ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

СОГЛАСОВАНО

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии филиала ФГУП «РТРС» «Самарский ОРТПЦ»

Внесена в Государственный реестр средств измерений Регистрационный номер № 308 \$ -05 Взамен №

Изготовлена по технической документации филиала Федерального государственного унитарного предприятия «Российская телевизионная и радиовещательная сеть» «Самарский областной радиотелевизионный передающий центр». С заводским номером № 003.

НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии филиала Федерального государственного унитарного предприятия «Российская телевизионная и радиовещательная сеть» «Самарский областной радиотелевизионный передающий центр» (АИИС КУЭ филиала ФГУП «РТРС» «Самарский ОРТПЦ») предназначается для осуществления эффективного автоматизированного коммерческого учета и контроля потребления электроэнергии и мощности по филиалу ФГУП «РТРС» «Самарский ОРТПЦ» по всем расчетным точкам учета, а также регистрации параметров электропотребления, формирования отчетных документов и передачи информации в центры сбора: НП «АТС», региональный филиал ОАО «СО-ЦДУ ЕЭС» - ОДУ Средней Волги и Энергосбыт ОАО «Самараэнерго».

ОПИСАНИЕ

АИИС КУЭ филиала ФГУП «РТРС» «Самарский ОРТПЦ» представляет собой двухуровневую автоматизированную информационно-измерительную систему коммерческого учета электроэнергии с централизованным управлением и распределённой функцией измерения.

Первый уровень включает в себя пять (5) информационно-измерительных комплексов (ИИК) и выполняет функцию проведения измерений.

Второй уровень включает в себя информационно-вычислительный комплекс (ИВК).

В состав ИИК входят:

- счетчики электрической энергии;
- измерительные трансформаторы тока и напряжения;
- вторичные измерительные цепи.

В состав ИВК входят:

- технические средства приёма-передачи данных;
- сервер сбора данных (ССД);
- технические средства для организации локальной вычислительной сети (ЛВС) и разграничения прав доступа к информации.

В точках учёта энергии установлены высокоточные средства учёта — современные электронные счётчики, подключенные к сетям высокого напряжения через измерительные трансформаторы тока и напряжения. Для расчета электрической энергии, потребляемой за определенный период времени, необходимо интегрировать во времени мгновенные значения мощности. Для синусоидального сигнала мощность равна произведению напряжения на ток в сети в данный момент времени.

Сигналы, пропорциональные напряжению и току в сети, снимаются с вторичных обмоток трансформаторов тока и напряжения и поступают на вход преобразователя счетчика. Измерительная система преобразователя перемножает входные сигналы, получая мгновенную потребляемую мощность. Этот сигнал поступает на вход микроконтроллера счетчика, преобразующего его в Вт ч и, по мере накопления сигналов, изменяющего показания счетчика. Микроконтроллер считывает и сохраняет последнее значение. По мере накопления каждого Вт ч, микроконтроллер увеличивает показания счетчика.

ИВК формирует запрос, который по каналам связи попадает на терминал (P2S) и перенаправляет запрос на счетчик с нужным адресом. Счетчик в ответ пересылает данные через терминал на сервер сбора данных, на котором установлено специализированное программное обеспечение SEP2W для сбора и учета данных. Далее по каналам связи (телефон, ЛВС), обеспечивается дальнейшая передача информации в НП «АТС», региональный филиал ОАО «СО-ЦДУ ЕЭС» - ОДУ Средней Волги и Энергосбыт ОАО «Самараэнерго».

Взаимодействие между АИИС КУЭ филиала ФГУП «РТРС» «Самарский ОРТПЦ», НП «АТС», региональным филиалом ОАО «СО-ЦДУ ЕЭС» - ОДУ Средней Волги и Энергосбытом ОАО «Самараэнерго» осуществляется по следующим каналам связи:

- основной канал связи организован на базе выделенного канала сети «Интернет»;
- резервный канал связи организован через телефонную сеть связи общего пользования (ТфССОП).

Для обеспечения единства измерений в состав АИИС КУЭ филиала ФГУП «РТРС» «Самарский ОРТПЦ» входит система обеспечения единого времени (СОЕВ).

СОЕВ выполняет законченную функцию измерений времени, имеет нормированные метрологические характеристики и обеспечивает синхронизацию времени с точностью не хуже ± 0.5 с/сутки.

ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Состав измерительных каналов АИИС КУЭ филиала ФГУП «РТРС» «Самарский ОРТПЦ» приведен в таблице 1

Таблица 1

	Таолица 1	Состав измерительного канала					
№ MMK	Наименование объекта	Трансформатор тока	Трансформатор напряжения	Счетчик электри- ческой энергии многофункцио- нальный	Терминал связи	ССД	
1	2	3	4	5	6	7	
1	Город-3, Ф-5	ТЛМ-10 Кл.т. 0,5 Ктт=1000/5 Зав. №5370 Зав. №6551 Госресстр № 2473-00	НАМИТ-10-2 Кл.т. 0,5 Ктн=10000/100 Зав. №0089 Госреестр № 16687-02	МТ851 Кл.т.0,5S Зав. №34873402 Госреестр № 27724-04	8-1)		
2	Город-3, Ф-51	ТЛМ-10 Кл.т. 0,5 Ктт=1000/5 Зав. №6542 Зав. №6540 Госреестр № 2473-00	HТМИ-10 Кл.т. 0,5 Ктн=10000/100 Зав. №6591 Госреестр №831-53	МТ851 Кл.т.0,5S Зав. №34873404 Госреестр № 27724-04	POREG P2S-K33-00-V1.25 (P2S-1) Focpeecrp № 17563-05	HP Proliant ML350R03 SA641 EURO	
5	РУ-6 кВ, Яч.6	ТПФМ-10 ТПФ Кл.т. 0,5 Ктт=50/5 Зав. №77611 Зав. №114071 Госреестр № 814-53 №517-50	НАМИТ-10-2 УХЛ2 Кл.т. 0,5 Ктн=6000/100 Зав. №0080 Госреестр № 16687-02	МТ851 Кл.т.0,5S Зав. №34873391 Госреестр №27724-04	POREG P		
3	Ввод Яч. 1	ТЛМ-10 Кл.т. 0,5 Ктт=1500/5 Зав. №8773 Зав. №1523 Зав. №8137 Госреестр № 2473-00	HOM-6 Kл.т. 1,0 Kтн=6000/100 Зав. №1147 Зав. №2667 Зав. №50067 Госреестр № 159-49	МТ851 Кл.т.0,5S Зав. №34873397 Госреестр № 27724-04	POREG P2S-K33-00-V1.25 (P2S-2) Госреестр № 17563-05	HP Proliant N	
4	Ввод яч. 9	ТПОЛ-10-У3 Кл.т. 0,5 Ктт=1500/5 Зав. №17653 Зав. №12287 Зав. №17607 Госреестр № 1261-02	HOM-6 Kл.т. 1,0 Kтн=6000/100 Зав. №1147 Зав. №2667 Зав. №50067 Госреестр № 159-49	МТ851 Кл.т.0,5S Зав. №34873398 Госреестр №27724-04	POREG P2S-K3: Fospeecrp		

Метрологические характеристики измерительных каналов АИИС КУЭ филиала Φ ГУП «РТРС» «Самарский ОРТПЦ» приведены в таблице 2.

Таблица 2

Таблица 2 № ИИК	Коэффициент	Ток	Предел допускаемой относи-	
N⊼ KIKIK	мощности	I, % от I _{ном}	тельной погрешности δ, %	
1	2	3	4	
	Активн	ая энергия		
		1	2,58	
	Cos φ=1	5	2,23	
		20	1,71	
		100	1,59	
		120	1,59	
	Cos φ =0,8	2	3,53	
		5	3,21	
1, 2, 5		20	2,13	
, ,		100	1,88	
		120	1,87	
		2	6,18	
		5	5,69	
	$\cos \varphi = 0.5$	20	3,32	
		100	2,69	
		120	2,69	
· · · · · · · · · · · · · · · · · · ·		1	2,75	
		5	2,42	
	$\cos \varphi = 1$	20	1,95	
		100	1,86	
		120	1,86	
		2	3,75	
		5	3,45	
3, 4	$\cos \varphi = 0.8$	20	2,48	
-, -	ξου φ ο,υ	100	2,26	
		120	2,26	
			6,54	
		2 5	6,08	
	Cos φ =0,5	20	3,95	
		100	3,43	
		120	3,43	
	Реактив	ная энергия		
	T CARTIES	2	8,25	
	Cos φ =0,9	5	7,18	
		20	3,89	
	$\sin \varphi = 0.4$	100	2,91	
		120	2,91	
		2	5,27	
	Cos $φ = 0.8$ Sin $φ = 0.6$	5	4,53	
1, 2, 5		20	2,53	
		100	1,97	
		120	1,97	
		2	4,37	
		5	3,73	
	Cos φ = 0,7 Sin φ = 0,7	20	2,13	
		100	1,71	
		120	1,71	

1	2	3	4
		2	8,68
	Cos φ = 0,9 $ Sin φ = 0,4$	5	7,67
		20	4,74
		100	3,97
		120	3,97
		2	5,55
	Cos (0 =0.8	5	4,86
3, 4	Cos φ = 0.8 Sin φ = 0.6	20	3,08
	$\sin \phi - 0.0$	100	2,64
		120	2,64
		2	4,61
	Cos φ = 0,7 $Sin φ = 0,7$	5	4,02
		20	2,59
		100	2,26
		120	4.61

Нормальные условия эксплуатации компонентов АИИС КУЭ филиала ФГУП «РТРС» «Самарский ОРТПЦ»:

- напряжение питающей сети (0,98÷1,02)*U_{ном}, соѕф=0,9инд;
- температура окружающей среды (20±5) °C.

Рабочие условия эксплуатации компонентов АИИС КУЭ филиала ФГУП «РТРС» «Самарский ОРТПЦ»:

- напряжение питающей сети $(0,9 \div 1,1) * U_{\text{ном}}$, ток $(0,02 \div 1,2) * I_{\text{ном}}$;
- для счетчиков MT851 от минус 40°C до плюс 60°C;
- для терминала P2S от 0°C до плюс 50°C;
- трансформаторы тока по ГОСТ 7746;
- трансформаторы напряжения по ГОСТ 1983.

Показатели надежности комплектующих устройств АИИС КУЭ филиала ФГУП «РТРС» «Самарский ОРТПЦ»:

- счетчик МТ851- среднее время наработки на отказ не менее 1847754 часов;
- терминал P2S-K33-00-V1.25 (P2S) среднее время наработки на отказ не менее 2196237 часов;
- резервирование питания в АИИС КУЭ осуществляется при помощи источников бесперебойного питания (ИБП), обеспечивающих стабилизированное бесперебойное питание элементов АИИС КУЭ при скачкообразном изменении или пропадании напряжения.

Среднее время восстановления, при выходе из строя оборудования:

- для счетчика Тв ≤ 7 суток;
- для сервера Тв ≤ 1 час;
- для модема Тв ≤ 1 час;
- для терминала (P2S) Тв ≤ 24 час.

Защита технических и программных средств АИИС КУЭ филиала ФГУП «РТРС» «Самарский ОРТПЦ» от несанкционированного доступа:

- клеммники вторичных цепей измерительных трансформаторов имеют устройства для пломбирования;
- данные TT о средних значениях фазных токов за тридцать минут хранятся в долговременной памяти счечиков и передаются в базу данных ИВК;

- данные ТН обеспечены журналом автоматической регистрации событий:
 - снижение напряжения по каждой из фаз A, B, C ниже уставок;
 - исчезновение напряжения по всем фазам;
 - восстановление напряжения;
- панели подключения к электрическим интерфейсам счечиков защищены механическими пломбами;
- программа параметрирования счечиков имеет пароль;
- организация доступа к информации ИВК посредством паролей обеспечивает идентификацию пользователей и эксплуатационного персонала.

ЗНАК УТВЕРЖДЕНИЯ ТИПА

Знак утверждения типа наносится на титульные листы эксплуатационной документации АИИС КУЭ филиала ФГУП «РТРС» «Самарский ОРТПЦ».

КОМПЛЕКТНОСТЬ

Таблица 3

Наименование	Обозначение (тип)	Количе-
Панменование	Обозначение (тип)	ство, шт
	ТЛМ-10	7
Thoughonson make	ТПФМ-10	1
Трансформатор тока	ТПФ	1
	ТПОЛ-10-У3	3
	НАМИТ-10-2	2
Трансформатор напряжения	НТМИ-10	1
	HOM-6	3
Tonswoo- DODEC	P2S-K33-00-V1.25 (P2S-1)	1
Терминал POREG	P2S-K33-00-V1.25 (P2S-2)	1
Conson of one server (CCII)	HP Proliant ML350R03 SA641	1
Сервер сбора данных (ССД)	EURO	
Счетчик статический трехфазный переменного тока активной и реактивной энергии	MT851	5
GSM-модем	Siemens TC35i	1
Модем	Zyxel U-336S	1
Преобразователь интерфейса CS/RS-232	Zyxol 0-3305	2
фирмы «ISKRAEMECO»	CON2	
Руководство по эксплуатации	10.03.СОРТПЦ-АУ.РЭ	1
Формуляр	10.03.СОРТПЦ-АУ.ФО	1
Методика поверки	МП-164/447-2005	1

В комплект поставки входит техническая документация на систему и на комплектующие средства измерений.

ПОВЕРКА

Поверка проводится в соответствии с документом «ГСИ. Система автоматизированная информационно-измерительная коммерческого учета электроэнергии филиала федерального государственного унитарного предприятия «Российская телевизионная и радиовещательная сеть» «Самарский областной радиотелевизионный передающий центр». Методика поверки», МП-164/447-2005 утвержденным ФГУ «Ростест-Москва» в октябре 2005 г.

Межповерочный интервал - 4 года.

Средства поверки – в соответствии с НД на измерительные компоненты.

НОРМАТИВНЫЕ И ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

- 1 ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия.
- 2 ГОСТ 34.601-90 Информационная технология. Комплекс стандартов на автоматизированные системы. Автоматизированные системы. Стадии создания.
- 3 ГОСТ Р 8.596-2002 ГСИ. Метрологическое обеспечение измерительных систем. Основные положения.

ЗАКЛЮЧЕНИЕ

Тип «Система автоматизированная информационно-измерительная коммерческого учета электроэнергии филиала федерального государственного унитарного предприятия «Российская телевизионная и радиовещательная сеть» «Самарский областной радиотелевизионный передающий центр»», зав. № 003 утвержден с техническими и метрологическими характеристиками, приведенными в настоящем описании типа, метрологически обеспечен при выпуске из производства и в эксплуатации.

ИЗГОТОВИТЕЛЬ

Филиал ФГУП «РТРС» «Самарский ОРТПЦ» 443011, г. Самара, ул. Советской Армии, 205 Тел (846) 926-24-38 Факс (846) 926-10-30

Исполнительный директор ФГУП «РТРС» по филиалу «Самарский ОРТПЦ»

ЗАЯВИТЕЛЬ

ЗАО «ИСКРЭН» 117393, г. Москва, ул. Профсоюзная, 66, стр. 1. Тел/факс(095) 785-52-00 785-52-01, 785-52-02, 785-52-03

Генеральный директор ЗАО «ИСКРЭН»

Е.А. Федин