
ОПИСАНИЕ ТИПА СРЕДСТВ ИЗМЕРЕНИЙ

рН-метры рН-150МИ и иономеры модификаций рХ-150МИ, рХ-150.1МИ и рХ-150.2МИ Внесены в Государственный реестр средств измерений Регистрационный № 29671-09 Взамен № _____

Выпускаются по техническим условиям ТУ 4215-051-89650280-2009

Назначение и область применения

рН-метры рН-150МИ и иономеры модификаций рХ-150МИ, рХ-150.1МИ и рХ-150.2МИ (далее - приборы) предназначены для измерения показателя активности ионов водорода (рН), показателя активности других одновалентных и двухвалентных ионов (рХ), окислительно-восстановительного потенциала (Eh) и температуры (t) водных растворов и непосредственного измерения рН мяса и мясопродуктов.

Область применения: для проведения измерений в лабораторной практике, а также для оперативных измерений на предприятиях пищевой промышленности и в других отраслях промышленности, в том числе, в теплоэнергетике.

Описание

Приборы состоят из первичных измерительных преобразователей - измерительных электродов, электродов сравнения и термодатчиков, вторичных измерительных преобразователей (далее - вторичный преобразователь).

Работа вторичных преобразователей основана на преобразовании электродвижущей силы (ЭДС) электродной системы, термодатчика и других первичных датчиков в пропорциональное по величине напряжение, преобразуемое в дальнейшем в сигналы информации, индицируемые на цифровом отсчетном устройстве (например, рН, рХ, температура и др.).

рН-метры рН-150МИ предназначены для измерения рН, Eh, и t: в водных растворах а также непосредственного измерения рН мяса и мясопродуктов в производственных условиях.

В зависимости от вида определяемых ионов, иономеры изготавливаются в трех модификациях: pX-150MИ, pX-150.1 МИ, pX-150.2МИ.

рX-150MИ - предназначен для измерения рH, рX и массовой концентрации (сX) других одновалентных и двухвалентных ионов, Eh и t; водных растворов.

рХ-150.1 МИ - предназначен для измерения рХ и массовой доли (сX) нитрат-ионов, а также t в водных растворах проб растительной пищевой продукции, почв, природных и сточных вод.

pX-150.2MИ - предназначен для измерения pX и массовой концентрации (cX) ионов натрия, а также pH и t анализируемой среды и может быть использован в различных отраслях промышленности, в том, числе в теплоэнергетике.

Основные технические характеристики

Диапазоны измерений и цена наименьшего разряда цифрового отсчетного устройства (дискретность) вторичного преобразователей приведены в таблице 1:

Таблица 1

Измеряемая величина		Модификация прибора					
		рН-150 МИ	рХ-150МИ	рХ-150.1МИ	рХ-150.2МИ		
ЭДС электродной системы и окис-	Дискрет- ность	1	1	-	1		
лительно-восста- новительный по- тенциал, мВ	Диапазон измерений	от минус 2000 до плюс 2000	от минус 2000 до плюс 2000	-	от минус 2000 до плюс 2000		
Показатель активности ионов водорода, рН	Дискрет- ность	0,01	0,01	-	0,01		
	Диапазон измерений	от минус 1,00 до плюс 14,00	от минус 20,00 до плюс 20,00	-	от 0,00 до 14,00		
Показатель ак- тивность ионов, pX	Дискрет- ность		0,01	0,01	0,01		
	Диапазон измерений	-	от минус 20,00 до плюс 20,00	от минус 20,00 до плюс 20,00	от 0,00 до 14,00		
Массовая кон- центрация ионов, сХ	Диапазон измерений	-	от 0,1 мг/дм ³ до 99,9 г/дм ³		от 0,1 мкг/дм ³ до 99,9 г/дм ³		
Массовая доля нитрат-ионов, сХ				от 0,1 мг/кг до 99,9 г/кг			
Температура анализируемой среды, °С	Дискрет- ность	1	0,1	0,1	0,1		
	Диапазон измерений	от минус 10,0 до 100,0	от минус 10,0 до 100,0	от минус 10,0 до 100,0	от 0,0 до 100,0		

Примечание - Диапазоны измерений приборов в режимах pH, pX и сX приводится в эксплуатационной документации, находятся внутри диапазонов показаний преобразователей и определяются диапазонами измерений конкретных типов электродов, используемых с приборами.

Пределы допускаемой основной абсолютной погрешности приведены в таблице 2:

Таблица 2

Измеряемая величина,	Пределы допускаемой основной абсолютной погрешности				
единица измерения	рН-150МИ	рХ-150МИ	рХ- 150.1МИ	рХ- 150.2МИ	
1	2	3	4	5	
1 Показатель активности ионов водорода, pH					
– преобразователя	± 0,02	± 0,02	-	± 0,03	
– прибора	± 0,05	± 0,05	-	± 0,3	
2 Показатель активности одно- валентных ионов, pX					
– преобразователя	_	± 0,02	± 0,02	± 0,02	
– прибора	-	± 0,05	± 0,05	± 0,15	

Окончание таблицы 2

Окончание птаолицы 2				,
1	2	3	4	5
3 Показатель активности двухва-				
лентных ионов, рХ				
– преобразователя	-	± 0,04	-	-
4 Окислительно-				
восстановительный потенциал				
(ЭДС электрохимических датчиков),				
мВ				
– преобразователя	± 3	± 3	-	± 3
5 Температура анализируемой сре-				
ды, °С				
– преобразователя	± 2	± 1,0	± 1,0	± 1,0
– прибора	± 2	± 2,0	± 2,0	± 2,0

Питание вторичных преобразователей осуществляется от автономного источника, состоящего из четырех элементов напряжением от 1,25 В до 1,5 В (допускается применение любого другого автономного источника с напряжением от 5 до 6 В).

Предусмотрено так же питание вторичных преобразователей через блок сетевого питания от сети однофазного переменного тока напряжением (220 ± 22) В.

Мощность, потребляемая вторичными преобразователями от сети переменного тока при номинальном напряжении питания, не превышает 8,0 В-А.

Габаритные размеры преобразователей (длина×ширина×высота) не более 200×92×55 мм.

Масса не более: преобразователя 0,3 кг; прибора 2,0 кг.

Средняя наработка на отказ вторичных преобразователей 9000 ч.

Средний срок службы вторичных преобразователей - 10 лет.

Условия эксплуатации:

- диапазон температуры окружающего воздуха от 5 °C до 40 °C
- относительная влажность воздуха до 90 % при 25 °C
- диапазон атмосферного давления от 84 до 106,7 кПа (от 630 до 800 мм рт. ст.)

Знак утверждения типа

Знак утверждения типа наносится на корпус вторичного преобразователя в виде наклейки и на формуляр методом компьютерной графики.

Комплектность

pH-	pX-		
150МИ	150 М И	рХ- 150.1МИ	рХ- 150.2МИ
1	11	1	1
1	1	1	1
1	1	1	1
1	1	1	
1	1	1	1
	1 1 1 1 1 (v).	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Поверка

Поверка осуществляется в соответствии с разделами Методика поверки в формулярах на приборы, согласованных ГЦИ СИ ФГУ «Менделеевский ЦСМ» (Центральное отделение) в августе 2009 г;

Основные средства поверки:

- буферные растворы рабочие эталоны рН 2-го разряда по ГОСТ 8.135-2004;
- химические реактивы или ГСО состава водных растворов (катионов и анионов);
- калибратор напряжения постоянного тока по ГОСТ 8.027-2001;
- магазин сопротивлений, диапазон изменений сопротивления от 0 до 10⁴ Ом; класс 0.02;
- термометры ртутные с диапазоном измерений от 0 °C до 50 °C, от 50 °C до 100 °C, ценой деления 0,5 °C.

Межповерочный интервал – 1 год.

Нормативные и технические документы

ГОСТ 8.120-99 ГСИ. Государственная поверочная схема для средств измерений рН. ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия.

ТУ 4215-051-89650280-2009 рН-метры рН-150МИ и иономеры модификаций рХ-150МИ, рХ-150.1МИ и рХ-150.2МИ

Заключение

Тип рН-метров рН-150МИ и иономеров модификаций рХ-150МИ, рХ-150.1МИ, рХ-150.2МИ утвержден с техническими и метрологическими характеристиками, приведенными в настоящем описании типа, и метрологически обеспечен при выпуске из производства и в эксплуатации согласно государственной поверочной схеме.

«Измерительная

техника»

Naw Strike Letters

TOTHING

MUCKO

Изготовители:

ООО «Измерительная техника»

111020, г. Москва, ул. Сторожевая, 31

тел/факс: (095) 232-49-74, 232-42-14 (многоканальные),

E-mail - izmteh@izmteh.ru

Интернет - http://www.izmteh.ru

Директор ООО

«Измерительная техника»

В. А. Литягов

ООО НПО «Измерительная тежика ИТ»

109202 Москва, ул. Шоссе Фрезер, д. 12

телефон/факс: (495) 232-49-74, 232-42-14 (многоканальные);

факс (495) 148-02-50, 429-14-98.

E-mail - izmtech@dol.ru;

Интернет - http://www.dol.ru/users/izmtech

Генеральный директор

ООО НПО «Измерительная техника И

В.А. Литягов