Приложение к свидетельству № ____об утверждении типа средств измерений

Анализаторы жидкости многопараметровые многоканальные «ATOH-801MП»

Внесены в Государственный реестр средств измерений

Регистрационный № <u>25595-09</u> Взамен № <u>25595-03</u>

Выпускаются по техническим условиям ТУ 4215-801-13181859-09.

1. Назначение и область применения

Анализаторы жидкости многопараметровые многоканальные «ATOH-801МП» (далее – анализаторы) предназначены для автоматического непрерывного потенциометрического, амперометрического и кондуктометрического анализа жидких сред при контроле водно-химических процессов в тракте мощных энергоблоков с целью поддержания качества теплоносителя в соответствии с нормами правил технической эксплуатации тепловых электростанций (ТЭС).

Область применения анализаторов: использование в составе комплекса технических средств (КТС) систем химического контроля (СХК), в т.ч. совместно с автоматическими системами управления технологическими процессами (АСУТП), для оперативного определения показателей качества теплоносителя технологических систем основных контуров и вспомогательных систем блоков АЭС и ТЭС.

Анализаторы могут применяться на тепловых электрических станциях, станциях теплоснабжения, котельных, в металлургической, химической, пищевой и других отраслях промышленности, в сельском хозяйстве, экологии, в медицине и др.

2. Описание

Анализатор представляет собой многофункциональный (по типам измеряемых параметров) многоканальный автоматический прибор с микропроцессорным управлением.

Анализатор состоит из измерительного преобразователя (ИП) и соединенных с ним линией связи блоков датчиков. Измерительный преобразователь анализатора состоит из блока контроллера и выносных модулей. В состав блока датчиков входит один из первичных преобразователей рН, УЭП, массовой концентрации ионов натрия, растворенного молекулярного кислорода и водорода, а также датчик температуры и расположенный в непосредственной близости от них выносной модуль, функционально являющийся частью измерительного преобразователя. Гидравлической схема блока датчиков предназначена для подвода анализируемой среды, стабилизации ее расхода через проточный датчик и сброса в дренаж. Выносной модуль состоит из интерфейсной схемы, предназначенной для организации связи с блоком контроллера, и нормирующего усилителя, преобразующего аналоговые сигналы первичных преобразователей в цифровую форму.

Принцип действия анализатора заключается в измерении электрических сигналов, поступающих с потенциометрических (измерение показателя рН (рХ), амперометрических (измерение концентрации растворенного в воде кислорода и водорода) и кондуктометрических

(измерение удельной электрической проводимости с возможностью пересчета в единицы массовой концентрации растворенных веществ) датчиков, и преобразовании этих сигналов в единицы измеряемого параметра (pH (pX), мкг/дм³, мкСм/см, °С, мВ). Каждый тип датчика имеет встроенный датчик температуры анализируемой среды, позволяющий осуществлять температурную компенсацию результатов измерений.

Блок контроллера измерительного преобразователя анализатора выполнен в виде моноблока с расположенными на лицевой панели светодиодным (СД) и жидкокристаллическим (ЖК) индикаторами для цифрового отображения результатов измерений и пленочной клавиатурой для управления режимами работы.

Микропроцессорный контроллер, управляющий работой узлов и блоков анализатора, выполняет математическую обработку результатов измерений, автоматическую температурную компенсацию функций преобразования, а также формирование аналоговых, дискретных и цифровых выходных сигналов.

При укомплектовании блоков датчиков преобразователями расхода с импульсным выходным сигналом в анализаторе может быть реализован канал индикации расхода анализируемой среды через проточный датчик, с отображением информации на индикаторе ИП и передачей её в систему верхнего уровня.

3. Основные технические характеристики

- 3.1. Анализатор измеряет в автоматическом непрерывном режиме следующие параметры:
 - температуру анализируемой среды;
 - Э.Д.С.;
 - показатель рН;
 - массовую концентрацию ионов натрия;
 - концентрацию растворенного в воде кислорода;
 - концентрацию растворенного в воде водорода;
 - удельную электрическую проводимость. Количество измерительных каналов анализатора - от одного до восьми. Номенклатура измеряемых параметров — произвольная из указанных выше.

3.2. Диапазоны измерений.

№	Измеряемая величина	Диапазон измерений:
1	Температура среды, °С	от 0 до100
2	ЭДС, мВ	от –1800 до +1800
3	pH(pX),	от 1 до14
4	Концентрация ионов натрия, C _{Na}	от 0,7мкг/дм ³ до100 мг/дм ³
5	Массовая концентрация растворенного кислорода, мг/дм ³	от 0,003 до 20
6	Массовая концентрация растворенного водорода, мг/дм ³	от 0,003 до 2
7	УЭП, мСм/см	от 1·10 ⁻⁵ до 1·10 ³
8	Концентрация растворенных веществ, %	от 0 до 20

3.3. Пределы допускаемых значений основных погрешностей комплекта анализатора.

№	Измеряемая величина	Пределы допускаемых значений основной по- грешности анализатора		
		абсолютная	относительная	
1	При измерении температуры анали-	±0,5		

	зируемой среды, °С		
2	При измерении рН(рХ), рН(рХ)	±0,05	
3	При измерении концентрации ионов натрия, C_{Na} , %		±10
4	При измерении концентрации растворенного кислорода, %	·	$\pm \left[5 + 0.01 \times \left(\frac{10}{\text{Сизм}} - 1\right)\right] *$
5	При измерении концентрации растворенного водорода, мг/ дм ³	±(0,003+0,05C _{изм}) *	

^{* -} размерность $C_{\text{изм}}$ - [мг/ дм³]

Пределы допускаемых значений основной приведенной погрешности анализатора при измерении УЭП: $\pm 2\%$ от границы поддиапазона. Датчик УЭП может иметь перечисленные ниже исполнения с соответствующими диапазонами измерения, каждый из которых имеет четыре поддиапазона с границами кратными 10 (0.5; 5; 50; 500 либо 1; 10; 100; 1000 и т.д.)

Вариант исполнений датчика УЭП	Диапазоны измерения
01	0-500 мкСм/см
02	0-1000 мкСм/см
03	0-2000 мкСм/см
04	0-5 мСм/см
05	0-10 мСм/см
06	0-20 мСм/см
07	0-50 мСм/см
08	0-100 мСм/см
09	0-200 мСм/см
10	0-500 мСм/см
11	0-1000 мСм/см

3.4. Диапазоны изменения температуры и расхода анализируемой среды для каждого типа блока датчика.

No	Измеряемая величина	Температура, °С	Расход анализируе- мой среды через блок датчика, л/час
1	pH(pX)	10 - 50	3-100
2	Концентрация ионов	10 - 50	3-100
3	Массовая концентрация растворенного кислорода	10 - 50	3 – 30, при свобод- ном сливе
4	Массовая концентрация растворенного водорода	10 - 60	3-50, при свобод- ном сливе
5	УЭП	5 - 95	до 100

3.5. Параметры питания.

Параметр, размерность	Номинальное значение	Допускаемое отклонение, %
Напряжение однофазной сети, В	220	от -15% до +10%
Частота, Гц	50	±2

3.6. Габаритные размеры и масса составных частей анализатора. 289х250х143

3.6. Габаритные размеры и масса составных частей ана		(143
Наименование составных частей анализатора	Габаритные	Масса, кг
	размеры, мм.	111111111111111111111111111111111111111
	высота: 250	
блок контроллера (настенный)	ширина: 289	3,6
	глубина: 143	
	высота: 600	
блок датчика для измерения рН	ширина: 330	8,0
	глубина: 130	
блок датчика для измерения концентрации ионов на-	высота: 600	
олок датчика для измерения концентрации ионов на- трия	ширина: 330	8,0
трил	глубина: 130	
блок датчика для измерения концентрации молеку-	высота: 450	
олок датчика для измерения концентрации молеку- лярного растворенного кислорода	ширина: 150	2,5
пирного растворенного кислорода	глубина: 85	
SHOW HOTHING THE WAYARANING WALLIAMETERSTON MARKEY	высота: 450	
блок датчика для измерения концентрации молеку- лярного растворенного водорода	ширина: 150	2,5
лярного растворенного водорода	глубина: 85	
блок датчика для измерения удельной электрической	высота: 350	
проводимости (в проточном исполнении)	ширина: 140	2,5
проводимости (в проточном исполнении)	глубина: 80	
блок датчика для измерения удельной электрической	высота: 560	
проводимости (в проточном исполнении, с Н-	ширина: 280	8,0
катионитным фильтром)	глубина: 130	
	ширина: 112	
	глубина: 140	
блок датчика для измерения удельной электрической	длина: 80 (изме-	2,5
проводимости (в погружном исполнении)	няется по требо-	2,3
	ванию заказчи-	
	ка)	
блок датчика для измерения удельной электрической	ширина: 120	
проводимости (в погружном исполнении, бескон-	глубина: 160	
тактный, коррозионно-стойкий), с возможностью пе-	длина: 420 (из-	2,5
ресчета в единицы концентрации	меняется по тре-	2,3
рос юта в одиницы концентрации	бованию заказ-	
	чика)	

3.7. Средний срок службы не менее 10 лет.

3.8. Выходные сигналы.

- 3.8.1. Цифровое представление результатов измерений на лицевой панели блока контроллера. Тип индикаторов светодиодный (СД) для отображения значения параметра и жидкокристаллический (ЖКИ) для отображения служебной информации.
- 3.8.2. Четыре или восемь программно устанавливаемых выходных унифицированных сигналов постоянного тока по ГОСТ 26.011-80 из ряда:
 - 0-5 мА, при нагрузочном сопротивлении не более 2000 Ом;
 - 0 20 мА, при нагрузочном сопротивлении не более 500 Ом;
 - 4 20 мА, при нагрузочном сопротивлении не более 500 Ом.

3.8.3. В блоке контроллера выполняет сравнение результата измерения со значениями введенных уставок по каждому измерительному каналу и сигнализирует об их отклонениях в виде замыкания бесконтактных полупроводниковых ключей с оптоэлектронным управлением, гальванически развязанных от схемы блока контроллера.

Количество ключей – 16 (по два на канал) или 8 (по одному на канал).

Максимальный ток замкнутого ключа не более 100 мА.

Максимальное напряжение на разомкнутом ключе не более 60 В.

Максимальное падение напряжения на замкнутом ключе:

- при токе нагрузки 100 мА, не более 1,5 В;
- при токе нагрузки 50 мА, не более 1,0 В.
- 3.8.4. Световая сигнализация на лицевой панели блока контроллера значения измеряемого параметра относительно введенных регламентных и аварийных уставок минимума (PH, AH) и максимума (PB, AB).
- 3.8.5. Интерфейс сопряжения со средствами вычислительной техники RS-232 или RS-485.
- 3.9. Условия эксплуатации:
- диапазон температур окружающего воздуха от 5 до 40 °C;
- относительная влажность воздуха до 80 % при 35 °C;
- диапазон атмосферного давления от 84 до 106,7 кПа.

4. Знак утверждения типа

Знак утверждения типа наносится на заводскую этикетку блока контроллера анализатора и на титульные листы эксплуатационных документов типографским способом.

5. Комплектность

Таблина 1.

1 аоли	аолица 1.				
№	Наименование	Обозначение	Количество		
1. По	стоянная часть поставки		(m) (1)		
1.1.	Блок контроллера	ПШЛК.421540.002	1 шт.		
1.2.	Комплект ЗИП		1 компл.		
	ременная часть поставки асовывается при заключении договора	на поставку анализатора)			
2.1.	Блок датчика для измерения pH(pX)	Монтаж выполнен на пла- стине или в герметичном пластиковом корпусе с про- зрачной крышкой, подвод пробы через ниппели под	Определяется при заказе		
2.2.	Блок датчика для измерения кон- центрации ионов натрия	проов через ниппели под сварку или гибкой трубкой ПВХ через штуцеры, два варианта электрических соединений (обозначения— табл.2)	Определяется при заказе		
2.3.	Блок датчика для измерения кон- центрации растворенного кислоро- да	Два варианта электрических соединений (обозначения— табл.2)	Определяется при заказе		
2.4.	Блок датчика для измерения кон- центрации растворенного водорода		Определяется при заказе		
2.5.	Блок датчика для измерения удельной электрической проводимости		Определяется при заказе		

3.1.	Формуляр	ПШЛК.421540.502 ФО	1 экз.
3.2.	Руководство по эксплуатации	ПШЛК.421540.502 РЭ	1 экз.

Таблица 2. Модификации блоков датчиков (БД).

Гаолица 2. Моди	фикации блоков да	тчиков (БД).		
		орпусе с прозрач-	На пластине (1	нержавеющая сталь)
	ной передней крышкой			
	Подвод пробы гибкой ПВХ (штуцеры)	Подвод пробы нержавеющей трубкой (ниппели под	Подвод пробы гиб кой трубкой ПВХ (штуцеры)	- Подвод пробы нержавеющей трубкой (ниппе-ли под сварку)
		сварку)		TTTT TT 44 402 6 0 40
БД для измере- ния рН	ПШЛК.414936.038 ПШЛК.414936.038- 01*	ПШЛК.414936.032 ПШЛК.414936.032- 01*	ПШЛК.414936.042 ПШЛК.414936.042- 01*	ПШЛК.414936.040 ПШЛК.414936.040-01*
БД для измерения рН в проблемных и загрязненных средах			ПШЛК.414936. 047 ПШЛК.414936. 047 01*	
БД для измере-	ПШЛК.414936.039	ПШЛК.414936.033	ПШЛК.414936.043	ПШЛК.414936.041
ния содержа- ния ионов Na ⁺	ПШЛК.414936.039- 01*	ПШЛК.414936.033- 01*	ПШЛК.414936.043- 01*	ПШЛК.414936.041-01*
БД для измере- ния содержа-		веющей трубкой (нипі ерметичных кабельных		ПШЛК.414936.007
ния кислорода (проточный)	Подвод пробы нержавеющей трубкой (ниппель под сварку), монтаж с помощью разъемных соединителей (тип 2PM)			ПШЛК.414936.007-01*
БД для измерения содержания водорода (проточный)	монтаж с помощью го Подвод пробы нед под сварку), монт	веющей трубкой (ниптерметичных кабельных развеющей трубко аж с помощью разт	к вводов й (ниппели	ПШЛК.414936.022 ПШЛК.414936.022-01*
БД для измер.	Подвод пробы нержа	М) веющей трубкой (нипі		ПШЛК.414936.021
УЭП, проточн. (Корпус - полипропилен)	монтаж с помощью герметичных кабельных вводов Подвод пробы нержавеющей трубкой (ниппели под сварку), монтаж с помощью разъемных соединителей (тип 2РМ)			ПШЛК.414936.021-01*
БД для измер. УЭП, проточн.		веющей трубкой (ниш ерметичных кабельных		ПШЛК.414936.025
(корпус- нерж. сталь)	Подвод пробы нержавеющей трубкой (ниппели под сварку), монтаж с помощью разъемных соединителей (тип 2РМ)			ПШЛК.414936.025-01*
БД для измер. УЭП, проточ-	Подвод пробы нержавеющей трубкой (ниппели под сварку), монтаж с помощью герметичных кабельных вводов			ПШЛК.414936.034
ный, (Корпус – нержав. сталь), с Н-катионитной колонкой	ус – Подвод пробы нержавеющей трубкой (ниппели под сварку), монтаж с помощью разъемных соединителей (тип 2РМ)			ПШЛК.414936.034-01*

БД для измер. УЭП, проточный, (Корпус - полипропилен), с Н-катионитной колонкой	Подвод пробы нержавеющей трубкой (ниппели под сварку), монтаж с помощью герметичных кабельных вводов Подвод пробы нержавеющей трубкой (ниппели под сварку), монтаж с помощью разъемных соединителей (тип 2РМ)	ПШЛК.414936.048 ПШЛК.414936.048-01*
БД для измер.	монтаж с помощью герметичных кабельных вводов	ПШЛК.414936.045
УЭП (погружной, давление до 20,0 МПа)	монтаж с помощью разъемных соединителей	ПШЛК.414936.045-01*

- *- исполнение -01 -соединение с блоком контроллера выполняется помощью разъемных соединителей, тип 2PM, при этом обеспечивается возможность оперативного демонтажа/монтажа блока датчика
- в базовом исполнении соединение с блоком контроллера выполняется через герметичные кабельные вводы с зажимом проводников под винт клеммных колодок, обеспечивая герметичность соединений.

6. Поверка

Поверка анализатора проводится в соответствии с документом МП-242-0961-2009 «Анализатор жидкости многопараметровый многоканальный «АТОН-801» Методика поверки», утвержденным ГЦИ СИ «ВНИИМ им. Д.И. Менделеева» в октябре 2009 г.

Основные средства поверки:

- рабочие эталоны рН 2-го разряда;
- термометр типа TP-1 с ценой деления $\pm 0.01^{0}$ C;
- кондуктометр лабораторный КЛ-4;
- поверочные газовые смеси, ГСО 3938-87, ГСО 3934-87, ГСО 3713-87, ГСО 3714-87, ГСО 3729-87 по ТУ 6-162956-92 (с извещением о продлении №1 от 01.04.98г.). Межповерочный интервал 1 год.

7. Нормативные и технические документы

- 1. ГОСТ 27987 «ГСП. Анализаторы жидкости потенциометрические. Общие технические условия»,
- 2. ГОСТ 8.467-2000 «ГСИ. Государственная поверочная схема для средств измерений удельной электрической проводимости жидкостей».
- 3. ГОСТ 8.120-99 «ГСИ Государственная поверочная схема для средств измерений рН».
- 4. ГОСТ 8.578-2002 «ГСИ Государственная поверочная схема для средств измерений содержания компонентов в газовых средах».
- 5. Анализатор жидкости многопараметровый многоканальный «АТОН-801МП». Технические условия ТУ 4215-801-13181859-08.

8. Заключение

Тип анализатора жидкости многопараметрового многоканального «АТОН-801МП» утвержден с техническими и метрологическими характеристиками, приведенными в настоящем описании типа, метрологически обеспечен при выпуске из производства и эксплуатации согласно государственным поверочным схемам. Сертификат соответствия № РОСС RU.AB28.B03451 выдан органом по сертификации продукции ООО «СЕРКОНС» 24.11.2009 г.

Анализатор жидкости многопараметровый многоканальный «АТОН-801МП» соответствуют требованиям ТУ 4215-801-13181859-09.

Ремонт и обслуживание осуществляется Смоленским филиалом «Смоленскатомтехэнерго» ОАО «Атомтехэнерго».

Адрес: 141190, Московская область, г. Фрязино, площадь Введенского, 1

Тел. (495) 971 49 26, (495) 971 69 82

E-mail: markelov_vi@mail.ru

изготовитель:

Смоленский филиал «Смоленскатомтехэнерго» ОАО «Атомтехэнерго». Адрес: 216400, Смоленская область, г. Десногорск, промзона СмАС

Тел. (48153) 7 18 92, факс (48153) 7 48 33

E-mail: SmATE@sci.smolensk.ru

Руководитель отдела

ГЦИ СИ ФГУП «ВНИИМ им. Д.И. Менделеева».

Заместитель Генерального директора ОАО «Атомтехэнерго»

- директор Смоленского филиала -

В.Н. Блохин

КА. Конопелько