ОПИСАНИЕ ТИПА СРЕДСТВ ИЗМЕРЕНИЙ

СЧЕТЧИКИ УЛЬТРАЗВУКОВЫЕ ALTOSONIC V (мод. ALTOSONIC VM) Внесены в Государственный реестр средств измерений Регистрационный № 18656-04 Взамен №

Выпускаются по технической документации фирмы «KROHNE ALTOMETER», Нидерланды.

НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ

Счетчики ультразвуковые ALTOSONIC V (мод. ALTOSONIC VM), далее – счётчики, предназначены для измерений объема и массы различного вида жидкостей в напорных трубопроводах при взаимных расчетах между поставщиком и потребителем, а также при технологических операциях.

Область применения: магистральные трубопроводы, нефтегазодобывающие платформы, экспортно-импортные морские терминалы, предприятия нефтяной, газовой, химической, нефтеперерабатывающей и других отраслей промышленности.

ОПИСАНИЕ

Принцип работы счётчика основан на время-импульсном методе измерений, при котором разность времени прохождения ультразвукового импульса в жидкости по направлению и против направления движения жидкости пропорциональна скорости (расходу) потока жидкости в трубопроводе.

Счетчик ALTOSONIC V используется для измерений объема, счетчик ALTOSONIC VM - для измерений массы.

Счетчики работают как при прямом, так и при обратном (реверсивном) движении потока измеряемой среды в трубопроводе.

В состав счетчика входят:

- первичный преобразователь UFS 500 F-EEx;
- промежуточный преобразователь UFC 500 F-EEx;
- индустриальный компьютер UPC 500 P (или компьютерная стойка);
- программное обеспечение KROHNE;
- блок ввода/вывода;
- индивидуальные прямолинейные участки трубопровода на входе и выходе первичного преобразователя.

Счетчики могут использоваться совместно с преобразователями температуры, давления и плотности 7835, компьютером, предназначенным для хранения архивных данных о физических параметрах измеряемой среды и диагностических сообщений о работе счетчика, формирования и распечатки журнала тревог и протоколов, анализатором содержания воды, сумматором (при работе нескольких счетчиков).

Конструктивно счетчик выполнен в виде отдельных составных частей.

Первичный преобразователь состоит из присоединительных фланцев, входного конфузора, цилиндрического измерительного участка с десятью ультразвуковыми датчиками, образующими пять акустических каналов, и выходного диффузора, а также входного и выходного прямолинейных участков.

Индивидуальные прямолинейные участки трубопровода на входе и выходе (при измерении реверсивного потока) первичного преобразователя снабжаются струевыпрямителями. При установке преобразователей температуры и давления на выходном участке он снабжается соответствующими присоединительными штуцерами.

При движении жидкости через первичный преобразователь измеряются интервалы времени прохождения ультразвуковых импульсов в акустических каналах. По результатам измерений в компьютере определяются значения скоростей в каждом из пяти акустических каналов и средняя скорость потока измеряемой среды через поперечное сечение первичного преобразователя. По средней скорости потока компьютер вычисляет расход и объем измеряемой среды.

При измерении массы счетчик преобразует электрические сигналы от преобразователей плотности, температуры и давления в цифровой код. Преобразование сигналов производится в блоке ввода/вывода, который может быть выполнен как в одном блоке с компьютером, так и отдельно. По измеренным значениям плотности, температур, давлений и объема компьютер вычисляет значение массы.

Измеренные и вычисленные значения могут преобразовываться в токовый (4-20 мА) и частотно-импульсный сигналы, а также передаваться по RS485 (RS232) и выводится на показывающее устройство (дисплей) компьютера.

На показывающем устройстве (дисплее) компьютера индуцируется следующая информация:

- значения объема и объёмного расхода в прямом и обратном направлении потока;
- значения температуры и давления жидкости;
- значения массы и массового расхода (только ALTOSONIC VM);
- значение объема нефти и нефтепродуктов, приведенного к стандартным условиям (температура $t=20~^{\circ}\mathrm{C}\,$ или 15°C, давление $P_{из6}=0$ МПа или $P_{a6c}=0,101325$ МПа);
- профиль измеряемого потока в графической форме в реальном масштабе времени;

- значения скоростей прохождения ультразвуковых импульсов в акустических каналах первичного преобразователя;
- интенсивность закрутки потока (свёрла);
- диагностические сообщения о работе счетчика.

ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Основные технические характеристики приведены в таблицах 1 и 2.

Таблица 1

Наименование параметра			Величина параметра					
Условный диаметр, мм (дюйм)		100	150	200	250	300	350	
		(4")	(ნ")	(8")	(10")	(12")	(14")	
Наибольший расход, M^3/Ψ		280	600	1200	1800	2500	3500	
Наименьший расход в зависимости	2:1	140	300	600	900	1250	1750	
от кратности диапазона измерений,	10:1	28	60	120	180	250	350	
м ³ /ч	20:1	14	30	60	90	125	175	
Цена деления шкалы индикации объёма, м ³		0,001	0,001	0,001	0,001	0,001	0,001	
Монтажная длина первичного		500	600	900	1000	1100	1200	
преобразователя, мм		(550*)	(650*)	(950*)	1100*)			
Масса первичного преобразователя		80	110	160	240	320	460	
(для фланцев 150 lb), кг								

Таблица 1 (продолжение)

Наименование параметра	Величина параметра						
Условный диаметр, мм (дюйм)		400	450	500	600	700	800
	,	(16")	(18")	(20")	(24")	(28")	(32")
Наибольший расход, м ³ /ч		4500	5700	7100	10000	13800	18000
		(5000**)					
Наименьший расход в зависимости	2:1	2250	2850	3550	5000	6900	9000
от кратности диапазона измерений,	10:1	450	570	710	1000	1380	1800
м ³ /ч	20:1	225	285	355	500	690	900
Цена деления шкалы индикации объёма,		0,001	0,001	0,001	0,001	0,001	0,001
M^3							
Монтажная длина первичного		1300	1400	1500	1800	1900	2200
преобразователя, мм							
Масса первичного преобразователя		600	860	1000	1100	1400	1800
(для фланцев 150 lb), кг							

Наименование параметра		Величина па	раметра		
Измеряемая среда	жидкость (нефть, нефтепродукты, сжижен-				
• //	ные газы, бензин, керосин, дизельное топ				
	во, широкая фракция легких углеводород				
	нестабильный газовый конденсат и др.)				
Температура измеряемой среды, °С	-20 (-50**)+120 (+110 для ALTOSONIC VM				
Вязкость измеряемой среды, сСт	0,1400				
Плотность измеряемой среды, кг/м ³	300 1100				
Давление в трубопроводе, не более, МПа	1,6 (16**)				
Пределы допускаемой относительной	Кратность диапазона расхода				
погрешности, в зависимости от кратности	2:1	10:1	20:1		
диапазона расхода, %					
-при измерении объема	±0,15	±0,2 (±0,15**)	±0,25 (±0,15**)		
-при измерении массы (только ATOSONIC	±0,2	±0,25 (±0,2**)	±0,3 (±0,2**)		
VM)			, , , ,		
Температура окружающего воздуха, °С					
- первичный преобразователь		-55+			
- промежуточный преобразователь	1	-55+	55		
- компьютер	+5+55				
Класс защиты					
- первичный преобразователь	Не ниже IP66		IP66		
- промежуточный преобразователь	Не ниже ІР65				
- компьютер		Не ниже	IP57		
Взрывозащищенность:					
- первичный преобразователь	lExibIICT6T3				
- промежуточный преобразователь	1ExdibIIBT5				
Габаритные размеры, не более, мм:					
- промежуточный преобразователь	610x465x293				
- компьютер (компьютерная стойка)	490x440x350 (2330x600x610)				
Масса, не более, кг		5 0			
- промежуточный преобразователь		59			
- компьютер (компьютерная стойка)	20 (208)				
Номинальное напряжение питания	230; 110; 24 переменный ток (частота				
промежуточного преобразователя и	4763Гц), 24 постоянный ток		тоянный ток		
компьютера в зависимости от	ļ				
исполнения, В					
.Потребляемая мощность, не более, B·A:		200			
- промежуточный преобразователь	200				
- компьютер (компьютерная стойка)	120 (700)				
Длина входного прямого участка (при	20Ду (10Ду)		Д У)		
наличии струевыпрямителя), не менее	 				
Длина выходного прямого участка (в том		£11., (21	T _{v/} \		
числе до места монтажа преобразователей		5Ду (3Д	L Σ)		
температуры), не менее	 				
Максимальное длина кабеля между		10			
первичным и промежуточным		10			
преобразователем, не более, м	<u> </u>				

Примечания

* - для фланцев 600 lb

** - по заказу

ЗНАК УТВЕРЖДЕНИЯ ТИПА

Знак утверждения типа наносится на титульные листы эксплуатационной документации типографским методом.

КОМПЛЕКТНОСТЬ

№ п/п	Наименование	Кол-во
1.	Счетчик ультразвуковой ALTOSONIC V (ALTOSONIC VM)	1
2.	Комплект эксплуатационной документации	1
3.	Паспорт "Счетчики ультразвуковые ALTOSONIC V (мод. ALTOSONIC VM)"	1
4.	Методика поверки "Счетчики ультразвуковые «ALTOSONIC V» и «ALTOSONIC VM»	1

ПОВЕРКА

Поверку счетчиков ультразвуковых ALTOSONIC V (мод. ALTOSONIC VM) производят в соответствии с методикой "Счетчики ультразвуковые «ALTOSONIC V» и «ALTOSONIC VM». Методика поверки", утвержденной ГЦИ СИ ФГУП «ВНИИМС» в 2006 г.

Основное поверочное оборудование

Наименование	Характеристики
Установки для поверки счетчиков жидкости	Диапазон расходов 14 $18000 \text{ м}^3/\text{ч}$, относительная погрешность не более $\pm (0,050,08)\%$.
Генератор импульсов	Диапазон частот до 5000 Γ ц, относительная погрешность не более $\pm 0,005~\%$
Калибратор тока	Диапазон токов $0-20\text{мA}$, абсолютная погрешность задания тока не более $\pm 0,02\text{мA}$.

Межповерочный интервал - 3 года.

НОРМАТИВНЫЕ И ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

ГОСТ Р 8.595 "Масса нефти и нефтепродуктов. Общие требования к методикам выполнения измерений"

МОЗМ МР №117-1 «Измерительные системы для жидкостей кроме воды».

Техническая документация фирмы "KROHNE Oil & Gas" (Нидерланды).

ЗАКЛЮЧЕНИЕ

Тип счетчиков ультразвуковых ALTOSONIC V (мод. ALTOSONIC VM) утвержден с техническими и метрологическими характеристиками, приведенными в настоящем описании типа, и метрологически обеспечен при выпуске из производства и в эксплуатации.

ИЗГОТОВИТЕЛЬ: "KROHNE ALTOMETER ", Нидерланды

Адрес:

Kerkeplaat 12, 3313 LC Dordrecht

Postbus 110, 3300 AC Dordrecht

The Netherlands.

Факс

+31 (0)76 71 12 005 (Нидерланды)

Телефон

+31 (0)76 71 12 017 (Нидерланды)

Директор стратегического развития

B.B. Смышляев

Uterstrasse 90 СН-4019 Basel