

Рефлектометры оптические СМА 4500

Внесены в Государственный реестр средств измерений Регистрационный №<u>29493-05</u> Взамен №_____

Выпускаются в соответствии с технической документацией фирмы- изготовителя Net Test North America, Inc., США.

НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ

Рефлектометры оптические СМА 4500 с оптическими модулями и модулями измерителя мощности с источником излучения предназначены для измерений затухания методом обратного рассеяния в одномодовых и многомодовых оптических волокнах оптических кабелей, расстояния до мест неоднородностей, оценки неоднородностей оптического кабеля и измерения мощности оптического излучения.

Область применения: проведение контрольно-измерительных работ при монтаже и ремонте волоконно-оптических линий связи.

Рабочие условия эксплуатации:

- относительная влажность воздуха, %...... до 95 (без выпадения росы)

ОПИСАНИЕ

Рефлектометр оптический СМА 4500 выполнен в прямоугольном корпусе в виде переносного прибора. Основные элементы управления прибором расположены на передней панели.

Прибор может быть снабжен одним из оптических модулей 23-х модификаций и модулем измерителя мощности, выполненным в 2-х модификациях.

Прибор позволяет проводить измерения затухания и расстояния до мест неоднородностей, определение потерь в сростках оптических волокон методом обратного рассеяния, а также мощности оптического излучения в разных диапазонах.

Принцип действия измерителя мощности основан на преобразовании фотоприемником оптического сигнала в электрический с последующим усилением и преобразованием в цифровую форму. Источник оптического излучения излучения измерителя мощности основан на полупроводниковых лазерах с длинами волн 1310 нм, 1550 нм, 1625 нм, и на светоизлучающих диодах с длинами волн 850 нм и 1300 нм.

Прибор снабжен сенсорным экраном, который при тестировании обеспечивает быстрый доступ ко всем меню и ко всем функциям.

Прибор включает также визуальный локатор повреждения, который позволяет визуально оценить целостность волоконно-оптической линии.

ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Оптические модули

Модификация оптического модуля	25	35	39	45	49	54
Тип волокна	Одномодовое 9/ 125мкм					
Рабочие длины волн	1310±20нм 1550±20нм	1310±20нм 1550±20нм	1550±20нм 1625±15нм	1310±20нм 1550±20нм	1550±20нм 1625±15нм	1550±20нм
Динамический диапа- зон измерений затуха- ния (по уровню 98% от максимума шумов при отношении S/N=1)	35 дБ / 37 дБ 34 дБ / 36 дБ	38 дБ / 40 дБ 38 дБ / 40 дБ	38 дБ / 40 дБ 38 дБ / 40 дБ	41 дБ / 43 дБ 43 дБ / 45 дБ	43 дБ/ 45 дБ 41 дБ/ 43 дБ	48 дБ / 50 дБ
Мертвая зона: при измерении за- тухания	1310 нм: 9м 1550 нм: 9 м	1310 нм: 8м 1550 нм: 6м	1550 нм: 6м 1625 нм: 6м	1310 нм: 10м 1550 нм: 10м	1550 нм: 10м 1625 нм: 10м	1550 нм: 10м
при измерении по- ложения неоднородно- сти	1310 нм: 4 м 1550 нм: 3,5 м	1310 нм: 4м 1550 нм: 3м	1550 нм: 3м 1625 нм: 3м	1310 нм: 5м 1550 нм: 5м	1550 нм: 5м 1625 нм: 5м	1550 нм: 5м
Длительность зондирующих импульсов		5 нс 20000 г	нс		5 нс 30000 н	c

Модификация оптического модуля	36	46	66	69	23	24
Тип волокна	Одномодовое 9/ 125мкм		Многомодовое 62,5/125 мкм	Многомодовое 50 / 125мкм	Одномодовое 9/ 125мкм	
Рабочие длины волн	1310±20нм 1550±20нм 1625±15нм	1310±20нм 1550±20нм 1625±15нм	850±30нм 1300±30нм	850±30нм 1300±30нм	1310±20нм	1550±20нм
Динамический диапа- зон измерений затуха- ния (по уровню 98% от максимума шумов при отношении S/N=1)	38 дБ/ 40 дБ 38 дБ/ 40 дБ 38 дБ/ 40 дБ	41 дБ/ 43 дБ 43 дБ / 45 дБ 41 дБ/ 43 дБ	22 дБ / 24 дБ 24 дБ / 26 дБ	22 дБ / 24 дБ 24 дБ / 26 дБ	33 дБ / 35 дБ	33 дБ / 35 дБ
Мертвая зона: при измерении за- тухания	1310 нм: 8 м 1550 нм: 6 м 1625 нм: 6 м	1310 нм: 10 м 1550 нм: 10 м 1625 нм: 10 м	850 нм: 5 м 1300 нм: 7 м	850 нм: 5 м 1300 нм: 7 м	1310 нм: 9 м	1550 нм: 6 м
при измерении положения неоднородности	1310 нм: 4 м 1550 нм: 3 м 1625 нм: 3 м	1310 нм: 6 м 1550 нм: 5 м 1625 нм: 5 м	850 нм: 2,5 м 1300 нм: 2,5 м	850 нм: 3 м 1300 нм: 3 м	1310 нм: 9 м	1550 нм: 3 м
Длительность зондирующих импульсов	5 нс 20000 нс	5 нс 30000 нс	5 нс1000 нс	5 нс 1000 нс	5 нс 20000 нс	5 нс20000 нс

Модификация оптического модуля	33	34	38	43	44	48
Тип волокна	Одномодовое 9 / 125 мкм					
Рабочие длины волн	1310±20нм	1550±20нм	1625±15нм	1310±20нм	1550±20нм	1625±15нм
Динамический диапа- зон измерений затуха- ния (по уровню 98% от максимума шумов при отношении S/N=1)	38 дБ/ 40 дБ	38 дБ/ 40 дБ	38 дБ/ 40 дБ	41 дБ / 43 дБ	43 дБ / 45 дБ	41 дБ / 43 дБ
Мертвая зона: при измерении за- тухания	1310 нм: 8 м	1550 нм: 6 м	1625 нм: 6 м	1310 нм: 10 м	1550 нм: 10 м	1625 нм: 10 м
при измерении поло- жения неоднородности	1310 нм: 4 м	1550 нм: 3 м	1625 нм: 3 м	1310 нм: 6 м	1550 нм: 5 м	1625 нм: 5 м
Длительность зонди- рующих импульсов		5 нс 20000 нс			5 нс 30000 нс	

Модификация оптического модуля	64	65	67	68
Тип волокна	Многомодовое	62,5 / 125 мкм	Многомодовое 50 /125 мкм	
Рабочие длины волн	850±30нм	1300±30нм	850±30нм	1300±30нм
Динамический диапа- зон измерений затуха- ния (по уровню 98% от максимума шумов при отношении S/N=1)	22 дБ / 24 дБ	24 дБ / 26 дБ	22 дБ / 24 дБ	24 дБ / 26 дБ
Мертвая зона: при измерении за- тухания	850 нм : 5 м	1300 нм: 7 м	850 нм : 5 м	1300 нм: 7 м
при измерении поло-жения неоднородности	850 нм : 2,5 м	1300 нм: 2,5 м	850 нм : 3 м	1300 нм: 3 м
Длительность зонди- рующих импульсов	5 нс1000 нс			

Модификация оптического модуля		61			
Тип волокна	Одномодовое 9/ 125мкм	Многомодовое 62,5 / 125мкм			
Рабочие длины волн	1310±20нм 1550±20нм	850±30нм 1300±30нм			
Динамический диапа- зон измерений затуха- ния	33 дБ /35 дБ	22 дБ / 24 дБ			
(по уровню 98% от максимума шумов при отношении S/N=1)	33 дБ /35 дБ	24 дБ / 26 дБ			
Мертвая зона: при измерении за- тухания	1310 нм: 10 м 1550 нм: 10 м	850 нм: 7 м 1300 нм: 8,5 м			
при измерении по- ложения неоднородно- сти	1310 нм: 5 м 1550 нм: 5 м	850 нм : 5м 1300 нм: 5 м			
Длительность зонди- рующих импульсов	5 нс 20000нс	51000 нс			

Предел допускаемой абсолютной погрешности при измерении затухания.	$0,04 \times A \;\; (дБ);$ где A - измеряемое затухание, дБ		
Диапазоны измеряемых расстояний	05 км; 020 км; 050 км; 0125 км; 0250 км; 0300 км $\Delta L = \pm (2\delta + 2.5 \times 10^{-5} L + \delta)$ δ - дискретность отсчета в измеряемом диапазоне длин.		
Предел допускаемой абсолютной погрешности при измерении расстояния.			
Минимальная дискретность отсчета: при измерении расстояния	0,0001 км		
при измерении затухания	0,001 дБ		

Модули измерителя мощности

Основные технические характеристики	Модификации модулей измерителя мощности		
Диапазон измерения оптической мощности	+1055 дБм	+2045 дБм	
Предел допускаемого значения основной относительной погрешности измерения средней мощности оптического излучения - на длине волны калибровки 850 нм	0,4 дБ (в диапазоне +550 дБм)	0,4 дБ (в диапазоне +15 -40 дБм)	
	0,5 дБ (в диапазоне +10+5 дБм и -5055 дБм)	0,5 дБ (в диапазоне +20 +15 дБм и –4045 дБм)	

- на длинах волн калибровки 1300нм и 1550 нм	0,3 дБ (в диапазоне + 5 -50 дБм)	0,3 дБ (в диапазоне +1540 дБм)	
	0,5 дБ (в диапазоне +10+5 дБм и -5055 дБм)	0,5 дБ (в диапазоне +20 +15 дБм и -4045 дБм)	
Нелинейность (в диапазоне +555 дБм и +1545 дБм)	±0,1 дБ		
Длины волн источника излучения	1310±20 нм; 1550±20 нм; 1625±15 нм; 850±20 нм; 1300±20 нм		
Уровень мощности излучения на выходе источника в непрерывном режиме, не менее На длинах волн 1310 нм, 1550 нм, 1625 нм	-8 дБм		
На длинах волн 850 нм, 1300 нм. Нестабильность мощности излучения (за 8 часов) На длинах волн 1310 нм, 1550 нм, 1625 нм. На длинах волн 850 нм, 1300 нм.	-25 дБм ±0,2 дБ ±0,1 дБ		
Электропитание рефлектометра осуществляется от встроенной батареи и через блок питания от сети переменного тока:			
- напряжением и частотой	я частотой		
Габаритные размеры	241×343×95 мм		
Масса (включая встроенную батарею)	5,4 кг		

ЗНАК УТВЕРЖДЕНИЯ ТИПА

Знак утверждения типа наносится на титульный лист руководства по эксплуатации методом штемпелевания.

КОМПЛЕКТНОСТЬ

Рефлектометр оптический СМА 4500	1 шт.
Оптические модули 23-х модификаций	по требованию Заказчика
Модули измерителя мощности 2-х модификаций	по требованию Заказчика
Руководство по эксплуатации	1 шт.
Комплект принадлежностей	по требованию Заказчика

ПОВЕРКА

Поверка прибора в части модуля оптического рефлектометра осуществляется в соответствии с МИ 1907-99 Рекомендация. Государственная система обеспечения единства измерений «Рефлектометры оптические. Методика поверки», в части модуля измерителя мощности в соответствии с МИ 2505-98 Рекомендация. Государственная система обеспечения единства измерений «Измерители оптической мощности, источники оптического излучения и оптические тестеры малогабаритные в волоконно-оптических системах передачи. Методика поверки»

Межповерочный интервал – 1 год.

НОРМАТИВНЫЕ И ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Государственная поверочная схема для средств измерений расстояния до места обрыва в световоде МИ 1046-86.

Государственная поверочная схема для средств измерений средней мощности оптического излучения в волоконно-оптических системах передачи МИ 2558-99.

Техническая документация фирмы-изготовителя NetTest North America, Inc., США.

ЗАКЛЮЧЕНИЕ

Тип «Рефлектометры оптические СМА 4500» утвержден с техническими и метрологическими характеристиками, приведенными в настоящем описании типа, метрологически обеспечены при выпуске из производства и в эксплуатации, согласно государственным поверочным схемам в соответствии с МИ 1046-86, МИ 2558-99.

Изготовитель - Фирма NetTest North America, Inc., США.

Заявитель – ЗАО «Сайрус Системс Корпорейшн» 107082, г. Москва, ул. Студенческая, д.33, корп.14

Генеральный директор

ЗАО "Сайрус Системс Корпорейшн"

Соколов И.В.