

Расходомеры-счетчики массовые МТ модели МТ86 и МТ91

Внесены в Государственный реестр средств измерений Регистрационный № 2940005 Взамен №

Выпускаются по технической документации фирмы «Fluid Components International», США.

НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ

Расходомеры-счетчики массовые МТ, модели МТ86 и МТ91, предназначены для измерений массового и объемного расхода, а также массы и объема различных газов (природный газ, углекислый газ, воздух, водород и т.д.) в трубопроводах диаметром более 200 мм.

Расходомеры-счетчики массовые МТ, модели МТ86 и МТ91, могут быть применены для контроля и учета объема и массы (расхода) различных газов на промышленных предприятиях.

ОПИСАНИЕ

Принцип действия расходомера-счетчика массового МТ (в дальнейшем расходомерсчетчик) основан на измерении разности температур (сопротивлений термопреобразователей) между двумя термопреобразователями, находящимися в потоке газа. Один термопреобразователь измеряет температуру газа, а второй нагрет (с помощью постоянного тока) до температуры существенно большей окружающей. При прохождении потока газа нагретый термопреобразователь охлаждается и его сопротивление изменяется. Разность температур между термопреобразователями пропорциональна скорости газа. Зная внутренний диаметр трубы, где установлены термопреобразователи, и эпюру распределения скоростей, можно определить массовый расход газа. Особенностью расходомеров-счетчиков МТ является многоточечный метод измерения средней скорости газа в трубопроводе.

На погружной штанге расходомера-счетчика может располагаться до 16 пар термопреобразователей, с помощью которых происходит осреднение скорости потока газа по диаметру трубопровода. Такое решение позволяет измерять потоки газа с искаженными (несимметричными) полями скоростей.

Расходомеры-счетчики выпускаются двух моделей:

-погружной расходомер-счетчик МТ86, монтируется непосредственно на трубопроводе, на погружной части располагаются до 8 пар термопреобразователей;

-погружной расходомер-счетчик MT91, монтируется непосредственно на трубопроводе, на погружной части располагаются до 16 пар термопреобразователей.

Расходомеры-счетчики состоят из погружной части (штанги), в которой располагаются термопреобразователи и электронного блока. Штанга расходомера-счетчика представляет собой стальной цилиндрический корпус, внутри которого находятся термопреобразователи.

Электронный блок установлен снаружи трубопровода и крепится на конце штанги. Электронный блок имеет встроенный дисплей и клавиатуру (опция), с помощью которой можно вводить исходные данные для измерений расхода газа. Кроме того, на дисплее индицируется информация о текущем расходе и массе (объеме, приведенном к стандартным условиям) газа. Все модели расходомеров-счетчиков могут комплектоваться дистанционным электронным блоком (длина соединительного кабеля до 152 м).

Электронный блок формирует во внешние цепи сигнал постоянного тока (4- 20) мА или напряжения, пропорциональный расходу газа. Кроме того, имеется возможность получения измерительной информации с помощью интерфейса RS232, RS422 и RS485.

При установке расходомера-счетчика на трубопроводе необходимо соблюдать длины прямых участков. В простых случаях требуется 15Ду до расходомера-счетчика и 2Ду после (перед расходомером-счетчиком находится диффузор или конфузор). В остальных случаях необходимо руководствоваться технической документацией фирмы-изготовителя.

Расходомеры - счетчики могут устанавливаться во взрывоопасных зонах. Электронный блок имеет маркировку взрывозащиты 1ExdIIC T6...T5, датчик расхода имеет маркировку: 1ExdIIC T4...T1.

ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Характеристика	Значение характеристики	
	MT86	MT91
Диаметр условного прохода (Ду), мм	Более 200	
Пределы допускаемой погрешности при		
измерении массового (объемного) расхода, массы		
(объема) при относительном диапазоне расхода		
10:1, %:	*	
приведенной;	±3	
относительной:		
при изменении температуры газа на ± 17 0 C в		
рабочем диапазоне температуры;		±2
при изменении температуры газа на ±55 ⁰ C в		
рабочем диапазоне температуры		±4
Диапазон скорости газа, приведенный к		
стандартным условиям, м/с	0,08 - 46	
Диапазон расхода газа (в зависимости от Ду), м ³ /ч	14 – 12000 *	
Максимальное давление газа в трубопроводе (в		
зависимости от материала корпуса расходомера-		
счетчика), МПа	0,34 - 3,4	
Диапазон температуры измеряемого газа, °С	0,34 - 3,4 минус 45 - 177	
Напряжение питания, В:		
постоянного тока;	20 - 32	20 - 32
переменного тока	100, 110, 230	85 - 265
Потребляемая мощность, В-А	50	
Выходной сигнал постоянного тока, мА	4 - 20	
Выходное напряжение постоянного тока, В	0-10 или 1-5 или 0-5	0-10 или 1-5
Диапазон температуры окружающей среды (для		
электронного блока), °С	минус 18- 60	
Примечание: для ЖКИ не ниже 0 °С		
Габаритные размеры электронного блока, мм:	273; 203; 193	273; 292; 262
длина, ширина, высота (от верхней крышки до		(взрывозащищенный
трубопровода)		корпус)
Масса электронного блока, кг:		
стандартное исполнение;	7	7
взрывозащищенное исполнение	18	18
масса датчика, кг/м длины	2	2
(если датчиков несколько, то масса всех датчиков		
суммируется)		
Срок службы, лет	10	
Примечание: * в зависимости от диапазона расхода поверочной установки.		

ЗНАК УТВЕРЖДЕНИЯ ТИПА

Знак утверждения типа наносят на эксплуатационную документацию типографским способом и на расходомер-счетчик в виде наклейки.

комплектность

В комплект поставки входят:

1. Расходомер-счетчик массовый МТ

2. Транспортная упаковка

3. Монтажный комплект

4. Паспорт

1 шт.;

1 шт.;

1 шт. (по заказу);

1 экз.;

ПОВЕРКА

Поверка расходомеров-счетчиков массовых МТ, модели МТ86 и М91, фирмы «Fluid Components International», США, проводится в соответствии с документом: МИ 1537-86 «ГСИ. Средства измерений массового расхода газа. Методика поверки».

Основные средства поверки: установка поверочная газодинамическая УПГ-10 с максимальным расходом 12000 м^3 /ч и погрешностью $\pm 0.3 \text{ %}$.

Межповерочный интервал - 2 года.

НОРМАТИВНЫЕ И ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

ГОСТ 8.143-75 «Государственная система обеспечения единства измерений. Государственный первичный эталон и общесоюзная поверочная схема для средств измерений объемного расхода газа в диапазоне от 10^{-6} до 10^2 м 3 /с».

Техническая документация фирмы-изготовителя.

ЗАКЛЮЧЕНИЕ

Тип расходомеров-счетчиков массовых МТ, модели МТ86 и МТ91, утвержден с техническими и метрологическими характеристиками, приведенными в настоящем описании типа, метрологически обеспечен согласно государственной поверочной схеме.

Сертификат безопасности № РОСС US.ГБ05.В01163.

ИЗГОТОВИТЕЛЬ

Фирма «Fluid Components International», США.

1755 La Costa Meadows Drive, San Marcos, CA 92069-5187, CIIIA.

Tel.: +1 (760) 736-61-27.

Fax: +1 (760) 736-62-50.

Руководитель лаборатории ГЦИ СИ «ВНИИМ им. Д. И. Менделеева»

Директор по маркетингу фирмы «Fluid Components International»

В. И. Мишустин

Г. Фишман