СОГЛАСОВАНО

Заместитель руководителя ГЦИ СИ

Внесены в Государственный реестр средств

"ВНИИМ им. Д.И. Менделеева"

В.С. Александров

2005 г.

Преобразователи термоэлектрические многозонные

измерений измерений многозонные Регистрацио

измерении № 29930-05

Изготовлены по техническим условиям ТУ 4211-127-12150638-2005 Заводские номера №№ 027, 028, 029;

НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ

Преобразователи термоэлектрические ТХК/1-9518 (далее термопреобразователи или ТП) предназначены для измерения температуры в реакторах установок каталитического реформинга и гидроочистки нефтепродуктов.

Термопреобразователи предназначены для эксплуатации в условиях, пронормированных для исполнения О2 по ГОСТ 15150-69, но для работы при температуре от минус 60 до $+70~^{0}$ С и относительной влажности (95 - 100)% при температуре $+50~^{0}$ С.

ОПИСАНИЕ

Принцип действия термоэлектрических преобразователей основан на генерировании термоэлектродвижущей силы, возникающей из-за разности температур между двумя соединениями разнородных металлов или сплавов, образующих часть одной и той же цепи.

Измерительным узлом термоэлектрического преобразователя является термопара хромелькопелевая (ТХК), представляющая собой два сваренных на одном конце термоэлектрода. Конструктивно каждая термопара изготовлена из гибкого нагревостойкого термопарного кабеля с минеральной изоляцией типа КТМС ХК, с наружным диаметром по металлической оболочке от 3 до 6 мм.

Термопреобразователи являются многозонными с распределением рабочего спая каждой зоны по длине термопреобразователя. Количество отдельных зон до 5. Каждая термопара может иметь 1 или 2 изолированных друг от друга и от корпуса горячих спаев.

Крепежный штуцер термопреобразователя посредством трубы из нержавеющей стали соединяется с головкой, в которой расположены контактные колодки или клеммные блоки, к которым присоединены свободные концы термоэлектродов.

Ввод внешнего соединительного кабеля с жилами из компенсационного провода осуществляется через вводное устройство с резиновым эластичным уплотнительным концом. Конструкция нажимного резьбового штуцера вводного устройства позволяет осуществлять монтаж бронированным кабелем с диаметром наружной изоляции под броней до 24 мм.

ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Наименование показателя	Значение показателя
1 Диапазон измерений температуры, ⁰ С	-50+600
2 HCX πο ΓΟCT P 8.585-2001	L
3 Класс допуска по ГОСТ 6616-94	2
4 Предел допускаемой основной погрешности	
измерений в температурном эквиваленте, ⁰ C:	
$t = 300 {}^{0}\mathrm{C};$	2,50
$t = 400^{\circ}C;$	3,00
$t = 500 {}^{0}\text{C};$	3,75
$t = 600 {}^{0}\text{C};$	4,50
5 Померования политераний учистичний в раме о ма	4 12 a (p. papayayaya amay an wasayama manayayan
5 Показатель тепловой инерции в воде, с, не более	4 – 12 с (в зависимости от диаметра термопар- ного кабеля)
	ного каосля)
6 Количество изолированных рабочих спаев в каждой зоне	1 или 2
7 Наружный диаметр термопарного кабеля,	1 NJN 2
мм: - с одним горячим спаем	3; 4; 5; 6
- с одним горячим спасм	4,6
- с двумя горячими спаями	4,0
8 Конструкция рабочего спая	Изолирован
9 Наибольшая длина термопары, м	
- диаметр кабеля 3 мм	100
- диаметр кабеля 4 мм	50
- диаметр кабеля 5 мм	30
- диаметр кабеля 6 мм	20
 диаметр кабеля 4,6 (4,5) мм 	25
10 Масса без термопарных кабелей, кг, не бо-	
лее	8,0
11 Погонная масса термопарного кабеля, кг/км	
при диаметре кабеля, мм	
3	39
4	74
5	110
6	163
4,6	83
12 Вероятность безотказной работы за 2000	
часов	0,8
	-,~

ЗНАК УТВЕРЖДЕНИЯ ТИПА

Знак утверждения типа наносится на титульный лист эксплуатационной документации типографским способом.

КОМПЛЕКТНОСТЬ

В комплект поставки при отправке термопреобразователей с предприятия-изготовителя входят:

- термопреобразователь - 1 шт.

- руководство по эксплуатации - 1 экз. на партию термопреобразователей не

более 25 шт., поставляемых в один адрес.

- паспорт- 1 экз.

ПОВЕРКА

Поверка термопреобразователей производится в соответствии с ГОСТ 8.338-2002 «Преобразователи термоэлектрические. Методика поверки». При поверке используются: установка УПСТ-2М, образцовый платинородий-платиновый термоэлектрический термометр 1-го разряда, эталонный 2-го разряда ртутный термометр с погрешностью по ГОСТ 8.558 в диапазоне температур от 0 до +300 0 С, измеритель-регулятор 8-канальный МИТ 8.10, сосуд Дьюара.

Межповерочный интервал 2 года.

НОРМАТИВНЫЕ И ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

ГОСТ 6616-94 Преобразователи термоэлектрические. Общие технические усло-

вия.

ГОСТ 8.558-93 ГСИ. Государственная поверочная схема для средств измерений

температуры

ГОСТ Р8.585-2001 Термопары. Номинальные статические характеристики преобра-

зования

ТУ4211-127-12150638-2005 Преобразователи термоэлектрические ТХА/1-9518, ТХК/1-9518,

ТЖК/1-9518, ТНН/1-9518, . Технические условия.

ЗАКЛЮЧЕНИЕ

Тип преобразователей термоэлектрических ТХК/1-9518 (зав. №№ 027, 028, 029) утвержден с техническими и метрологическими характеристиками, приведенными в настоящем описании типа, метрологически обеспечен при выпуске из производства и в эксплуатации согласно Государственной поверочной схеме.

Изготовитель - ЗАО НПК "Эталон".

347360, г. Волгодонск, Ростовская область ул. Ленина,60, а/я 1371, тел/факс. (86392) 7-79-39, 7-79-60.

Главный инженер ЗАО **РОТИ ОТОР В.Ш. Магдеев**