: - альфа-бета детектор БДС-АБ2 для МКС-А03-2; - детектор БДН-06М для МКС-А03-2Н

Окончание таблицы

Экончание птаолицы		
1	2	3
Радиометр-спектрометр	ДЦКИ.411168.009-02	Встроенные:
универсальный порта-	(ДЦКИ.411168.009-06)	- сцинтилляционный гамма детектор;
ТИВНЫЙ		- гамма-детектор на основе счетчика
MKC-A03-3		Гейгера- Мюллера;
(MKC-A03-3H)		- нейтронный детектор.
,		Выносной:
		- детекторБДН-06М для МКС-А03-3Н
Радиометр-спектрометр	ДЦКИ.411168.009-10	Встроенные:
универсальный порта-	(ДЦКИ.411168.009-11)	- сцинтилляционный гамма детектор;
тивный		- гамма-детектор на основе счетчика
MKC-A03-3E		Гейгера- Мюллера;
(MKC-A03-3EN)		- нейтронный детектор в экспортном
		исполнении.
		Выносной:
		- детекторБДН-06М для МКС-A03-3EN.
Радиометр-спектрометр	ДЦКИ.411168.009-03	Встроенные:
универсальный порта-	(ДЦКИ.411168.009-07)	- сцинтилляционный гамма-детектор;
тивный		- гамма-детектор на основе счетчика
MKC-A03-4		Гейгера- Мюллера
(MKC-A03-4H)		Выносной:
		- детектор БДН-06М для МКС-А03-4Н.

Примечание - Возможна комплектация радиометров блоком детектирования нейтронного излучения БДН-06М с дополнением к условному обозначению радиометра буквы «Н», например: «МКС-A02-1H», МКС-A03-1H» и т. д.

Гамма-канал состоит из сцинтилляционного детектора, фотоэлектронного умножителя (ФЭУ), усилителя-формирователя, управляемого высоковольтного преобразователя, светодиодной системы стабилизации. Сцинтилляционный детектор выполнен на основе кристалла NaI(TI). Световые вспышки, образующиеся в кристалле при прохождении ядерного излучения, регистрируются ФЭУ, усиливаются, формируются и подаются на вход амплитудно-цифрового преобразователя (АЦП). АЦП взаимодействует с микропроцессорной системой, в энергонезависимой памяти которой формируется спектр регистрируемого излучения.

Стабилизация гамма-канала осуществляется по реперному пику, образующемуся в гамма-спектре при засветке ФЭУ световыми импульсами от специального светодиода.

Нейтронный канал содержит два детектора в виде трубок с газом He-3 под давлением 8 атмосфер, помещенных в замедлитель из полиэтилена. Один из детекторов закрыт экраном из кадмия. Детекторы работают в пропорциональном режиме. Сигналы с детекторов отдельно усиливаются, дискриминируются и поступают на счетчики микропроцессора. В радиометрах предусмотрена возможность подключения внешнего детектора нейтронного излучения.

Предусмотрена работа радиометров в трех основных режимах: спектрометрическом, поисковом и радиометрическом.

В спектрометрическом режиме радиометры позволяют осуществлять накопление гаммаспектров, выводить полученные спектры на жидкокристаллический дисплей, выполнять энергетическую калибровку, идентификацию изотопов и другие функции по обработке спектров предусмотренные программой, занесенной в постоянное запоминающее устройство ПЗУ.

В поисковом режиме радиометры фиксируют превышение скорости счета в заданных энергетических диапазонах гамма спектра, а так же - по нейтронному каналу - над соответствующими фоновыми значениями с учетом статистической значимости получаемых величин. Превышение индицируется на жидкокристаллическом дисплее, подтверждается светодиодным индикатором и звуковым сигналом.

В радиометрическом режиме производится подсчет мощности амбиентного эквивалента дозы (МАЭД) гамма-излучения путем с помощью программы пересчета спектр-доза, хранящейся в ПЗУ прибора. Подсчет плотности потока и МАЭД нейтронного излучения производится микроконтроллером прибора путем деления набранной за определенное время счетной ин-

формации на соответствующие калибровочные коэффициенты. Для определения величин плотностей потоков альфа- и бета-излучения используется детектор БДС-АБ2. Разделение альфа и бета- каналов производится путем амплитудной дискриминации и по форме импульса. Подсчет плотностей потоков альфа- и бета-излучения производится путем обработки спектра, накопленного от детектора при помощи программы пересчета, хранящейся в ПЗУ прибора путем умножения интегрального счета по соответствующему каналу на калибровочные коэффициенты, хранящиеся в энергонезависимой памяти прибора.

Через стандартный последовательный порт RS-232 возможен обмен данными с компьютером и управление радиометрами.

Питание радиометров производится как от встроенных аккумуляторов, так и от сети переменного тока (от 110 до 240 В, от 50 до 60 Гц) через прилагаемый адаптер. Этот же адаптер используется для зарядки аккумуляторов.

Основные технические характеристики

Радиометры обеспечивают измерение характеристик, приведенных в таблице 2.

Таблица 2

	1							
	Измеряемая характеристика							
Условное обо- значение	Плотность потока альфа- частиц	Плотность потока бета-частиц	МАЭД гамма- излучения	МАЭД нейтронного излучения от источника ²³⁹ Pu-α-Be	МАЭД нейтронного излучения в диапазоне энергий от 1×10 ⁻³ до 14 МэВ			
MKC-A02-1M	+	+	+	+	-			
MKC-A02-2M	+	+	+	-	-			
MKC-A02-3	-	-	+	+	-			
MKC-A02-4	-	-	+	-	-			
MKC-A03-1	+	+	+	+	-			
MKC-A03-1E	+	+	+	+	-			
MKC-A03-2	+	+	+	-	-			
MKC-A03-3	-	-	+	+	-			
MKC-A03-3E	-	<u>-</u>	+	+	-			
MKC-AO3-4	-	<u>-</u>	+	_	-			
MKC-A03-1H	+	+	+	+	+			
MKC-A03-1EN	+	+	+	+	+			
MKC-A03-2H	+	+	+	<u>-</u>	+			
MKC-A03-3H		-	+	+	+			
MKC-A03-3EN	-	-	+	+	+ .			
MKC-AO3-4H	_	_	+	-	+			

Примечание - Знаком "+" отмечены характеристики, измеряемые радиометром в данном исполнении. Знаком " - " отмечены характеристики, не измеряемые радиометром в данном исполнении.

Диапазон измерения, диапазон энергий и предельные значения основной относительной погрешности радиометров для каждого вида ионизирующего излучения соответствовуют значениям, приведенным в таблице 3.

Таблица 3

Вид излучения (Тип детектора)	Измеряемая характеристика	Диапазон измерения	Диапазон энергий регистрируемого излучения или нуклид	Предел допускае- мой основной отно- сительной погреш- ности, % 1)
Альфа (БДС-АБ1, БДС-АБ2)	Плотность потока, см ⁻² мин ⁻¹	от 1 до 10¹ от 10¹ до 5⋅10³	от 3 до 10 МэВ	±40 ±20
Бета (БДС-АБ1, БДС-АБ2)	Плотность потока, см ⁻² мин ⁻¹	от 2 до 2·10¹; от 2·10¹ до 5·10³	от 0,3 до 3 МэВ максимального значения энергий бета-спектра	±40 ±20
Гамма (сцинтилляци- оннный детектор МКС-А02)	МАЭД, мкЗв/ч	от 0,1 до 10 от 0,1 до 100	от 0,05 до 0,3 МэВ от 0,3 до 3 МэВ	±20
Гамма (сцинтилляци- оннный детектор МКС-А03 и детектор на ос- нове счетчика Гейгера- Мюллера	МАЭД, мкЗв/ч	от 0,1 до 10 от 0,1 до 100 от 100 до 1·10⁴	от 0,05 до 0,3 МэВ от 0,3 до 3 МэВ от 0,05 до 3 МэВ	±20 ±20 ±30
Нейтронное из- лучение (встро- енный детектор)	МАЭД, мкЗв/ч	от 1 до 10 ³	Источник ²³⁹ Pu-α-Be	±[40+20/H×(10)] ²⁾
Нейтронное из- лучение (встро- енный детектор в экспортном ис- полнении)	МАЭД, мкЗв/ч	от 1 до 10 ³	Источник ²³⁹ Pu-α-Ве	±[40+20/ H ×(10)] ²⁾
Нейтронное из- лучение (детектор БДН-06М)	МАЭД, мкЗв/ч	от 0,1 до 1⋅10⁴	от 1·10 ⁻³ до 14	±[30+20/ H·×(10)] ²⁾

Примечания

В режиме спектрометра радиометры позволяют получать статистическое распределение зарегистрированных гамма-квантов в энергетическом диапазоне (спектр) и проводить идентификацию гамма-излучающих радионуклидов в соответствии с хранящейся во внутренней памяти библиотекой радионуклидов, которая может редактироваться и записываться в прибор через внешний IBM-совместимый компьютер.

Значения минимальных обнаруживаемых радиометром активностей источников гамма-излучения в поисковом режиме при интенсивности фона не более 25 мкР/ч, на расстоянии 0,2 м, при движении прибора со скоростью $(0,5\pm0,05)$ м/с, соответствовуют данным, указанным в таблице 4.

Таблица 4

Источник излучения	Минимальная обнаруживаемая активность источника, кБк (мкКи)
¹³³ Ba	55 (1,5) ±11 (0,3)
¹³⁷ Cs	100 (2,7) ±20 (0,54)
⁶⁰ Co	50 (1,35) ±10 (0,27)

 $^{^{1)}}$ $\dot{H} \times (10)$ - измеренное значение МАЭД в мкЗв/ч

²⁾ При измерении по Ри-α-Ве источнику

Значение минимально обнаруживаемого радиометрами (кроме радиометров со встроенным нейтронным детектором в экспортном исполнении МКС-A03-1E, МКС-A03-3E) потока нейтронов от источника нейтронного излучения Cf-252 в поисковом режиме на расстоянии 0.2 м при движении радиометра со скоростью $(0.5\pm0.05) \text{ м/c}$ составляет не более $(6.0\pm1.2)\cdot10^3 \text{ c}^{-1}$.

Значение минимально обнаруживаемого радиометрами со встроенным нейтронным детектором в экспортном исполнении (МКС-A03-1E, МКС-A03-3E) потока нейтронов от источника нейтронного излучения Cf-252 в поисковом режиме, на расстоянии 0,2 м за время экспозиции 5 с составляет не более $(2\pm0.6)\cdot10^4$ с⁻¹.

Радиометры с БДН-06М имеют чувствительность к нейтронному излучению не менее 0,4 (имп/с)/(мкЗв/ч). Энергетическая зависимость чувствительности для набора типовых спектров (спектр Pu-a-Be, 252 Cf, спектры этих источников, размещенных в контейнере-коллиматоре установки УКПН-1М, спектры рассеянного в помещении излучения радионуклидных источников) не превышает значение ± 40 %.

Частота ложных срабатываний радиометров в поисковом режиме не более одного ложного срабатывания:

- за 1 мин непрерывной работы радиометров по гамма-каналу;
- за 10 минут непрерывной работы радиометров по нейтронному каналу;
- за 1 час непрерывной работы по нейтронному каналу для радиометров МКС-А03 в экспортном исполнении.

Относительное энергетическое разрешение радиометра-спектрометра по линии га излучения с энергией 662 кэВ (Cs-137), %, не более	
Диапазон регистрируемых энергий гамма спектра, МэВот 0,050 до	3
Интегральная нелинейность спектрометра, %	±1
Максимальная входная статистическая загрузка по гамма каналу, имп/с, не более5	i·10⁴
Число каналов АЦП10)24
Количество сохраняемых 1024-канальных спектров, не менее	00
Температурная нестабильность характеристики преобразования, не более %/°С0),1
Время непрерывной работы	
- при питании от сети ~220 В, 50 Гц - от встроенных аккумуляторов, ч, не менее	
Время установления рабочего режима:	
– при работе в режиме идентификации, мин, не более	
Диапазон рабочих температур, °С от минус 20 до плюс	; 50
Влажность окружающего воздуха при 35 °C, %	.95
Потребляемая мощность от сети, B·A, не более	15
Средняя наработка на отказ, ч, не менее	00
Габаритные размеры МКС-А и масса составных частей приведены в таблице 5.	

Таблица 5

Условное обозначение	Габаритные ра мм, не бол	Macca,	
	длина×ширина×высота диаметр×высота		кг, не более
MKC-A02	310×160×135		3,6
MKC-A03	280×130×181		3
Адаптер сетевой	60×160×40		0,5
БДС-АБ1	350×160×80		1
БДС-АБ2	250×110×180		0,7
БДН-06М		234×284	6,1
Устройство калибровочное (Th-232)	·	60×20	0,078
Устройство зарядки и ка- либровки	299×138×92		1,1

Знак утверждения типа

Знак утверждения типа наносится графически или специальным штемпелем на титульном листе паспорта на радиометр и методом сеткографии на лицевой стороне радиометра.

Комплектность

В комплект поставки радиометров должны входить устройства, изделия и эксплуатационная документация, указанные в таблице 6.

Таблица 6

Наименование	Обозначение	Количество на ис- полнение МКС-A02-				Количество на ис- полнение МКС-А03-			
		1M	2M	3	4	1	2	3	4
1	2	3	4	5	6	7	8	9	10
Радиометр-спектрометр универсальный портативный МКС-А02 (с комплектом аккумуляторов)	См. таблицу 1	1	1	1	1	-	-	•	-
Радиометр-спектрометр уни- версальный портативный МКС-A03	См. таблицу 1	-	ı	ı	-	1	1	1	1
Радиометр-спектрометр универсальный портативный МКС-А03 (с нейтронным каналом экспортного исполнения)	См. таблицу 1	-	•		-	1	<u>-</u>	-	1
Блок детектирования БДС-АБ1	ДЦКИ.418241.004	1	1	-	<u>-</u>	-	-	-	-
Блок детектирования БДС-АБ2	ДЦКИ.418241.006	-	-	-	-	1	1	-	-

Окончание таблицы

1	2	3	4	5	6	7	8	9	10
Блок детектирования нейтрон- ного излучения БДН-06М ¹⁾	ДЦКИ.418252.004	1	1	1	1	1	1	1	1
Адаптер сетевой SA-3104	-	1	1	1	1	•	•	-	-
Адаптер сетевой	ДЦКИ.436234.053		-	-	-	1	1	1	1
Устройство калибровочное ²⁾	ДЦКИ.418234.001	1_	1	1	1	-	-	-	-
Устройство зарядки и калиб- ровки	ДЦКИ.436434.001	-	-	-	•	1	1	1	1
Сумка для переноски	-	1_	1	1	1	1	1	1	1
Кабель интерфейсный RS-232	ДЦКИ.685621.077	1	1	1	1	1	1_	1	1
Комплект эксплуатационных документов согласно ведомости ДЦКИ.411168.002 ВЭ		1	1	1	1	-	•	-	-
Ведомость эксплуатационных документов	ДЦКИ.411168.002 ВЭ	1	1	1	1	-	•	_	-
Комплект эксплуатационных документов согласно ведомости ДЦКИ.411168.009 ВЭ		•	,-	-	8	1	1	1	1
Ведомость эксплуатационных документов	ДЦКИ.411168.009 ВЭ	-	-	_	-	1	1	1	1
Комплект программного обес- печения для компьютера на носителе данных		1	1	1	1	1	1	1	1

Примечания

Поверка

Поверка радиометров осуществляется в соответствии с документом Методика поверки, согласованной ФГУ «Менделеевский ЦСМ» Центральное отделение в октябре 2010 г.

Основное оборудование для поверки - комплект ОСГИ-3, альфа-источники типа 6П9, бета-источники типа 6СО установки типа УКПН и УПДГ.

Межповерочный интервал – 1 год.

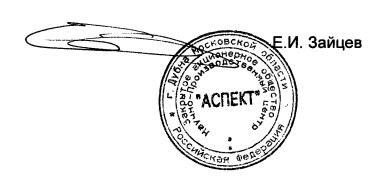
^{1 &}lt;sup>1)</sup> Блок детектирования БДН-06М входит в комплект поставки радиометров с условными обозначениями согласно примечанию к таблице 1.

^{2 &}lt;sup>2)</sup> Устройство калибровочное ДЦКИ.418234.001 поставляется по согласованию с заказчиком в соответствии с картой заказа или договором на поставку.

Нормативные документы

Таблица 7

Обозначение	Наименование
ГОСТ 8.033-96	ГСМ. Государственная поверочная схема для средств измерений активности радионуклидов, потока и плотности потока альфа-, бетачастиц и фотонов радионуклидных источников
FOCT 8.070-96	ГСИ. Государственная поверочная схема для средств измерений поглощенной и эквивалентной доз и мощности поглощенной и эквивалентной доз фотонного и электронного излучений
ГОСТ 27451-87	Средства измерений ионизирующих излучений. Общие технические условия
FOCT 22261-94	Средства измерений электрических и магнитных величин. Общие технические условия
FOCT 26874-86	Спектрометры энергий ионизирующих излучений.
	Методы измерений основных параметров
ГОСТ 28271-89	Приборы радиометрические и дозиметрические. Общие технические требования и методы испытаний
ДЦКИ.411168.002 ТУ	Радиометры-спектрометры универсальные портативные «МКС-А». Технические условия
HP5-99	Нормы радиационной безопасности.
ОСП 72/80	Основные санитарные правила работы с радиоактивными веществами и источниками ионизирующих излучений


Заключение

Радиометры-спектрометры универсальные портативные «МКС-А» утверждены с техническими и метрологическими характеристиками, приведенными в настоящем описании типа, метрологически обеспечены при выпуске из производства и в эксплуатации согласно поверочным схемам ГОСТ 8.033-96 и ГОСТ 8.070-96.

Изготовитель:

Закрытое акционерное общество «Научно-производственный центр "АСПЕКТ"», Россия, 141980, г. Дубна Московской области, ул. Жолио-Кюри д. 6, тел/факс: (09621) 65108.

Генеральный директор ЗАО «НПЦ "АСПЕКТ"»

