

Изготовлена по ГОСТ 22261-94 и эксплуатационной документации ООО «ПОРТ-1»

Заводской номер №01

Назначение и область применения

Система измерительно-информационная автоматизированная коммерческого учета и контроля электрической энергии ОАО «Жигулевские строительные материалы» (далее АИИС «ЖСМ») предназначена для измерения и учета электрической энергии на предприятии ОАО«Жигулевские строительные материалы»

а также автоматического сбора, накопления, обработки, хранения и отображения информации о параметрах энергопотребления и передачи данных в центр сбора информации ОАО «Самараэнерго», ОДУ «Средней Волги».

Данные также используются для решения технических, технико-экономических и статистических задач на предприятии

Описание

Принцип действия АИИС КУЭ «ЖСМ» состоит в измерении параметров, характеризующих электропотребление ОАО«Жигулевские строительные материалы»,

передаче измерительной информации в цифровом виде в УСПД; поддержке заданного протокола обмена и аппаратного интерфейса; обработке данных в измерительных каналах (ИК); проведении расчета стоимости потребленной электрической энергии с использованием многоставочного тарифа; получении наглядных форм и графиков потребления электроэнергии; хранении данных в памяти.

Структурная схема сбора и передачи информации АИИС КУЭ «ЖСМ» представлена на рисунке 1.

Система состоит из17 ИК - коммерческий учет.

ИК АИИС КУЭ «ЖСМ» включают в себя следующие технические компоненты:

- В качестве первичных преобразователей напряжения и тока в ИК использованы: •Измерительные трансформаторы напряжения ТН по ГОСТ 1983-01(НТМИ-6 , НТМИ-6-66УЗ , НАМИ10-У2 класс точности 0,5)
- •Измерительные трансформаторы тока ТТ по ГОСТ7746-01 типаТПШФА-10, ТПШЛ-10-У3, ТВЛМ-10 ,ТЛМ-10, ТПЛ-10У3, ТПФМ-10, Т ПЛМ-10 , ТПОФ-10 , ТЛМ-10У3 класса точности 0,5
- •Многофункциональные микропроцессорные счетчики электрической энергии с пифровыми выходными интерфейсами типа: Электросчетчики: MT-851-T1A31R41 класс точности 0,5/1,0; (ГОСТ30206-94,ГОСТ 302207-94.)

•устройство сбора и передачи данных УСПД POREG, сервер опроса и SQL-сервер и APM по местам пользователей и обеспечивает выработку астрономического времени и календаря.

•устройство сбора и передачи данных УСПД POREG, сервер опроса и SQL—сервер и APM по местам пользователей и обеспечивает выработку астрономического времени и календаря.

Система обеспечения единого времени (СОЕВ) реализована на приборе спутниковой связи GPS и корректирует системное время УСПД.СОЕВ обеспечивает единство измерений ,синхронизацию и коррекцию времени во всех подсистемах АИИС КУЭ «ЖСМ» Контроль синхронизации времени в счетчиках электрической энергии, УСПД происходит каждый сеанс связи. В случае обнаружения отклонения внутреннего времени в приборе измерения электрической энергии происходит коррекция времени .Погрешность коррекции времени ± 0,1 сек.

В Приложении А настоящего описания приведена таблица 1 с перечнем ИК АИИС КУЭ «ЖСМ», наименование объекта потребителя, линии и ячейки, типы счетчиков, ТТ, ТН, классов точности, заводскими номерами для каждого ИК АИИС КУЭ «ЖСМ».

Счетчики электрической энергии обеспечивают выполнение следующих функций:

Измерение физических величин, измерение приращения активной энергии, измерение величин время и интервалы времени, автоматическая запись данных графика нагрузки, автоматическое хранение информации, самодиагностику и ведение журнала событий, возможность сьема информации с электросчетчика автономным способом, визуальный контроль информации на электросчетчике, передачу измеренных величин и записей журнала событий в УСПД POREG.

УСПД обеспечивают выполнение функций автоматического сбора измерительной и диагностической информации с соответствующих счетчиков электроэнергии и передачу ее в SQL—сервер.

SQL-сервер обеспечивают выполнение следующих функций: сбор измерительной и диагностической информации с УСПД, замещение отсутствующей информации, контроль достоверности измерительной информации, формирование архива измеренных величин, формирование архива технической и диагностической информации, доступ к коммерческой информации, технической и диагностической, формирование сальдо по энергопотреблению, контроль за состоянием программно-технических средств АИИС КУЭ ЖСМ.

- •Ведение журнала событий включает в себя:фиксацию событий,формирование и сохранение в памяти событий.
- •Обработка данных в УСПД . УСПД осуществляет сбор данных со всех счетчиков электроэнергии и передачу их в SQL—сервер по запросу,поступившему из сервера опроса. Накопленные значения храняться в 30- ти минутных архивах.30- ти минутные архивы Обновляются циклически и обеспечивают хранение информации не менее 60 суток.
- •Сбор информации в SQL-сервере заключается в периодическом опросе УСПД при помощи сервера опроса.
- •Замещение отсутствующей измерительной информации. При замещении отсутствующей измерительной информации выполняется расчет усредненного профиля нагрузки на основе имеющихся измерений и замещение отсутствующего измерения.
- •Контроль достоверности измерительной информации. При контроле достоверности измерительной информации выполняется анализ полноты измеренных данных и принимается решение о достоверности или недостоверности измерения. Факт появления недостоверной информации сигнализируется.

АИИС КУЭ «ЖСМ» максимально автоматизирована и обеспечивает автоматическое выполнение следующих функций:

- -хранение информации в счетчиках
- -сбор информации с счетчиков и УСПД и хранение ее в единой базе данных,
- -расчетные задачи с полученной информацией,
- -обмен информацией с другими системами сбора информации,

-ведение базы данных заданной глубины хранения ,содержащей ,кроме принятой и расчетной информации по перетокам ,нормативно-справочную информацию по предприятиям и объектам, входящим в систему,

-автоматизированный доступ к информации с удаленных ПЭВМ, входящих в состав системы, к SQL-серверу в соответствии с правами доступа

- -формирование различных типов отчетов, (с использованием генератора отчетов) в виде любых форм, требуемых пользователю, отображение на дисплее и печать информации в виде графиков, таблиц и диаграмм с возможностями анализа отображаемой информации,
- -защита передаваемой и хранимой информации от несанкционированного доступа
- ,-контроль достоверности измерительной информации,
- -измерение и синхронизация времени.

Измерение физических величин выполняется автоматически с периодом 30 минут.

Запись данных графика нагрузки выполняется автоматически с периодом 30 минут.

Самолиагностика счетчика выполняется после каждого сеанса связи.

Ведение журнала событий в счетчике, УСПД, SQL—сервере и сервере опроса выполняется постоянно.

Передача измеренных величин из счетчика в УСПД. из УСПД в SQL—сервер осуществляется автоматически по запросу с периодом 30 минут.

Замещение отсутствующей измерительной информации осуществляется с периодом в одни сутки.

Контроль достоверности измерительной информации осуществляется с периодом в 30 минут.

Формирование архива измеренных величин ,архива диагностической информации выполняется с периодом одни сутки.

Формирование сальдо по энергопотреблению выполняется периодически с периодом одни сутки.

Доступ потребителей к коммерческой ,технической и диагностической информации обеспечивается по мере поступления запросов от потребителя.

Для защиты передаваемой и хранимой информации от несанкционированного доступа предусмотрен многоступенчатый доступ к текущим данным и параметрам настройки системы (индивидуальные пароли, программные средства для защиты файлов и баз данных), а также механическая защита.

Надежность АИИС КУЭ « ЖСМ» характеризуется показателями надежности компонентов системы :

- а) для трансформаторов тока и напряжения $\,$ в соответствии с $\,$ ГОСТ 7746-2001 $\,$ и 1983-2001 :
- -средняя наработка до отказа -40000 часов
- -средний срок службы –30лет
- б) для счетчиков электроэнергии типа MT-851-T1A31R41
- -средняя наработка до отказа -120000 часов
- -средний срок службы –20 лет
- в) для УСПД:
- средняя наработка до отказа -40000 часов
- -средний срок службы -10 лет
- г)для сервера:
- средняя наработка до отказа -20000часов
- --средний срок службы 10 лет
- д)приемник сигналов точного времени:
- средняя наработка до отказа -550000 часов
- средний срок службы -25 лет

Полный срок службы АИИС КУЭ «ЖСМ»-не менее 20 лет

ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

1 .Номинальная функция преобразования при измерениях и учете электроэнергии по временным тарифным зонам и направлениям-электроэнергия за расчетный период. Расчет производится на основании показаний профиля нагрузки

 $\Delta W = K_E \sum Ni \times KT$, где ΔW - электроэнергия за расчетный период; кВтч Ni-i - ое значение профиля нагрузки;

КТ - масштабный коэффициент, который определяется для счетчиков прямого включения КТ= 1; для счетчиков, трансформаторного включения с программированием показаний параметров для отображения энергии на первую сторону КТ=М (где М-множитель, вынесенный на съемный щиток счетчика);для счетчиков трансформаторного включения с программированием показаний параметров для отображения энергии на вторую сторону КТ=Кн х Кт (где Кн и.Кт-коэффициенты трансформации по напряжению и току)

2. Чувствительность ИК (измерительного комплекса) АИИС КУЭ "ЖСМ" определяется чувствительностью счетчиков.

3 . Число измерительных каналов	17
4. Интервал задания границ тарифных зон, мин	30
Максимальное удаление счетчиков электроэнергии от УСПД,м	30000
5.Синхронизация времени с точностью не хуже	± 0.5 c/cyT
б.Коррекция времени системных часов	1 раз в сутки

Основные метрологические характеристики

Предел допускаемой абсолютной	±5 с/сутки	с учетом коррекции по
среднесуточной погрешности хода		PS,внутренней коррекции времени в
системных часов		стеме
предел фактической относительной погрещности измерения активной и реактивной энергии. Активная электрическая энергия кВт·ч Реактивная электрическая энергия кВар·ч объект учета ПС № «Мелзавод» ЗРУ-6 кВ Секция -1 яч. 13	Первичный ток 5% от номинального cosf=0,5 δ _{ИКА} =5,41 δ _{ИКР} =3,39 cosf=0,6 δ _{ИКА} =4,88 δ _{ИКР} =3,57 cosf=0,7 δ _{ИКА} =4,20 δ _{ИКР} =4,01 cosf=0,8 δ _{ИКР} =4,78 cosf=0,9 δ _{ИКР} =4,78 cosf=0,9 δ _{ИКР} =5,46 cosf=1,0 δ _{ИКА} =2,01	предел допускаемой (фактической) относительной погрешности измерения активной и реактивной энергии определяется для каждого измерительного канала по формуле: $\delta_w = \pm i I_i \sqrt{\delta_J^2 + \delta_U^2 + \delta_0^2 + \delta_s^2 + \delta_{co}^2 + \sum_{j=1}^{l} \delta_{c_j}^2 + \delta_{yc}^2}$ Фактическая относительной погрешности измерения активной и реактивной энергии для каждого измерительного канала приведена в Приложении В настоящего описания.

Первичный ток 20% от	
номинального	
cosf=0,5	
δ_{MKA} =3,09 δ_{MKP} =2,08	
cosf=0,6	
$\delta_{\text{MKA}} = 2,62$ $\delta_{\text{MKP}} = 2,89$	
cosf=0,7 $\delta_{MKA}=2,3$	
$\delta_{\text{MKP}} = 3,04$	
cosf=0.8 $\delta_{MKA}=2.06$	
$\delta_{\text{UKP}}=3,31$	
cosf=0,9	
$\delta_{\text{MKA}}=1,7$	
δ _{ИКР} =4,04	
cosf=1,0	
$\delta_{\text{MKA}}=1,54$	
Первичный	
ток100% от	
номинального cosf=0,5	
$\delta_{\text{MKA}}=2,30$	
$\delta_{\text{UKP}}=2,68$	
cosf=0,6	
$\delta_{\text{WKA}} = 2,12$	
$\delta_{\text{MKP}}=2,72$	
cosf=0,7	
$δ_{\text{ИКA}} = 1,93$ $δ_{\text{ИКP}} = 2,8$	
$cosf=0.8$ $\delta_{MKA}=1.8$	
$\delta_{\text{UKP}}=2,94$	
cosf=0,9	
$\delta_{\text{MKA}}=1,40$	
$\delta_{\text{MKP}}=3,34$	
cosf=1,0	
 δ _{ИКА} =1,41	

	Первичный ток
	120% от
	номинального cosf=0,5
	$\delta_{\text{WKA}} = 2,39$
	$\delta_{\text{MKP}} = 2,68$
	VIIII = 9
	cosf=0,6
	δ_{MKA} =2,12
	$\delta_{\text{MKP}}=2,72$
	$ cosf=0,7 $ $ \delta_{\text{MKA}}=1,93 $
	$\delta_{\text{MKP}} = 2.8$
	ONE 250
	cosf=0,8
	$\delta_{\text{MKA}}=1.8$
	$\delta_{\text{HKP}}=2,94$
	cosf=0,9
	$\delta_{\text{UKA}}=1,49$ $\delta_{\text{UKP}}=3,54$
	ONKP-3,54
	cosf=1,0
	$\delta_{\text{MKA}}=1,41$
2007 110 (C D II 2007 (50/
ГПП 110/6 кВ «Цементная»ЗРУ 6	Первичный ток 5% от номинального
кВ яч.38,15,24,ПС№12 ПРБ» ЯКНО №2,ОРУ-6 кВ,	cosf=0,5
	0001 0,0
ГПП 110/6 кВ«Цементная» ЗРУ 6	$\delta_{\text{MKA}}=3,60$
кВ яч 8,12,31,ПС№9	$\delta_{\text{UKP}}=2,78$
«Дробзавод», ЗРУ 6 кВ яч 17,29	
ПС 35/6 кВ	cosf=0,6
«Глинокарьер» ЗРУ 6 кВ яч 1,4,9,8	$\delta_{\text{MKA}} = 3,23$
ПС 35/6 кВ	δ_{MKP} =2,86
«Яблоневская» ЗРУ -6 кВ яч.8,1,4	cosf=0,7
(32011011011011011011011011011011011011011	··· · · · · · · · · · · · · · · · · ·
	$\delta_{\text{UKA}}=2,99$
	$\delta_{\text{UKP}}=3.0$
	C 0 9
	cosf=0,8
	$\left \begin{array}{l} \delta_{\text{UKA}} = 2,82 \\ \delta_{\text{UKP}} = 3,27 \end{array} \right $
	ONKP 5,27
	cosf=0,9
	$\delta_{\text{MKA}}=1,65$
	$\delta_{\text{MKP}}=3,97$

$\cos f=1,0$ $\delta_{\rm UKA}=1,5$ Первичный ток 20% от номинального	
cosf=0,5 δ_{MKA} =2,30 δ_{MKP} =2,65	
$ cosf=0,6 $ $ \delta_{\text{ИКA}}=2,04 $ $ \delta_{\text{ИКР}}=2,69 $	
$ cosf=0,7 \delta_{\text{UKA}}=1,87 \delta_{\text{UKP}}=2,76 $	
$ cosf=0.8 \delta_{\text{UKA}}=1.75 \delta_{\text{UKP}}=2.89 $	
cosf=0,9	
$\begin{vmatrix} \delta_{\text{MKA}} = 1,44 \\ \delta_{\text{MKP}} = 3,26 \end{vmatrix}$	
cosf=1,0 δ _{ИКА} =1,37	
Первичный ток 100% от номинального $\cos f = 0.5$ $\delta_{\text{UKA}} = 2.30$ $\delta_{\text{UKP}} = 2.65$	
cosf=0,6 δ _{ИКА} =2,04 δ _{ИКР} =2,69	
$ \begin{array}{c} cosf=0,7 \\ \delta_{\text{MKA}}=1,87 \\ \delta_{\text{MKP}}=2,76 \end{array} $	
$ \begin{array}{c} \text{cosf=0,8} \\ \delta_{\text{ИКР}}=1,75 \\ \delta_{\text{ИКР}}=2,89 \end{array} $	
 cosf=0,9	

$\delta_{\text{UKP}}=1,44$
$\delta_{\text{MKP}}=3,26$
оикр-3,20
cosf=1,0
$\delta_{\text{MKP}}=1,37$
ONKP-1,57
Первичный ток
120% от
номинального
cosf=0,5
$\delta_{\text{MKA}}=2,30$
S -7 65
$\delta_{\text{MKP}}=2,65$
cosf=0,6
δ_{UKP} =2,04
δ_{MKA} =2,69
cosf=0,7
$\delta_{\text{MKP}}=1,87$
$\delta_{\text{UKA}}=2,76$
cosf=0,8
$\delta_{\text{UKP}}=1,75$
$\delta_{\text{MKA}}=2,89$
cosf=0,9
$\delta_{\text{MKP}}=1,44$
$\delta_{\text{UKA}}=3,26$
1110.
cosf=1,0
$\delta_{\text{UKP}}=1,37$

ПРИМЕЧАНИЕ:1. Характеристики погрешности ИК даны для измерения электроэнергии и средней мощности (трехминутная,получасовая) 2. Границы интервала соответствуют вероятности 0,95

Знак утверждения типа

Знак утверждения типа наносится на титульных листах эксплуатационной документации системы типографским способом.

Комплектность

В комплект АИИС КУЭ ЖСМ входят

В комплект АИИС КУЭ ЖСМ входят		
Наименование компонента системы	Количество	Примечание
Трансформаторы тока типа:ТПШФА-10	9 шткл.т 0,5	ГР№1423-60
ТПШЛ-10-УЗ	3 шт-кл.т 0,5	ΓP№1261-02
ТВЛМ-10	4 шт- кл.т 0,5	ГР №1856-63
ТЛМ-10	4 шт- кл.т 0,5	ГР№2473-02
ТПЛ-10УЗ	6 шт- кл.т 0,5	ГР№1276-89
ТПФМ-10	6 шт-кл т 0,5	ГР№814-53
Т ПЛМ-10	2 шт-кл.т 0,5	ГР№2363-68
ТПОФ-10	2 шт-кл.т 0,5	Γ Ρ№ 518-50
ТЛМ-10УЗ	2 шт-кл.т 0,5	ГР№2473-69
Грансформаторы напряжения типа:НТМИ-6	6 шткл.т 0,5	ГР№380-49
НТМИ-6-66УЗ	10шт-кл.т 0,5	ΓΡ№2611-70
НАМИ10-У2	1 шт-кл.т 0,5	ГР№11094-87
Электросчетчики: MT-851-T1A31R41	17шт-кл т 0,5/1,0	ГР№23306-02
УСПД - серии POREG	1 шт.	ГР№. №17563-03
Средства передачи информации:	На 17 ИК	Техническая
Выделенные, коммутируемые, GSM, InterNet	114 17 111	документация
GSM модемы ,	4 шт	Техническая документация Simens TC 35i
Гелефонный модем в комплекте с блоком питания и кабелем DB 9F-DB25 М	1шт	Техническая документация Zyxel U- 336 S
Преобразователь интерфейсов CON- 2	1mr	Техническая документация
ПЭВМ(Тип :Pentium 133) с дисплеем и принтером.	1 шт.	Руководство пользователя

Блок коррекции времени BU- 303	1 шт	Техническая документация
Коммуникатор связи фирмы ISKRAEMECO	2 шт.	Техническая документация
Программные средства : Пакет программ «SEP2W»: -«Meter View Lite » -«POREG2View» -«SEP2 DB Manager»,	1пакет	Руководство пользователя.
Эксплуатационная документация: Паспорт на ТТ, Паспорт на ТН, Паспорт на счетчик, Руководство по эксплуатации ПТК POREG	Экз- в соответствии с количеством ТТ Экз- в соответствии с количеством ТН Экз- в соответствии с количеством счетчиковТТ 1Экз	
Руководство по эксплуатации, методика поверки АИИС КУЭ ЖСМ	1 экз	
Руководство по эксплуатации, методика поверки АИИС КУЭ ЖСМ	1 экз	

Поверка

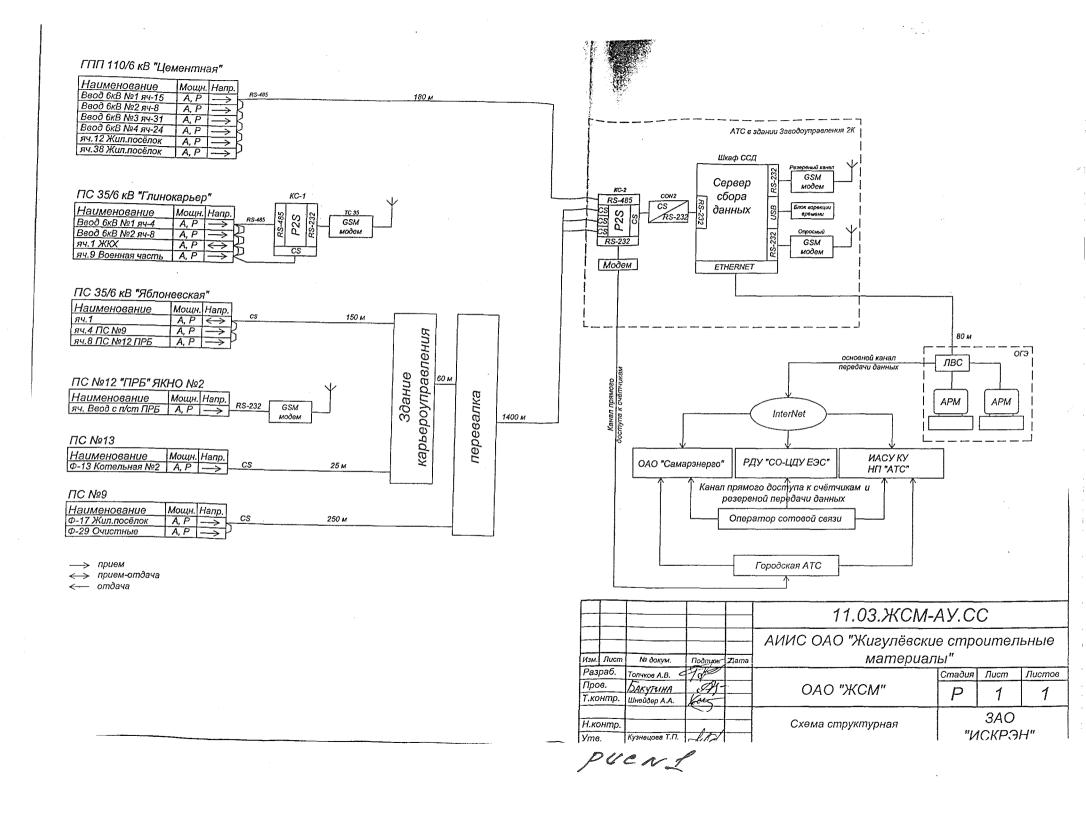
Поверка производится в соответствии с документом о поверке в составе эксплуатационной документации-Методика поверки .МП 4222-01-70910169-2005, разработанной ООО КоКС Лтд и утвержденной ГЦИ СИ- ФГУ «Самарский ЦСМ» 25.02.2005 г

Межповерочный интервал – 4 года.

Нормативные и технические документы

- 1. ГОСТ 22261-94 "Средства измерений электрических и магнитных величин. Общие технические условия".
- 2. Система измерительно-информационная автоматизированная коммерческого учета и контроля электрической энергии АИИС КУЭ ОАО«Жигулевские строительные материалы» Рабочий проект.
- 3. Автоматизированные системы контроля и учета электроэнергии и мощности. Основные метрологические характеристики. Общие требования. М.: РАО «ЕЭС России», 1998 4.ГОСТ 7746-01»Трансформаторы тока .Общие технические условия.
- 5. ГОСТ 1983-01 «Трансформаторы напряжения, Общие технические условия

6. ГОСТЗ 0206-94 «Межгосударственный стандарт. «Статические счетчики ватт-часов активной энергии переменного тока (класс точности 0,28 и 0,58) 7.МИ 2439-97 ГСИ Метрологические характеристики измерительных систем. Номенклатура .Принципы регламентации определения и контроля. 8.ГОСТ Р 8.596-02. «Метрологическое обеспечение систем».


Заключение

Тип системы измерительно-информационной автоматизированной коммерческого учета и контроля электрической энергии ОАО«Жигулевские строительные материалы» утвержден с техническими и метрологическими характеристиками, приведенными в настоящем описании типа, и метрологически обеспечен и в эксплуатации

Изготовитель:

ООО «ПОРТ1» 443041, г.Самара, ул. Ленинская 117 Лиоектоо ООО «ПОРТ -1»

---- О.О.Осипов

