Подлежит публикации в открытой печати

СОГЛАСОВАНО

Руководитель ГЦИ СИ,

Зам. генерального директора

Фримского С.-Петербург»

А.И. Рагулин

Комплексы программно-технические измерительные «Апогей»

Внесены в Государственный реестр средств измерений

Регистрационный № 27925-09

Взамен №

Выпускаются по ТУ 4252-003-27462912-04.

НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ

Комплексы программно-технические измерительные «Апогей» (ПТК) предназначены для измерения параметров технологического процесса, контроля и управления сложными технологическими объектами энергетики и других отраслей промышленности: котлоагрегатами, турбо и гидроагрегатами, общестанционным оборудованием, компрессорными установками, оборудованием шихтоподачи и воздухоподогревателями доменных печей и т.д.

ОПИСАНИЕ

ПТК построены на базе программируемого логического контроллера (контроллеров) с использованием набора модулей приема унифицированных сигналов и сигналов от датчиков, программируемого терминала, вторичных источников питания, принтера и промышленного компьютера.

Унифицированные сигналы напряжения и силы постоянного тока (ГОСТ 26.011-80), сигналы от ТС (ГОСТ Р 8.625-2006), сигналы от термопар (ГОСТ Р 8.585-2001), импульсные частотные сигналы поступают на входные модули контроллера, где преобразуются в цифровой код. В соответствии с заданным алгоритмом, контроллер производит регулирование технологического процесса в автоматическом режиме, вырабатывает предупреждения

об отклонении режима, осуществляет блокировки и защиты, производит аварийный останов технологического объекта по заданной программе.

Информация о текущих параметрах отображается на промышленном терминале и мониторе компьютера. Информация об авариях и предупреждениях и сменные отчеты автоматически или по запросу оператора распечатываются на принтере. Ввод настроечных параметров: выбор канала, тип НСХ подключаемого параметра, диапазон измерения, значения уставок и т.д. осуществляются с программируемого терминала и защищен паролем.

ПТК обеспечивают автоматическое измерение заданного количества параметров, самодиагностику и диагностику подключаемых датчиков, формирование архива, отображение графиков.

ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ.

Основные технические характеристики измерительных каналов (ИК) системы приведены в таблице 1.

Таблица 1

Тип ИК	Диапазон входных сигналов	Диапазон измерений	Пределы допускаемой основной приведенной погрешности, % от диапазона измерений	Пределы допускаемой дополнительной приведенной погрешности в диапазоне температур от 0 до 15 и от 25 до 45°C, % от диапазона измерений/°C
1	2	3	4	5
ИК преобразования сигналов силы постоянного тока	0-1 mA ±1 mA 0-5 mA 4-20 mA 0-20 mA ±5 mA	0-1 mA ±1 mA 0-5 mA 4-20 mA 0-20 mA ±5 mA	±0,4	±0,015
ИК преобразования сигналов напряжения постоянного тока	0-100 мВ 0-1 В 0-5 В 1-5 В ±5 В 0-10 В ±10 В	0 – 100 мВ 0 – 1 В 0 – 5 В 1 – 5 В ±5 В 0 – 10 В ±10 В	±0,25	±0,015

Продолжение таблицы 1

1	2	3	4	5
1				<u> </u>
ИК преобразования	17,30 –	минус 200 – – 850°C	±0 , 2	±0,015
сигналов ТС, НСХ преобразования 100П,	— 395,03 Oм	- 030°C	1	
W_{100} =1,3910	Į į		1	
ИК преобразования	10,81 -	минус 190 –	±0,2	±0,015
сигналов ТС, НСХ	– 232,84 Ом	- 850°C		
преобразования 50П,			·	
W_{100} =1,3910			'	
ИК преобразования	95,71 –	минус 10 -	±0,2	±0,015
сигналов ТС, НСХ	– 185,55 Ом	−200°C	1	
преобразования 100М,			1	
W ₁₀₀ =1,4280				
ИК преобразования	47,85 –	минус 10 -	±0,2	±0,015
сигналов ТС, НСХ	– 185,55 Ом	−200°C	1	
преобразования 50М,			1	
W ₁₀₀ =1,4280	11.45			
ИК преобразования	11,42 –	минус 190 –	±0,2	±0,015
сигналов ТС, НСХ	— 195,34 Ом	− 850°C	1	
преобразования Pt50,			·	
W ₁₀₀ =1,3850	18,52 –	Митуо 200	±0,2	±0.01 <i>5</i>
ИК преобразования сигналов ТС, НСХ	18,52 — - 175,86 Ом	минус 200 — - 850°C	±∪,∠	±0,015
преобразования Pt100,	173,00 UM	- 630 C	·	
W_{100} =1,3850	[
ИК преобразования	41,71 –	минус 50 –	±0,2	±0,015
сигналов ТС, НСХ	– 93,64 Oм	– 180°C	- ,	-,
преобразования			·	
TCM-23, W ₁₀₀ =1,4260				
ИК преобразования	минус 8,096 -	минус 210 -	±0,4	±0,009
сигналов ТП, НСХ	– 69,358 мВ	– 1200°C	1	
преобразования	Į l	ļ	·	
ТЖК (Ј)				
ИК преобразования	минус 9,835 —	минус 270 —	±0,4	±0,009
сигналов ТП, НСХ	— 76,358 мB	– 1000°C	·	
преобразования		1	1	
ТХКн (Е)	Marrie 6 459	70000	10.4	10.000
ИК преобразования сигналов ТП, НСХ	минус 6,458 – - 54 125 мВ	минус 270 – – 1350°C	±0,4	±0,009
преобразования	— 54,125 мB	- 1330°C		
треобразования ТХА (K)			' I	Ì
ИК преобразования	минус 9,488 –	минус 100 –	±0,4	±0,009
сигналов ТП, НСХ	– 66,469 мВ	- 800°C	,-	_0,007
преобразования				
TXK(L)		<u> </u>		1
ИК частоты следова-	0 – 10 кГц	0 – 10 кГц	±(0,01 + *)	
ния импульсов				
· · · · · · · · · · · · · · · · · · ·				

^{* -} одна единица последнего разряда, выраженная в процентах от диапазона измерений.

Предел допускаемой дополнительной приведенной погрешности от воздействия электромагнитных помех не более 0,5 предела основной приведенной погрешности для всех ИК.

Количество измерительных каналов не ограничено.

ПТК позволяет принимать дискретные сигналы от датчиков и исполнительных механизмов со следующими параметрами:

- номинальное напряжение входного сигнала постоянного тока, В	24
- входное сопротивление канала, кОм, не менее	1,2
ПТК имеет релейные дискретные выходные сигналы:	
- максимальный коммутируемый ток, А	5
Средняя наработка на отказ, ч, не менее	100000
Условия эксплуатации:	
 температура окружающей среды, °С 	0 - 45
 относительная влажность, % 	
(без конденсации во всем диапазоне температур)	10 - 80
<u> </u>	

- атмосфера не должна содержать абразивной пыли и коррозийных газов

Питание ПТК:

- атмосферное давление, кПа

- напряжение переменного тока, В	$220^{+10\%}_{-15\%}$
– частота, Гц	47 – 54 (55 – 65)
Степень защиты	TP30

84.0 - 106.7

Габаритные размеры и масса в зависимости от конфигурации системы.

ЗНАК УТВЕРЖДЕНИЯ ТИПА

Знак утверждения типа наносится на лицевую панель и титульный лист Руководства по эксплуатации.

КОМПЛЕКТНОСТЬ

В комплект поставки входят:

- комплекс программно-технический измерительный «Апогей»;
- комплект конструкторской документации;
- комплект прикладного программного обеспечения;
- Паспорт;

- Руководство по эксплуатации;
- Инструкция оператора;
- Методика поверки;
- упаковочная ведомость;
- комплект ЗИП (если это установлено в заказной спецификации).

ПОВЕРКА

Поверка осуществляется в соответствии с методикой поверки «Комплексы программно-технические измерительные «Апогей». Методика поверки», утвержденной ГЦИ СИ Тест-С.-Петербург в сентябре 2004 г.

Основные средства поверки:

- калибратор тока и напряжения, 0 10 мА, $\Pi\Gamma \pm (1,5\cdot10^{-4}\text{I}\text{k}+100 \text{ нA}); 0 100$ мА, $\Pi\Gamma \pm (1,5\cdot10^{-4}\text{I}\text{k}+1 \text{ мкA}); 0 10$ В, $\Pi\Gamma \pm (5\cdot10^{-5}\text{U}\text{k}+40 \text{ мкB});$
- магазин сопротивления, 0 300 Ом, КТ $0.02/2 \cdot 10^{-6}$;
- потенциометр постоянного тока, 0 100 мВ, КТ 0,05;
- генератор импульсов, 100 нс 10 с, $\Pi\Gamma \pm 10^{-6}$. Т; длительностью 50 нс 1 с, $\Pi\Gamma \pm (0.1t \pm 3$ нс); амплитуда 1 мВ 10 В;
- вольтметр, 0 200 B, $\Pi\Gamma \pm 0.1/0.02\%$;
- вольтметр, 0 1 B, ПГ $\pm 0.015\%$;
- катушка сопротивления, 10 Ом, КТ 3.

Межповерочный интервал – 1 год.

НОРМАТИВНЫЕ И ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

ГОСТ 8.558-93 «ГСИ. Государственная поверочная схема для средств измерений температуры».

ГОСТ Р 52931-2008 «Приборы контроля и регулирования технологических процессов. Общие технические условия».

ГОСТ Р 8.625-2006 «Термометры сопротивления. Общие технические условия».

ГОСТ Р 8.585-2001 «ГСИ. Термопары. Номинальные статистические характеристики преобразования».

ТУ 4252-003-27462912-04 «Комплексы программно-технические измерительные «Апогей». Технические условия».

ЗАКЛЮЧЕНИЕ

Тип комплекса программно-технического измерительного «Апогей» утвержден с техническими и метрологическими характеристиками, приведенными в настоящем описании типа, и метрологически обеспечен при выпуске из производства и в эксплуатации согласно государственной поверочной схеме.

Имеется сертификат соответствия РОСС RU.AЯ27.В16715 от 13.06.2007 г. выдан AHO «Новотест» со сроком действия до 12.06.2010 г.

Изготовитель: ООО «НПФ «Ракурс»

Адрес: 198095, г. С.-Петербург, Химический пер., д. 1.

Телефон: (812) 252-32-44

Факс: (812) 252-59-70

e-mail: info@rakurs.com

Генеральный директор ООО «НПФ «Ракурс»

Л.М. Чернигов