ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Системы газоаналитические MCS 100 E модификаций MCS 100 E HW, MCS 100 E PD, MCS 100 E CD

Назначение средства измерений

Системы газоаналитические MCS 100 E модификаций MCS 100 E HW, MCS 100 E PD, MCS 100 E CD предназначены для автоматического непрерывного измерения массовой концентрации и объемной доли газовых компонентов, приведенных в таблице 2, в отходящих и технологических газах промышленных предприятий.

Описание средства измерений

Принцип действия системы основан на следующих методах:

- 1) для определения всех компонентов (кроме кислорода): ИК спектроскопия,
- 2) для определения кислорода:
- электрохимический (циркониевый датчик),
- 3) для определения температуры платиновый термометр сопротивления (изменение сопротивления сплава в зависимости от температуры);
- 4) для определения скорости метод дифференциального давления (перепада давления).

Системы газоаналитические MCS 100 Е представляют собой стационарные автоматические системы непрерывного действия. Системы состоят из газоанализатора MCS 100 Е и блоков пробоподготовки, смонтированных в шкафу. Газовая проба из трубы отбирается с помощью обогреваемого пробоотборного зонда. Для измерения объемной доли кислорода в систему вводится ZrO_2 -зонд.

Системы газоаналитические MCS 100 E имеют 3 модификации:

MCS 100 E HW – базовая модель, которая используется для анализа дымовых газов с высокой кислотной точкой росы. Для защиты от коррозии в данной модификации предусмотрен электрический нагрев всех составных частей системы до температуры, превышающей кислотную точку росы;

MCS 100 E PD – модель с диффузионным осущителем, благодаря которому удается избежать потерь легко растворимых газов, таких как HCl, NO_2 и SO_2 , и проводить измерения в области низких концентраций;

MCS 100 E CD – модель с охладителем, который понижает температуру пробы газа, поступающего из разогретой системы пробоотбора. В охладителе дымовой газ осущается, а конденсат удаляется. Далее компрессор подает охлажденную пробу в измерительную систему. Данная модификация обеспечивает измерение в более низких и более узких диапазонах по сравнению с модификацией MCS 100 E HW.

Для минимизации эффектов адсорбции и десорбции в системах также предусмотрена возможность увеличения объемного расхода до $600~\rm{дm}^3/\rm{y}$ (для MCS $100~\rm{E}$ HW) и до $400~\rm{дm}^3/\rm{y}$ (для MCS $100~\rm{E}$ PD и MCS $100~\rm{E}$ CD).

В системе предусмотрена компенсация влияния друг на друга определяемых компонентов.

Системы обеспечивают проведение автоматической калибровки и, при необходимости, корректировки нулевых показаний и чувствительности при этом выдается соответствующая информация на дисплее. При возникновении неисправностей система самостоятельно переходит в нерабочее состояние, система пробоотбора и кювета фотометра промываются чистым воздухом.

Измерительная информация и сигналы о состоянии системы поступают на соответствующие модульные блоки системы, которые с помощью цифровых и аналоговых входных и выходных сигналов могут обеспечивать температурную регулировку внешних конструктивных частей, например, обогреваемой линии подачи анализируемого газа а также корректировку при изменении атмосферного давления в диапазоне от 70 до 120 кПа. После этого измерительная информация может быть сохранена в запоминающем устройстве, передана на печать или модем и распечатана в виде протокола.

В системах предусмотрена автоматическая подача поверочных газовых смесей. Система имеет следующие выходные сигналы:

- аналоговые выходы по току (4-20) мА, (0-20) мА,
- релейные выходы аварийных сигналов (по запросу)

Дистанционный контроль и передача данных

- интерфейсы RS-232 и/или RS-422/485, по запросу Ethernet, ModBus; Визуализация данных
- показания, выводимые на ЖК монитор системы; Внешний вид систем газоаналитических MCS 100 Е приведен на рис.1

Рис. 1. Внешний вид систем газоаналитических MCS 100 E модификаций MCS 100 E HW, MCS 100 E PD, MCS 100 E CD.

Программное обеспечение

Системы имеют встроенное программное обеспечение MCS100E HW/PD/CD.

Программное обеспечение осуществляет функции:

- расчет содержания определяемого компонента,
- отображение результатов измерений на ЖКИ дисплее газоанализатора;
- передачу результатов измерений по интерфейсу связи с ПК,
- контроль целостности программных кодов ПО, настроечных и калибровочных констант;
- контроль общих неисправностей (связь, конфигурация);
- контроль внешней связи (RS232, Modbus RTU, Ethernet).

Уровень защиты встроенного ΠO от преднамеренных или непреднамеренных изменений соответствует уровню «С» по M M 3286-2010.

Влияние встроенного ПО учтено при нормировании метрологических характеристик.

Идентификационные данные программного обеспечения приведены в таблице 1.

Таблица 1.

		Цифровой	
Идентификационное наименование программного обеспечения	Номер версии	идентификатор	Алгоритм
	(идентификационный	программного	вычисления
	номер)*	обеспечения (кон-	цифрового
	программного	трольная	идентификатора про-
oocene ienna	обеспечения	сумма исполняемого	граммного обеспечения
		кода)	
MCS100E	1.46	29810ba4e0867602d1 02405a964f20bc	MD5

^{*}Номер версии (идентификационный номер) программного обеспечения должен быть не ниже указанного в таблице.

Метрологические и технические характеристики

1. Диапазоны измерений и пределы допускаемой основной погрешности приведены в таблице 2.

Таблица 2

Модификация системы	Определяе-	Диапазон показаний мас-	Диапазоны измерений		Пределы допускаемой основной погрешности, %	
	ненты	совой концентрации, мг/м ³ (объемной доли, %)	массовой концентрация, $M\Gamma/M^3$	объемной доли, %	приведен- ной, ү	относитель- ной, δ
1	2	3	4	5	6	7
	HCl 0 - 15 0 - 90 0 - 2500	0 – 15	0 - 5	-	± 20	-
MCS 100 E HW			Св. 5 – 15	-	-	± 20
		0 – 90	0 - 10	-	± 20	-
			Св.10 – 90	-	-	± 20
		0 2500	0 - 200	-	± 10	-
		Св. 200 – 2500	-	-	± 10	
	CO 0 - 75 0 - 1200	0. 75	0 - 10	-	± 15	-
		0 – 73	Св. 10 – 75	-	-	± 15
		0 – 1200	0 - 100	-	± 5	-
			Св. 100 – 1200	-	-	± 5

Продолжение таблицы 2.

1	2	3	4	5	<u> </u>	ие таолицы 2. 7
	-	0 – 200	0 – 20	-	± 10	-
			Св. 20 – 200	-	-	± 10
	NO	0 – 750	0 – 75	-	± 10	-
			Св. 75 – 750	-	-	± 10
		0 – 30	0 –10	-	± 10	-
			Св. 10 – 30	-	-	± 10
	NH_3		0 – 10	-	± 10	-
		0 – 100	Св. 10 – 100	-	-	± 10
		0. 75	0 – 20	-	± 15	-
		0 – 75	Св. 20 – 75	-	-	± 15
	0.0	0 – 150	0 – 50	-	± 12	-
	SO_2		Св. 50 – 150	-	-	± 12
MCS 100 E HW		0 – 1500	0 – 150	-	± 8	-
			Св. 150 – 1500	-	-	± 8
	CO_2	0 – 25 % (об.)	-	0-2	± 4	-
			-	Св. 2 – 25	-	± 4
	O_2	0 – 21 % (об.)	-	0-5	± 5	-
			-	Св. 5 – 21	-	± 5
	$\rm H_2O$	0 – 40 % (об.)	-	0-3	± 10	-
			-	Св. 3 – 24	-	± 10
			-	Св. 24 – 40	-	± 20
	CH ₄	0 – 100	0 – 10	-	± 10	-
			Св. 10 – 100	-	-	± 10
	N ₂ O	0 – 100	0 - 20	-	± 15	-
			Св. 20 – 100	-	-	± 15
MCS 100 E PD	HCl	0 – 10	0-5	-	± 20	-
WICS TOO LTD			Св. 5 – 10	-	-	± 20
MCS 100 E PD	СО	0 – 50	0 – 10	-	± 15	-
MCS 100 E CD			Св. 10 – 50	-	-	± 15

Продолжение таблицы 2.

1	2	3	4	5	6	7
	NO	0 – 50	0 - 25	-	± 15	-
			Св. 25 – 50	-	-	± 15
	NO_2	0 – 80	0 - 40	-	± 15	-
			Св. 40 – 80	-	1	± 15
	SO_2	0 – 10	0 – 5	-	± 15	-
MCS 100 E PD MCS 100 E CD			Св. 5 – 10	-	1	± 15
	CO_2	0 – 25 % (об.)	1	0 - 2	± 4	-
			1	Св. 2–25	-	± 4
	O_2	0 – 21 % (об.)	-	0 – 5	± 5	-
			-	Св. 5 – 21	-	± 5
	CH ₄	0 – 100	0 – 10	-	± 10	-
			Св. 10 – 100	-	-	± 10
	N ₂ O 0 -	0 – 100	0 - 20	-	± 15	-
		0 – 100	Св. 20 – 100	-	-	± 15

Примечание:

- 1. Пересчет объемной доли $(млн^{-1})$ в массовую концентрацию компонента $(мг/м^3)$ проводится с приведением к температуре 0 °C и давлению 760 мм рт. ст. в соответствии с требованиями РД 52.04.186-89.
- 2. *Диапазон измерений и определяемые компоненты определяются при заказе и могут составлять от 1 до 8. При заказе диапазона измерений с верхним значением, отличным от приведенных в таблице, выбирают диапазон измерений, включающий это верхнее значение.
 - 2 Номинальная цена единицы наименьшего разряда, мг/м^3 : 0,01; 0,1; 1.
 - 3 Предел допускаемой вариации показаний, $b_{\scriptscriptstyle \rm I}$, 0,5 предела допускаемой основной погрешности.
 - 4 Время прогрева и выхода на рабочий режим не более 40 мин.

Время установления показаний $T_{0,9}$: для модификации MCS 100 E HW не более 130 c; для модификаций MCS 100 E PD/CD не более 65 c;.

- 5 Предел допускаемого изменения выходного сигнала за 24 ч непрерывной работы, в долях от пределов допускаемой основной погрешности: 0,5.
- 6 Дополнительная погрешность от влияния изменения температуры окружающей среды на каждые $10~^{0}\mathrm{C}$ от номинального значения $20~^{0}\mathrm{C}$ в рабочих условиях, в долях от предела основной допускаемой погрешности: 0.5.
- 7 Суммарная дополнительная погрешность от влияния содержания неизмеряемых компонентов в анализируемой газовой смеси, в долях от пределов допускаемой основной погрешности, не более: 0,5.
 - 8 Напряжение питания от сети переменного тока частотой (50 ± 1) Γ ц: (230 ± 23) В.
- 9 Потребляемая мощность не более: для шкафа систем 1450 $B\cdot A$; для обогреваемой установки 95 $B\cdot A$; для фильтра пробоотборного устройства 450 $B\cdot A$; для обогреваемого пробоотборного зонда 500 $B\cdot A$.

- 10 Габаритные размеры системы не более: длина 600 мм, ширина 800 мм, высота 2100 мм,
- 11 Масса системы не более 350 кг.
- 12 Средняя наработка на отказ (при доверительной вероятности Р=0,95): 24000 часов.
- 13 Срок службы систем не менее 10.
- 14 Условия эксплуатации:
- диапазон температуры окружающей среды: от 5 °C до 35 °C;
- диапазон относительной влажности (без конденсации влаги) до 95 %;
- диапазон атмосферного давления от 70 до 120 кПа.
- 15 Параметры анализируемого газа на входе газоанализатора:
- температура, не более 180 °C; (опция не более 225 °C);
- максимальная температура точки росы 5 °C.
- содержание определяемых компонентов: не более верхнего значения диапазона измерений

Примечание: Перекрестная чувствительность компенсирована введением поправок.

Знак утверждения типа

Знак утверждения типа наносится на переднюю панель системы и на титульный лист Руководства по эксплуатации.

Комплектность средства измерений

В комплект поставки входит:

1 Система газоаналитическая MCS 100 E (в зависимости от модификации) 1 компл.

2 Руководство по эксплуатации (с дополнением)

1 экз.

3 Методика поверки МП 242-1723-2014

1 экз.

Поверка

осуществляется по документу МП 242-1723-2014 «Системы газоаналитические MCS 100 Е модификаций MCS 100 Е HW, MCS 100 Е PD, MCS 100 Е CD. Методика поверки», утвержденному ГЦИ СИ ФГУП «ВНИИМ им. Д.И. Менделеева» 20 декабря 2013 г.

Основные средства поверки:

- стандартные образцы состава газовые смеси в баллонах под давлением по ТУ 6-16-2956-92;
- поверочный нулевой газ (ПНГ) воздух в баллонах под давлением по ТУ6-21-5-82 или азот газообразный в баллонах под давлением по ГОСТ 9293-74.

Сведения о методиках (методах) измерений

методика измерений приведена в документе «Системы газоаналитические MCS 100 E модификаций MCS 100 E HW, MCS 100 E PD, MCS 100 E CD. Руководство по эксплуатации».

Нормативные и технические документы, устанавливающие требования к системам газоаналитическим MCS 100 E модификаций MCS 100 E HW, MCS 100 E PD, MCS 100 E CD

- 1 ГОСТ 13320-81 «Газоанализаторы промышленные автоматические. Общие технические условия».
- 2. ГОСТ Р 50759-95 «Анализаторы газов для контроля промышленных и транспортных выбросов. Общие технические условия».
- 3 ГОСТ 8.578-2008 «ГСИ. Государственная поверочная схема для средств измерений содержания компонентов в газовых средах».
- 3 Техническая документация фирмы изготовителя.

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

осуществление деятельности в области охраны окружающей среды.

Изготовитель

Фирма «SICK AG», Германия

Адрес: Nimburger Str. 11, D-79276 Reute, www.sick.com,

phone +49 7641 469-0, fax +49 7641 469-1149.

Заявитель

Представительство акционерного общество «ЗИК АГ» (Германия), г. Москва.

Адрес: 117218, г. Москва, ул. Новочеремушкинская, д. 17.

Тел.: +7 (495) 221-51-35. Факс: +7 (495) 775-05-36.

Испытательный центр

ГЦИ СИ ФГУП «ВНИИМ им. Д.И. Менделеева»,

Адрес: 190005, Санкт-Петербург, Московский пр., д. 19, тел. (812) 251-76-01,

факс: (812) 713-01-14, электронная почта: <u>info@vniim.ru</u>

Аттестат аккредитации ГЦИ СИ ФГУП «ВНИИМ им. Д.И. Менделеева» по проведению испы-

таний средств измерений в целях утверждения типа № 30001-10 от 20.12.2010 г.

Заместитель
Руководителя Федерального
агентства по техническому
регулированию и метрологии

Ф.В. Булыгин

М.п.	<u> </u>			2014 г
------	----------	--	--	--------