

Заместитель руководителя ГЦИ СИ «ВНИИМ им. Д.И.Менделеева»

В.С. Александров '

ж 24» февраля 2005 г.

Меры электрического сопротивления однозначные MC 3050

Внесены в Государственный реестр средств измерений Регистрационный № 2996-05 Взамен $№ ______$

Выпускаются по ТУ 422512-012-16851585-2003

НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ

Меры электрического сопротивления однозначные МС 3050 предназначены для воспроизведения и хранения единицы электрического сопротивления. Применяются в цепях постоянного тока в качестве рабочих и образцовых средств измерений.

ОПИСАНИЕ

Меры электрического сопротивления МС 3050 (далее ОМЭС) выполнены в унифицированном силуминовом корпусе, внутри которого расположен герметизированный резистивный элемент, размещенный в теплопроводящей пасте. Резистивный элемент соединен с двумя токовыми и двумя потенциальными зажимами. расположенными в верхней части корпуса. Резистивный элемент MC3050 номинальными значениями сопротивления от 1 мОм до 0,1 Ом изготовлен из листового нихромового сплава. Меры МС 3050 с номинальными значениями сопротивления от 1 Ом до 100 кОм выполнены на основе ситаллофольговых резистивных элементов и могут выпускаться в обычном, тропическом и экспортном исполнении.

ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Номинальное значение сопротивления, мОм 1; 10; 100 Ом 1; 10; 100 кОм 1; 10; 100

Классы точности для ОМЭС с номинальными значениями:

1; 10; 100 мOм 0,001; 0,002; 0,005; 0,01 1; 10; 100 Om 0,0005; 0,001; 0,002 1; 10; 100 κOm 0,0005; 0,001; 0,002

Пределы допускаемой основной погрешности для ОМЭС с номинальными значениями 1; 10; 100 мОм, %:						
для классов точности 0,001	$\pm 0,001$					
для классов точности 0,002	$\pm 0,002$					
для классов точности 0,005	± 0.005					
для классов точности 0,01	± 0.01					
Пределы допускаемой основной погрешности для ОМЭС						
с номинальными значениями 1; 10; 100 Ом, и 1; 10; 100 кОм, %:						
для классов точности 0,0005	$\pm 0,00025$					
для классов точности 0,001	$\pm 0,0005$					
для классов точности 0,002	$\pm 0,0008$					
Допускаемое отклонение действительного значения	•					
сопротивления от номинального, %, не более	± 0.01					
Номинальная мощность рассеивания для ОМЭС						
с номинальными значениями 1; 10; 100 мОм, Вт	0,2					
Номинальная мощность рассеивания для ОМЭС						
с номинальными значениями 1; 10; 100 Ом, 1; 10; 100 кОм,	Вт 0,05					
Максимальная мощность рассеивания для ОМЭС						
с номинальными значениями 1; 10; 100 мОм, Вт	1,0					
Максимальная мощность рассеивания для ОМЭС						
с номинальными значениями 1; 10; 100 Ом, 1; 10; 100 кОм, Вт:						
для классов точности 0,0005; 0,001	0,1					
для класса точности 0,002	0,2					
Предельная мощность рассеивания для ОМЭС						
с номинальными значениями 1; 10; 100 мОм, Вт	2,5					
Предельная мощность рассеивания для ОМЭС	5					
с номинальными значениями 1; 10; 100 Ом, 1; 10; 100 кОм,	, Вт 0,5					
Пределы допускаемой дополнительной погрешности,						
вызванной колебаниями температуры окружающего воздух	xa					
в пределах рабочих условий, %:	10.0004					
для классов точности 0,0005	±0,0004					
для классов точности 0,001	±0,0005					
для классов точности 0,002	$\pm 0,001$					
для классов точности 0.005	$\pm 0,002$					
для классов точности 0,01	$\pm 0,003$					
Нормальные и рабочие условия применения приведены в таблице						

	Значение влияющей величины для классов точности							
Влияющая	Нормальные условия применения			Рабочие условия применения				
величина	кл.точ.	кл.точ.	кл.точ.	кл.точ.	кл.точ	кл.точ	кл.точ	
	0,0005,	0,002	0,005	0,0005	0,001	0,002	0,005	
	0,001		0,01				0,01	
	20±0,1	20±0,2	20±0,5	20±0,5	20±1	20±2	20±5	
Температура	23±0,1	23±0,2	23±0,5	23±0,5	23±1	23±2	23±5	
окружающего	25±0,1	25±0,2	25±0,5	25±0,5	25±1	25±2	25±5	
воздуха (среды), °С	27±0,1	27±0,2	27±0,5	27±0,5	27±1	27±2	27±5	
Относительная								
влажн. воздуха, %	от 25 до 80			от 25 до 80				
Атм. давл., кПа	84,0 – 106,7			84,0 – 106,7				

Сопротивление каждого из токовых и потенциальных выводов, не более, Ом Полный срок службы, лет Масса, кг Габаритные размеры, мм

5.10⁻³
15
0,5
90x65x65

ЗНАК УТВЕРЖДЕНИЯ ТИПА

Знак утверждения типа наносят методом шелкографии на надписную табличку (шильдик)Э который располагается справа на верхней крыщке ОМЭС и на титульный лист руководства по эксплуатации типографским способом.

комплектность

 В комплект поставки входят:

 ОМЭС
 1

 Футляр укладочный
 1

 Руководство по эксплуатации
 1

 Формуляр
 1

ПОВЕРКА

Поверка ОМЭС выполняется в соответствии с ГОСТ 8.237 – 2003. "ГСИ. Меры электрического сопротивления однозначные. Методика поверки."

Межповерочный интервал – 2 года

НОРМАТИВНЫЕ И ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

ГОСТ 8.028 – 86. ГСИ. Государственный первичный эталон и государственная поверочная схема для средств измерений электрического сопротивления.

ГОСТ 23737 – 79. Меры электрического сопротивления. Общие технические условия.

ГОСТ 22261 – 94. Средства измерений электрических и магнитных величин.

ГОСТ Р 51350 – 99. Безопасность контрольно-измерительных приборов и лабораторного оборудования. Часть 1. Общие требования.

Технические условия ТУ 422512 - 012 - 16851585 - 2003. Мера электрического сопротивления однозначная типа МС 3050.

ЗАКЛЮЧЕНИЕ

Тип «Меры электрического сопротивления МС 3050» утвержден с техническими и метрологическими характеристиками, приведенными в настоящем описании типа.

метрологически обеспечен при выпуске из производства и в эксплуатации согласно государственной поверочной схеме.

Декларация о соответствии зарегистрирована органом по сертификации продукции и услуг закрытого акционерного общества "Кубанский центр сертификации и экспертизы "Кубань – Тест". РОСС RU.0001.10AЯ24.

Изготовитель - ООО «ЗИП - Научприбор» 350072, Россия, г. Краснодар, ул. Московская, 5

Директор ООО «ЗИП - Научприбор»

Руководитель лаборатории ГЦИ СИ "ВНИИМ им.Д.И.Менделеева"

Герусов Н.О.

Семенов Ю.П