ОПИСАНИЕ ТИПА СРЕДСТВ ИЗМЕРЕНИЙ

СОГЛАСОВАНО

Руководитель ГЦИ СИ -

Зам. Генерального директора

ФГУ «Ростест-Москва»

Евдокимов А.С.

___2005 г.

Калибратор осциллографов Fluke 9500B с активными головками 9510, 9530, 9550

Внесены в Государственный реестр средств измерений

Регистрационный номер 28644-05

Взамен №

Изготовлен по технической документации фирмы "Fluke Corporation", США. Заводской номер калибраторов: №№ 856647729, 40293, заводские номера активных головок: типа 9510 №№ 856648006, 856648012, 856648020, 856648021, 856648022, 856648023; типа 9530 №№ 37827, 37829, 37823, 37824, 37825; типа 9550 №№ 856648025, 856648026, 856648027

НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ

Калибратор осциллографов Fluke 9500В предназначен для определения нормируемых метрологических характеристик осциллографов любых типов с полосой пропускания до 3,2 ГГц.

Область применения калибратора — обеспечение единства измерений параметров формы, временных и амплитудных параметров электрических напряжений в поверочных лабораториях метрологических служб.

ОПИСАНИЕ

Принцип действия калибратора основан на воспроизведении прецизионных испытательных сигналов, формируемых с использованием встроенной образцовой меры постоянного напряжения и кварцевого генератора частоты синусоидальных колебаний.

На передней панели калибратора расположено табло для отображения режимов работы и значений воспроизводимых параметров испытательных напряжений; ряд кнопок, обеспечивающих выбор режима работы и установку параметров. Калибратор оснащен активными выносными головками для подключения к осциллографам.

Калибратор применяется только в нормальных условиях по ГОСТ 22261-94 и имеет следующие основные технические характеристики, приведенные в таблицах 1-9.

Таблица 1 - Режим воспроизведения напряжения

	Напряжение постоянного тока		Прямоугольный сигнал [1]	
	Нагрузка	Нагрузка	Нагрузка	Нагрузка
	50 Ом	1 МОм	1МОм	50 Ом
Амплитудные характерист	ики			
Диапазон	от ±1мВ до	от ±1мВ до	от 40 мкВ до 200	от 40 мкВ до 5 В
	± 5 B	$\pm 200 \mathrm{~B}$	В	[2]
			[2]	
Диапазон регулировки	Непрерывная ре	сгулировка		
Пределы допускаемой аб-			$U_{\text{вых}} > 1 \text{ MB}:\pm (0,0)$	$001*U_{вых} + 10 \text{ мкВ}$)
солютной погрешности	$\pm (0.00025*U$	_{вых} + 25 мкВ)	$U_{BBIX} < 1 \text{ MB}:\pm (0,0)$	$01*U_{\text{BMX}} + 10 \text{ MKB}$
воспроизведения напря-				
жения				
где U _{вых} – выходное напрях	кение, В		A. A. A. Mariane and	
Частотные характеристики				
Диапазон			10 Гц -	- 100 кГц 5*10 ⁻⁷
Пределы допускаемой от-	- "		± 2,	5*10 ⁻⁷
носительной погрешности				
установки частоты прямо-				
угольного сигнала				
Параметры формы импульса				
Время нарастания/спада			U<	100 В:τ _{ф,с} <150 нс
			U>	100 В:т₀,с<200 нс
Выброс и неравномер-				00 нс: <0,02*U
ность вершины импульса	- 		DOAG	е 500нс:<0,001*U
			δολε	№ 100 мкс:
			<0,0	001*U

где: τ _{ф,с} – время наростания/спада импульса, нс;
U – амплитуда импульса, В
[1] Положительной или отрицательной полярности.
[2] Пиковые значения напряжения.

Таблица 2 - Режим формирования сигнала с малым временем нарастания

	Режим 500 пс на нагрузках 1 МОм и 50 Ом	Режим 150 пс на нагрузке	Режим 25 пс на нагрузке
Время нарастания/спада	500 nc	50 Ом 150 пс	50 Ом 25 пе
Пределы допускаемой абсолютной погрешности воспроизведения времени нарастания/спада	+50 пс/-150 пс	±25 пс	+15/-5 пс
Амплитуда		5 мB — 3 B	
Пределы допускаемой относительной погрешности воспроизведения амплитуды	±2%		
Выброс и неравномерность вершины импульса	1 – 10 нс: <0,02*U 10нс – 1 мкс: <0,005*U 1 мкс – 10 мкс <0,001*U где: U – амплитуд	500пс — 1 нс: <0,03*U 1нс — 10 нс: <0,01*U 10нс — 100 нс: <0,005*U а импульса, В	
Скважность	10		
Частота	10 Гц — 2 МГц		
Пределы допускаемой относительной погрешности установки частоты	±2,5*10 ⁻⁷		

Таблица 3 - Режим генератора синусоидального напряжения

Диапазон частот	0,1 Гц — 3,2 ГГц
Пределы допускаемой относительной погрешности установки	>12кГц:±2,5*10 ⁻⁷
частоты	<12 кГц:±3*10 ⁻⁶
Амплитуда (на нагрузке 50 Ом)	0,1 Гц – 550 МГц:
	5 мВ — 5 В
	550 МГц – 2,5 ГГц:
	5 мВ – 3В
	2,5 ГГц – 3,2 ГГц:
	5 мB – 2 B
Пределы допускаемой относительной погрешности установки	±1,5%
амплитуды в опорном диапазоне частот 50 кГц – 10 МГц	
Неравномерность АЧХ относительно опорного диапазона частот	0,1 Гц – 300МГц:
на нагрузке с КСВН =1,6 (1,2)	±2%
	300 МГц — 550 МГц:
	±3%(±2,5%)
	550 МГц — 1,1 ГГц:
	±4%(±3,5%)
	1,1 ГГц — 3,2 ГГц:
	±5,0%(±4,0%)

КСВН выхода калибратора	<1,35
Уровень гармоник относительно напряжения сигнала основной	2-ая гармоника:<-35 дБ
частоты	3-я гармоника: < -40 дБ

Таблица 4 - Режим формирования временных маркеров

Форма импульса	Меандр	Прямоугольный	Треугольный	Синус
		импульс	импульс	
Период	9,0091 нс –	900,91 нс – 55 с	900,91 нс –	450,5 пс –
	55 c		55 c	9,009 нс
Пределы допускаемой относи-	$\pm 2.5*10^{-7}$			
тельной погрешности установ-				
ки периода				
Скважность	2	20	20	
Амплитуда	100; 250; 500 мВ и 1 В			

Таблица 5 - Режим генератора импульсов

Длительность импульса	1 — 100 нс
Пределы допускаемой абсолютной по-	$\pm (0.05*t+200 \text{ nc})$
грешности установки длительности им-	
пульса	где t – длительность импульса, нс
Время нарастания/спада	Не более 450 пс
Выброс и неравномерность вершины им-	He более 0,05*U
пульса	
	где: U – амплитуда импульса, В
Частота	1 кГц — 1 МГц
Амплитуда (на нагрузке 50 Ом)	1 B

Таблица 6 - Вход/выход опорной частоты

	Вход для внешней
	опорной частоты
Диапазон частот	1 MГц — 20 МГц
	с шагом 1 МГц
Уровень сигнала	90 мВ – 1 В
Диапазон захвата	±50*10 ⁻⁶
Пределы допускаемой относительной погрешности установки часто-	$\pm 4,65*10^{-10}$
ты при работе с внешней опорной частотой стандарта СЧВ-74	·

Таблица 7 - Режим измерения сопротивления

Диапазон	10 – 40 Ом	40 - 90 Ом	90 - 150 Ом
Предел допускаемой относитель-	±0,5%	±0,1%	±0,5%
ной погрешности измерения сопро-			
тивления			
Диапазон	50 — 800 кОм	800–1200 кОм	1,2- 12 МОм
Предел допускаемой относитель-	±0,5%	±0,1%	±0,5%
ной погрешности измерения сопро-			
тивления			

Таблица 8 - Режим измерения емкости

Диапазон	1- 35 пФ	35 – 95 пФ
Предел допускаемой абсолютной погрешности измерения	±(0,02*С+0,25 пФ)	±(0,03*С+0,25 пФ)
емкости		

Таблица 9 - Условия эксплуатации и массогабаритные характеристики

Температура	20±5°C
Относительная влажность	Менее 90 %
Питание прибора осуществляется от сети переменного	220±5B
напряжения	50±2Гц
Потребляемая мощность	400 BA
Macca:	
- калибратора	12 кг
- ГОЛОВКИ	0,45 кг
Геометрические размеры:	
- калибратора	13,3 см X 42,7 см X 44,0 см
- ГОЛОВКИ	6,5 см Х 3,1 см Х 14,0 см

ЗНАК УТВЕРЖДЕНИЯ ТИПА

Знак утверждения типа наносят на прибор методом наклейки.

КОМПЛЕКТНОСТЬ

- 1 Калибратор осциллографов Fluke 9500B с комплектом активных головок.
- 2 Шнур питания.
- 3 Кабель синхронизации.
- 4 Руководство по эксплуатации.
- 5 Паспорт.

6 Инструкция по поверке «Калибратор осциллографов Fluke 9500В. Методика поверки МП РТ 967 - 2005».

ПОВЕРКА

Поверку калибратора проводят в соответствии с инструкцией по поверке «Калибратор осциллографов Fluke 9500В. Методика поверки МП РТ 967 – 2005», утвержденной ФГУ "Ростест-Москва" " января 2005 г.

В перечень оборудования, необходимого для поверки осциллографа, входят:

- 1. мультиметр Wavetek 4950;
- 2. ваттметр поглощаемой мощности М3-90
- 3. ваттметр поглощаемой мощности М3-93;
- 4. осциллограф стробоскопический вычислительный С9-9;
- 5. генератор перепада напряжения И1-12 с формирователем Ф-00;
- 6. частотомер Ч3-64/1 с блоком ЯЗЧ-175;
- 7. стандарт частоты СЧВ 74;
- 8. осциллограф LeCroy WS452;
- 9. магазины сопротивлений Р40108;
- 10. измеритель иммитанса Е7-14;
- 11. керамические конденсаторы К10-17БВ с диэлектриком NP0, номинальная ёмкость 18 пФ;
- 12. нагрузка коаксиальная Э9-159;
- 13. нагрузка 50 Ом из комплекта Г5-75

Межповерочный интервал – 1 год.

НОРМАТИВНЫЕ И ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

- 1 ГОСТ 22261-94 "Средства измерений электрических и магнитных величин. Общие технические условия".
 - 2 Техническая документация фирмы "Fluke Corporation", США.

ЗАКЛЮЧЕНИЕ

Калибратор осциллографов Fluke 9500В №№ 856647729, 40293 с активными головками типа 9510 №№ 856648006, 856648012, 856648020, 856648021, 856648022, 856648023; с активными головками типа 9530 №№ 37827, 37829, 37823, 37824, 37825; с активными головками типа 9550 №№ 856648025, 856648026, 856648027 утвержден с техническими и метрологическими характеристиками, приведенными в настоящем описании типа, и метрологически обеспечен в эксплуатации.

ИЗГОТОВИТЕЛЬ

Фирма «Fluke Corporation», P.O. Box 9090, Everett, WA, USA 98206.

Заявитель: фирма ЗАО "Прист", Россия, 109444, г. Москва, ул. Ташкентская, д. 9.

Генеральный директор.

ЗАО "Прист"

Дедюхин А.А

Начальник лаборатории №441

ФГУ "Ростест-Москва"

Барабанщиков В.М.