

Система информационно-измерительная автоматизированная коммерческого учета электроэнергии - АИИС КУЭ ЗАО "ЭСКОМ" для электроснабжения ОАО "Юганскнефтегаз"

Внесена в Государственный реестр средств измерений

Регистрационный номер № 31255-06

Изготовлена по технической документации: ЗАО «Прорыв-комплект», г. Москва. Заволской № 2005A08

НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ

Система информационно-измерительная автоматизированная коммерческого учета электроэнергии - АИИС КУЭ ЗАО "ЭСКОМ" для электроснабжения ОАО "Юганскнефтегаз" предназначена для измерения активной и реактивной энергии, а также для автоматизированного сбора, обработки, хранения и отображения информации.

Областью применения данной АИИС является коммерческий учёт электроэнергии в ЗАО "ЭСКОМ" для электроснабжения ОАО "Юганскнефтегаз", г. Нефтеюганск, Тюменская обл., Ханты-Мансийский Автономный Округ по утвержденной методике выполнения измерений количества электрической энергии (далее - МВИ КУЭ).

ОПИСАНИЕ

АИИС состоит из информационно-измерительных комплексов (далее - ИИК), включающих следующие средства измерений:

- измерительные трансформаторы тока (ТТ) по ГОСТ 7746-2201;
- измерительные трансформаторы напряжения (ТН) по ГОСТ 1983-2001;
- многофункциональные счетчики электрической энергии в соответствии с ГОСТ 26035-83 и ГОСТ Р 52323-2005.

Перечень информационно-измерительных комплексов, входящих в состав АИИС, с указанием непосредственно измеряемой величины, наименования ввода, типов и классов точности средств измерений, входящих ИИК, состав номера регистрации Государственном реестре средства средств измерений представлен в таблице

Таблица 1 – Перечень информационно-измерительных комплексов АИИС

				речень ИК АИИС 500/220/110/35 к		9			
номер ИК	код ИК	Присоединение	Вид СИ	К-т трансформации Класс точности № госреестра	Фаза	0, Тип	Зав. №	Ктт*Ктн	Изм. Величина
	1C 3a		успд	19495-03		TK-16L	200508037		Время
		P-1	П	Кл.т.=0.5 Ктт=200/5 №3690-73	A B C	ТФЗМ-35А-ХЛ1 отсутствует ТФЗМ-35А-ХЛ1	34268 34253		I первичный
_	111900800175	35кВ КНС-12 Б	TH	Кл.т.=0.5 Ктн=35000/100 №19813-00	A B C	НАМИ-35-УХЛ1 НАМИ-35-УХЛ1 НАМИ-35-УХЛ1	125 125 125	14000	U первичное
	111900	н вузк па	Счетчик	Кл.т.=0.2 №14555-02 Ксч=1		А1R-3-AL-C29- зав. № 105841	T+	14	I вторичный U вторичное Время Энергия Р, Q Мощность Р, Q
		1	11	Кл.т.=0.5 Ктт=200/5 №3690-73	A B C	ТФ3М-35А-ХЛ1 отсутствует ТФ3М-35А-ХЛ1	7581 22103		I первичный
2	111900800178	35кВ КНС-1-	НТ	Кл.т.=0.5 Ктн=35000/100 №19813-00	A B C	НАМИ-35-УХЛ1 НАМИ-35-УХЛ1 НАМИ-35-УХЛ1	125 125 125	14000	U первичное
	11190	ВЛ 35к	Счетчик	Кл.т.=0.2 №14555-02 Ксч=1		A1R-3-AL-C29- зав. № 105841		<u>~</u>	I вторичный U вторичное Время Энергия Р, Q Мощность Р, Q
		н-1	Ш	Кл.т.=0.5 Ктт=300/5 №3690-73	A B C	ТФМ-35-II-ХЛ1 отсутствует ТФМ-35-II-ХЛ1	4212 4221		I первичный
က	111900800177	35кВ Звездная-1	НТ	Кл.т.=0.5 Ктн=35000/100 №19813-00	A B C	НАМИ-35-УХЛ1 НАМИ-35-УХЛ1 НАМИ-35-УХЛ1	125 125 125	21000	U первичное
	11190	ВЛ 35кВ	Счетчик	Кл.т.=0.2 №14555-02 Ксч=1		A1R-3-AL-C29- зав. № 105841		2	I вторичный U вторичное Время Энергия Р, Q Мощность Р, Q
		1-1	11	Кл.т.=0.5 Ктт=300/5 №3690-73	A B C	ТФ3М-35А-ХЛ1 отсутствует ТФ3М-35А-ХЛ1	29739 50480		I первичный
4	111900800180	3 Осенняя-1	ТН	Кл.т.=0.5 Ктн=35000/100 №19813-00	A B C	НАМИ-35-УХЛ1 НАМИ-35-УХЛ1 НАМИ-35-УХЛ1	125 125 125	21000	U первичное
	11190	ВЛ 35кВ С	Кл.т.=0.2 №14555-02 Ксч=1		A1R-3-AL-C29- зав. № 105841		2	I вторичный U вторичное Время Энергия Р, Q Мощность Р, Q	

Кл.т.=0.5 	A	ТФЗМ-35А-ХЛ1	23651		
│					
	В	отсутствует			I первичный
∑ Nº3690-73	С	ТФЗМ-35А-ХЛ1	23083		
Кл.т.=0.5 Кл.т.=0.5 Кл.т.=0.5 Кл.т.=0.5 Кл.т.=0.5 Nº19813-00	Α	НАМИ-35-УХЛ1	125		
		НАМИ-35-УХЛ1	125		U первичное
G S S F Nº19813-00	С	НАМИ-35-УХЛ1	125	28000	
Ст.т.=0.5 Кл.т.=0.5 Ктн=35000/100 №19813-00 Кл.т.=0.2 Кл.т.=0.2 №14555-02 Ксч=1		A1R-3-AL-C29- зав. № 105841	T+	28	I вторичный U вторичное Время Энергия Р, Q Мощность Р, Q
Кл.т.=0.5	Λ	T#2M 2EA VII1	34127		МОЩНОСТЬ F, Q
	A	ТФЗМ-35А-ХЛ1	34127		
☐ Ктт=200/5	В	отсутствует			I первичный
Nº3690-73	С	ТФЗМ-35А-ХЛ1	33715		
	Α	НАМИ-35-УХЛ1	50		
) B	НАМИ-35-УХЛ1	50	Q	U первичное
о 8 У № 19813-00	С	НАМИ-35-УХЛ1	50	14000	
(B)		<u>I</u>		1	I вторичный
9 000 000 000 000 000 000 000 000 000 0		A1R-3-AL-C29- зав. № 105841			U вторичное Время Энергия Р, Q
					Мощность Р, Q
Кл.т.=0.5	Α	ТФНД-35М	255		
	В	отсутствует			I первичный
No2690 72	С	ТФНД-35М	14907		
	A	НАМИ-35-УХЛ1	50		
Кл.т.=0.5 Ктн=35000/100					U первичное
00 ± =		НАМИ-35-УХЛ1	50	00	о первичное
	С	НАМИ-35-УХЛ1	50	14000	
Счетчик Кл.т.=0.5 Ктн=35000/100 №19813-00 М№19813-00 Кл.т.=0.2 №14555-02 Ксч=1		A1R-3-AL-C29- зав. № 105841		,	I вторичный U вторичное Время Энергия Р, Q Мощность Р, Q
Кл.т.=0.5	Α	ТФЗМ-35А-ХЛ1	24738		
 	В	отсутствует]	I первичный
	C	ТФЗМ-35А-ХЛ1	24403		, '
원 병 Кл.т.=0.5	A	НАМИ-35-УХЛ1	50		
					U первичное
00 6 E N1H=35000/100	C	НАМИ-35-УХЛ1	50	28000	о первичное
m m m m m m m m m m	<u> </u>	НАМИ-35-УХЛ1	50	280	
8 В В В В В В В В В В В В В В В В В В В		A1R-3-AL-C29- зав. № 105841		.,	I вторичный U вторичное Время Энергия Р, Q Мощность Р, Q
Кл.т.=0.5	Α	ТФЗМ-35А-ХЛ1	29767		
	В	отсутствует			I первичный
	С	ТФЗМ-35А-ХЛ1	29642	1	·
	A	НАМИ-35-УХЛ1	50		
		НАМИ-35-УХЛ1		0	U первичное
0 0 F No10913 00			50	21000	о первичное
	С	НАМИ-35-УХЛ1	50	21	1
6 В В В В В В В В В В В В В В В В В В В	A1R-3-AL-C29-T+			I вторичный U вторичное Время Энергия Р, Q	
		зав. № 1058413			Мощность Р, Q

				Кл.т.=0.5	Α	ТФЗМ-35А-ХЛ1	23601		
				Ктт=400/5	В	отсутствует			I первичный
		я-2		№3690-73	С	ТФЗМ-35А-ХЛ1	23598		
	171	Весенняя-2		Кл.т.=0.5	Α	НАМИ-35-УХЛ1	50		
	9	Ge	Ŧ	Ктн=35000/100	В	НАМИ-35-УХЛ1	50	0	U первичное
10	11900800171	_		№19813-00	С	НАМИ-35-УХЛ1	50	28000	
	19(35кВ						2	I вторичный
	7		ИK	Кл.т.=0.2		A1R-3-AL-C29-	T+		U вторичное
		ВЛ	чет	№14555-02					Время
			S	Ксч=1		зав. № 105841	5		Энергия Р, Q
									Мощность P, Q

				речень ИК АИИС кая" 220/110/35/					
номер ИК	код ИК	Присоединение	Вид СИ	К-т трансформации Класс точности № госреестра	Фаза	Тип	Зав. №	Ктт*Ктн	Изм. Величина
	1C 3a		успд	19495-03		TK-16L	200508010		Время
		ная-1	TT	Кл.т.=0.5 Ктт=200/5 №3690-73	A B C	ТФН-35 М отсутствует ТФН-35 М	37005 36777		I первичный
-	111900800179	омышлен	ТН	Кл.т.=0.5 Ктн=35000/100 №19813-00	A B C	НАМИ-35-УХЛ1 НАМИ-35-УХЛ1 НАМИ-35-УХЛ1	52 52 52	14000	U первичное
	11190	ВЛ-35 кВ Промышленная-1	Счетчик	Кл.т.=0.2 №14555-02 Ксч=1		А1R-3-AL-С8- зав. № 101264		1	I вторичный U вторичное Время Энергия Р, Q Мощность Р, Q
		.1	ТТ	Кл.т.=0.5 Ктт=200/5 №3690-73	A B C	ТФН-35 М отсутствует ТФЗМ-35А-У1	11670 41609		I первичный
2	111900800191	кВ ДНС-3-1	TH	Кл.т.=0.5 Ктн=35000/100 №19813-00	A B C	НАМИ-35-УХЛ1 НАМИ-35-УХЛ1 НАМИ-35-УХЛ1	52 52 52	14000	U первичное
	11190	ВЛ-35 кВ	Счетчик	Кл.т.=0.2 №14555-02 Ксч=1		A1R-3-AL-C8- зав. № 101261	Т	1	I вторичный U вторичное Время Энергия Р, Q Мощность Р, Q
		нная-2	ТТ	Кл.т.=0.5 Ктт=200/5 №3690-73	A B C	ТФМ-35-II-У1 отсутствует ТФЗМ-35А-У1	3263 37238		I первичный
က	112200200027	омышле	ТН	Кл.т.=0.5 Ктн=35000/100 №19813-00	A B C	НАМИ-35-УХЛ1 НАМИ-35-УХЛ1 НАМИ-35-УХЛ1	55 55 55	14000	U первичное
	3 112200200027 ВЛ-35 кВ Промышленная-2		Счетчик	Кл.т.=0.2 №14555-02 Ксч=1		А1R-3-AL-C8- зав. № 100954	Т	_	I вторичный U вторичное Время Энергия Р, Q Мощность Р, Q

	1								
				Кл.т.=0.5	Α	ТФЗМ-35А-У1	19633		
			L	Ктт=150/5	В	отсутствует			I первичный
		-5		№3690-73	С	ТФЗМ-35А-У1	16384		
	131	C-3		Кл.т.=0.5	Α	НАМИ-35-УХЛ1	55		
	000	ДНС	T T	Ктн=35000/100	В	НАМИ-35-УХЛ1	55	8	U первичное
4	12200600131	ĸB,		№19813-00	С	НАМИ-35-УХЛ1	55	10500	
	22	35							I вторичный
	1	ВЛ-;	ŽΥ	Кл.т.=0.2		A1R-3-AL-C8-	Τ		U вторичное
		ш	Счет	№14555-02					Время
			\ddot{c}	Ксч=1		зав. № 100707	7		Энергия Р, Q
									Мощность Р, Q

				речень ИК АИИС вы" 220/10/6 кВ	С КУ	Э			
номер ИК	код ИК	Присоединение	Вид СИ	К-т трансформации Класс точности № госреестра	Фаза	Тип	Зав. №	Ктт*Ктн	Изм. Величина
	АИИС Зав. № 2005A08		успд	19495-03		TK-16L	200508029		Время
				Кл.т.=0.5	Α	ТОЛ-10	9810		
		ä	F	Ктт=300/5	В	отсутствует			I первичный
		баз		№7069-02	С	ТОЛ-10	9859		
	116	Турбаза		Кл.т.=0.5	Α	НАМИ-6	433		
	000	1	픋	Ктн=6000/100	В	НАМИ-6	433	00	U первичное
_	900	Æ		№нет	С	НАМИ-6	433	3600	
	112200600116	9 0	,						I вторичный
	-				A1R-3-AL-C8-T				U вторичное
		ф	тет Тет	№14555-02	No 4007075				Время
		_	Ö	Ксч=1	зав. № 1007075				Энергия P, Q
									Мощность P, Q

	Таблица 1.4 Перечень ИК АИИС КУЭ ПС "Ленинская" 220/110/35 кВ													
номер ИК	код ИК	Присоединение	Вид СИ	К-т трансформации Класс точности № госреестра	Фаза	Тип	Зав. №	Ктт*Ктн	Изм. Величина					
	АИИС Зав. № 2005A08		успд	19495-03	TK-16L		200508004		Время					
				Кл.т.=0.5	Α	ТФЗМ-35А-У1	33869							
		-	F	Ктт=200/5	В	отсутствует			I первичный					
	6	ая		№3690-73	С	ТФЗМ-35А-У1	33874							
	109	Сибирская-1		Кл.т.=0.5	Α	НАМИ-35-УХЛ1	61							
	300	16и	Ŧ.	Ктн=35000/100	В	НАМИ-35-УХЛ1	61		U первичное					
_	006	_		№19813-00	С	НАМИ-35-УХЛ1	61							
	112200600109	ВЛ-35 кВ	Счетчик	Кл.т.=0.2 №14555-02 Ксч=1		A1R-3-AL-C8-Т зав. № 1012625			I вторичный U вторичное Время Энергия Р, Q Мощность Р, Q					

	0	-1	F	Кл.т.=0.5 Ктт=200/5	A	ТФЗМ-35А-У1	37615		
	0	-1		KTT=200/5					
	0 жая		•		В	отсутствует			I первичный
)	ая		№3690-73	С	ТФЗМ-35А-У1	37459		
	11	HC		Кл.т.=0.5	Α	НАМИ-35-УХЛ1	61		
	300	ме	王	Ктн=35000/100	В	НАМИ-35-УХЛ1	61	00	U первичное
2	900	Тĸ		№19813-00	С	НАМИ-35-УХЛ1	61	14000	
	112200600110	ВЛ-35 кВ Тюменская-1	Счетчик	Кл.т.=0.2 №14555-02 Ксч=1		A1R-3-AL-C8- зав. № 100954			I вторичный U вторичное Время Энергия Р, Q Мощность Р, Q
				Кл.т.=0.5	Α	ТФЗМ-35А-У1	34265		
				Ктт=200/5	В	отсутствует			I первичный
		1-ы		№3690-73	С	ТФЗМ-35А-У1	34904		
	7	ска		Кл.т.=0.5	Α	НАМИ-35-УХЛ1	61		
	01	lap	王	Ктн=35000/100	В	НАМИ-35-УХЛ1	61		U первичное
3	960	à	_	№19813-00	С	НАМИ-35-УХЛ1	61	4000	•
	200	ВС				117 (17) 17 00 37(31)	0.1	4	I вторичный
	112200600111	ВЛ-35 кВ Самарская-1	Счетчик	Кл.т.=0.2 №14555-02 Ксч=1		A1R-3-AL-C8- зав. № 100792			U вторичное Время Энергия Р, Q Мощность Р, Q
				Кл.т.=0.5	Α	ТФЗМ-35А-ХЛ1	51077		WOЩПООТЬТ, Q
			L	Ктт=400/5	В	отсутствует	31077		I первичный
			_		С	•	51070		тпервичный
	4 112200600112 ВЛ-35 кВ Лесная-1	я-1		№3690-73		ТФЗМ-35А-ХЛ1	+		
		ж	_	Кл.т.=0.5	Α	НАМИ-35-УХЛ1	61		11
		Пес	Η	Ктн=35000/100	В	НАМИ-35-УХЛ1	61	00	U первичное
4		(B)		№19813-00	С	НАМИ-35-УХЛ1	61	28000	
	1122	ВЛ-35 I	Счетчик	Кл.т.=0.2 №14555-02 Ксч=1		A1R-3-AL-С8- зав. № 101262			I вторичный U вторичное Время Энергия Р, Q Мощность Р, Q
				Кл.т.=0.5	Α	ТФЗМ-35А-У1	34761		,
		<u>~</u> ;	F	Ктт=200/5	В	отсутствует	2.5	1	I первичный
		Сибирская-2	-	№3690-73	С	ТФЗМ-35А-У1	33859	1	'
	4	CKE		Кл.т.=0.5	Α	НАМИ-35-УХЛ1	75	1	
)01	Σир	표	Ктн=35000/100	В	НАМИ-35-УХЛ1	75	0	U первичное
2)90	Зис	_	№19813-00	С	НАМИ-35-УХЛ1	75	14000	sps
	112200600114	ВЛ-35 кВ (Счетчик	Кл.т.=0.2 №14555-02 Ксч=1		A1R-3-AL-C8- зав. № 101263	T 33	14	I вторичный U вторичное Время Энергия Р, Q Мощность Р, Q
				Кл.т.=0.5	Α	ТФЗМ-35А-У1	37008		
		1-2	⊨	Ктт=200/5	В	отсутствует			I первичный
	3	кая		№3690-73	С	ТФЗМ-35А-У1	37563]	
	10,	HC		Кл.т.=0.5	Α	НАМИ-35-УХЛ1	75]	
	300	ЭМС	프	Ктн=35000/100	В	НАМИ-35-УХЛ1	75]	U первичное
9	900	Tĸ		№19813-00	С	НАМИ-35-УХЛ1	75		
	6 112200600103 ВЛ-35 кВ Тюменская-2		Счетчик	Кл.т.=0.2 №14555-02 Ксч=1		A1R-3-AL-C8- зав. № 100791	Т		I вторичный U вторичное Время Энергия Р, Q Мощность Р, Q

110	одоли	CITTIC	Tuos	инцы т.т					
				Кл.т.=0.5	Α	ТФ3М-35А-У1	34282		
		8	F	Ктт=200/5	В	отсутствует			I первичный
		ая-2		№3690-73	С	ТФЗМ-35А-У1	34745		
	9	Самарска		Кл.т.=0.5	Α	НАМИ-35-УХЛ1	75		
	00	Mal	I I	Ктн=35000/100	В	НАМИ-35-УХЛ1	75	0	U первичное
_	900	Ca		№19813-00	С	НАМИ-35-УХЛ1	75	4000	
	112200600104	ВЛ-35 кВ	Счетчик	Кл.т.=0.2 №14555-02		A1R-3-AL-C8-	Т	_	I вторичный U вторичное Время
		ш	ਨੌ	Ксч=1		зав. № 100792	.5		Энергия Р, Q
									Мощность P, Q
				Кл.т.=0.5	Α	ТФЗМ-35А-ХЛ1	53228		
			⊨	Ктт=400/5	В	отсутствует			I первичный
		4-2		№3690-73	С	ТФЗМ-35А-ХЛ1	51793		
	115	Лесная-2		Кл.т.=0.5	Α	НАМИ-35-УХЛ1	75		
	000		픋	Ктн=35000/100	В	НАМИ-35-УХЛ1	75	8	U первичное
00	900	ξΒJ		№19813-00	С	НАМИ-35-УХЛ1	75	28000	
	112200600115	1122 ВЛ-35 г		Кл.т.=0.2 №14555-02 Ксч=1	A1R-3-AL-C8-T зав. № 1007968				I вторичный U вторичное Время Энергия Р, Q
									Мошность Р. Q

				речень ИК АИИС ская" 220/110/35						
номер ИК	код ИК	Присоединение	Вид СИ	К-т трансформации Класс точности № госреестра	Фаза	Тип	Зав. №	Ктт*Ктн	Изм. Величина	
	1C 3a 005A		успд	19495-03		TK-16L 200508018			Время	
				Кл.т.=0.5	Α	ВСТПМР-242	5016850			
			Ш	Ктт=1000/5	В	ВСТПМР-242	5016851		I первичный	
	2			№17869-98	С	ВСТПМР-242	5016849			
	117	AT1	_	Кл.т.=0.5	Α	CPB-245	8615474			
	900	8 8	220kB AT1	Ŧ	Ктн=220000/100	В	CPB-245	8615472	440000	U первичное
_	007	220		№15853-96	С	CPB-245	8615469	40		
	112200600117	BB 2	Счетчик	Кл.т.=0.5 №14555-02 Ксч=1		A2R-4-AL-C28- зав. № 105930		7	I вторичный U вторичное Время Энергия Р, Q Мощность Р, Q	
				Кл.т.=0.5	Α	ВСТПМР-242	5612346			
			П	Ктт=1000/5	В	ВСТПМР-242	5612345		I первичный	
	2	2		№17869-98	С	ВСТПМР-242	5612347			
	010	AT.		Кл.т.=0.5	Α	CPB-245	8615470			
2)09	Ã	ТН	Ктн=220000/100	В	CPB-245	8615471	440000	U первичное	
	2200600105 220kB AT2 TH		№15853-96	С	CPB-245	8615473	440			
	2 112200600105 BB 220kB AT2	Счетчик	Кл.т.=0.5 №14555-02 Ксч=1		A2R-4-AL-C28- зав. № 105929		,	I вторичный U вторичное Время Энергия Р, Q Мощность Р, Q		

1100/	долж	снис	Taoj	інцы 1.5	1 - 1			г —	
			₋	Кл.т.=0.5	A	BCTTMP-242	5016857		1
				Ктт=1000/5	В	ВСТПМР-242	5016862		I первичный
	9			№17869-98	С	ВСТПМР-242	5016869		
)10	ĶΒ	_	Кл.т.=0.5	A	CPB-245	8615474		
၂ က	009	220kB	표	Ктн=220000/100	В	CPB-245	8615472	440000	U первичное
()	500	B 2		№15853-96	С	CPB-245	8615469	40	
	112200600106	СЭВ	×			405 444 000	_	4	I вторичный
	~		Счетчик	Кл.т.=0.5 №14555-02		A2R-4-AL-C28-	1+		U вторичное
			.he	Nº 14555-02 Kcч=1		зав. № 105929	10		Время Энергия Р, Q
			0	NO4-1		3ab. Nº 103923	19		Мощность P, Q
				Кл.т.=0.5	Α	TG-145	564		тощноств г , с
			F	Ктт=600/5	В	TG-145	563		I первичный
		ая		№15651-96	С	TG-145	565		•
	08	, 60		Кл.т.=0.5	Α	CPB-123	8616831		
	001	ОИС	王	Ктн=110000/100	В	CPB-123	8616830	8	U первичное
4)90	L		№15853-96	С	CPB-123	8616833	32000	
	112200600108	ОкВ				01 12 120	0010000	13	I вторичный
	11,	ВЛ 110кВ Приобская	≚ Кл.т.=0.5 A2R-4-AL-C8-T+						U вторичное
		ВЛ	Счетчик	№14555-02					Время
			ਤੱ Ксч=1 зав. № 1045423						Энергия Р, Q
							T		Мощность P, Q
		_		Кл.т.=0.5	Α	TG-145	885		
		,- R	⊥	Ктт=600/5	В	TG-145	887		I первичный
		ска		№15651-96	С	TG-145	886		
	5 112200600097 ВЛ 110кВ Правдинская -1	ΣΉ		Кл.т.=0.5	Α	CPB-123	8616831	_	
		равд	표	Ктн=110000/100	В	CPB-123	8616830	32000	U первичное
"		Пр		№15853-96	С	CPB-123	8616833	32	
	122	ЭкВ	ОкВ) 5 Š Кл.т.=0.5 A2R-4-AL-C8-T+			I вторичный		
	~	110	T Z	кл.т.=0.5 №14555-02		A2R-4-AL-C8-	I +		U вторичное Время
		. Ц8	Счетчик	№ 14555-02 Ксч=1		зав. № 104542	11		эремя Энергия Р, Q
		ш	0	NOT 1		00B. 14- 10-10-12	• •		Мощность P, Q
				Кл.т.=0.5	Α	TG-145	874		, , , ,
			⊢	Ктт=600/5	В	TG-145	873		I первичный
		-	Ċ	№15651-96	С	TG-145	876		·
	96(oa .		Кл.т.=0.5	Α	CPB-123	8616831		
	000	ÓŢ	프	Ктн=110000/100	В	CPB-123	8616830	8	U первичное
9	90	ίB)	'	№15853-96	С	CPB-123	8616833	32000	
	112200600098	ВЛ 110кВ Югра -1				<u> </u>		5	I вторичный
	1	П.	Счетчик	Кл.т.=0.5		A2R-4-AL-C28-	T+		U вторичное
		В	ет	№14555-02					Время
			S	Ксч=1		зав. № 105429)2		Энергия Р, Q
							T		Мощность P, Q
			 -	Кл.т.=0.5	A	TG-145	550		1
		13	TT	KTT=600/5	В	TG-145	549		I первичный
	4	кая		№15651-96	С	TG-145	548		
	13	MHC	_	Кл.т.=0.5	Α	CPB-123	8616834	_	11 = 6 =
	009	ly6ı	Ŧ	Ктн=110000/100	В	CPB-123	8616832	32000	U первичное
7	112200600134	3 ∐		№15853-96	С	CPB-123	8616835	132	1
	122	0ĸľ	¥	Кл.т.=0.5			Г⊥		I вторичный
	7 112200600134 ВЛ 110кВ Шубинская Счетчик ТН			Nº14555-02	A2R-4-AL-C8-T+				U вторичное Время
	본 B B			11214555-02 Kcч=1	22B No 1045418				эремя Энергия Р, Q
			٥	1-1-07	зав. № 1045418				Мощность Р, Q
								мощпость F, Q	

Hpo,	долж	ение	таол	іицы 1.5							
				Кл.т.=0.5	Α	TG-145	889				
		1-2	╘	Ктт=600/5	В	TG-145	888		I первичный		
		кая		№15651-96	С	TG-145	890				
	018	ИНС		Кл.т.=0.5	Α	CPB-123	8616834				
	001	явд	王	Ктн=110000/100	В	CPB-123	8616832	000	U первичное		
∞	00	Пре		№15853-96	С	CPB-123	8616835	32000			
	1120	112000100018 ВЛ 110кВ Правдинская Счетчик ТН П		Кл.т.=0.5 №14555-02 Ксч=1	A2R-4-AL-C28-T+ зав. № 1054291			_	I вторичный U вторичное Время Энергия Р, Q		
				V0 F	Λ	TC 145	0.40		Мощность P, Q		
			_	Кл.т.=0.5 Ктт=600/5	A B	TG-145	848		1		
			Т		С	TG-145	841		I первичный		
	6	a -2		№15651-96 Кл.т.=0.5		TG-145	845				
	001 Jrps	Эгр	т	Кл.т.=0.5 Ктн=110000/100	A B	CPB-123	8616834	0	II gonguuuoo		
6	010	장 王	Nº15853-96	С	CPB-123	8616832	32000	U первичное			
	112000100019	ВЛ 110кВ Югра	Счетчик	Кл.т.=0.5 №14555-02 Ксч=1		C CPB-123 8616835 A2R-4-AL-C28-T+ 3aB. № 1054290			I вторичный U вторичное Время Энергия Р, Q Мощность Р, Q		
				Кл.т.=0.5	Α	TG-145	589		МОЩНОСТЬ F, Q		
			L	Ктт=1200/5	В	TG-145	588	1	I первичный		
			_	Nº15651-96	С	TG-145	590	1	I HOPPH HIDIN		
	113			Кл.т.=0.5	Α	CPB-123	8616834	1			
	000	110	Ŧ	Ктн=110000/100	В	CPB-123	8616832	8	U первичное		
10	100	,- Д		№15853-96	С	CPB-123	8616835	264000			
	11200C O3E	ОЭВ-		112000100013 OЭВ-110	Счетчик	Кл.т.=0.5 №14555-02 Ксч=1		A2R-4-AL-C28- зав. № 105429	T+	26	I вторичный U вторичное Время Энергия Р, Q Мощность Р, Q

		-		речень ИК АИИС кая" 110/35/6 кВ	СКУ	9			
номер ИК	код ИК	Присоединение	Вид СИ	К-т трансформации Класс точности № госреестра	Фаза	Тип	Зав. №	Ктт*Ктн	Изм. Величина
	.ИИС Зав. БО 19495-03 № 2005A08		TK-16L 200508024 200508025				Время		
		1		Кл.т.=0.5	Α	ТФЗМ-35А-У1	44319		
		ая-	F	Ктт=200/5	В	отсутствует			I первичный
	_	KCK		№3690-73	С	ТФЗМ-35А-У1	44411		
	014	ЛЫ		Кл.т.=0.5	Α	НАМИ-35-УХЛ1	49		
	00	ба	王 -	Ктн=35000/100	В	НАМИ-35-УХЛ1	49	00	U первичное
_	001	Малобалыкская-1		№19813-00	С	НАМИ-35-УХЛ1	49	14000	
	112000100014	ВЛ-35 кВ М	Счетчик	Кл.т.=0.2 №14555-02 Ксч=1		A1R-3-AL-C8-T зав. № 1012660		,-	I вторичный U вторичное Время Энергия Р, Q Мощность Р, Q

1100,	LOSIM	CHIPIC	Taoj	ицы 1.6					
				Кл.т.=0.5	A	ТФЗМ-35А-У1	45439		
		<u></u>	⊢	Ктт=200/5	В	отсутствует			I первичный
	0	кая		№3690-73	С	ТФЗМ-35А-У1	45407		
	020	ЭВС		Кл.т.=0.5	Α	НАМИ-35-УХЛ1	49		
	100	рье	王	Ктн=35000/100	В	НАМИ-35-УХЛ1	49	00	U первичное
2	00	오		№19813-00	С	НАМИ-35-УХЛ1	49	14000	
	112000100020	ВЛ-35 кВ Юрьевская-1	Счетчик	Кл.т.=0.2 №14555-02 Ксч=1		A1R-3-AL-C8- зав. № 101268		,	I вторичный U вторичное Время Энергия Р, Q Мощность Р, Q
				Кл.т.=0.5	Α	ТФЗМ-35А-У1	40499		тощность г, с
		я-2	F	Ктт=200/5	В	отсутствует	10.100		I первичный
		СКа		№3690-73	С	ТФЗМ-35А-У1	51621		
	15	PIK(Кл.т.=0.5	A	НАМИ-35-УХЛ1	37		
	8	бал	표	Ктн=35000/100	В	НАМИ-35-УХЛ1	37	0	U первичное
3	310	200	_	Nº19813-00	С			14000	о первичное
	ŏ	Мал		11213013-00	C	НАМИ-35-УХЛ1	37	4	I вторичный
	112000100015	ВЛ-35 кВ Малобалыкская-2	Счетчик	Кл.т.=0.2 №14555-02 Ксч=1		A1R-3-AL-С8- зав. № 101268			Твторичный U вторичное Время Энергия Р, Q Мощность Р, Q
				Кл.т.=0.5	Α	ТФЗМ-35А-У1	14622		·
			⊨	Ктт=200/5	В	отсутствует			I первичный
		Я-2	'	№3690-73	С	ТФЗМ-35А-У1	40482		•
	4	cka		Кл.т.=0.5	Α	НАМИ-35-УХЛ1	37		
	00	eB	Ŧ	Ктн=35000/100	В	НАМИ-35-УХЛ1	37		U первичное
4)10) DE		№19813-00	С	НАМИ-35-УХЛ1	37	14000	CGP2CC
	112000100004	ВЛ-35 кВ Юрьевская-2	Счетчик	Кл.т.=0.2 №14555-02 Ксч=1		A1R-3-AL-C8- зав. № 101262	Т	14	I вторичный U вторичное Время Энергия Р, Q
									Мощность P, Q
		1T		Кл.т.=0.5	Α	ТОЛ-10	34185		
		кВ 1	⊥	Ктт=1500/5	В	ТОЛ-10	4841		I первичный
		9		№7069-79	С	ТОЛ-10	4540		
	60	Д		Кл.т.=0.5	Α	НТМИ-6-66 У3	ПРАА		
	000	BB	표	Ктн=6000/100	В	НТМИ-6-66 УЗ	ПРАА	0	U первичное
2	010	<u>_</u>	'	№2611-70	С	НТМИ-6-66 УЗ	ПРАА	18000	
	112000100009	ЗРУ-6кВ КНС 1П ввод	Счетчик	Кл.т.=0.2 №14555-02 Ксч=1		А1R-3-AL-С8- зав. № 100789	Т	18	I вторичный U вторичное Время Энергия Р, Q Мощность Р, Q
		_		Кл.т.=0.5	Α	ТОЛ-10	34180		·
		B 2T	⊢	Ктт=1500/5	В	ТОЛ-10	14413		I первичный
		6 KB	'	№7069-02	С	ТОЛ-10	33974		,
	9	р		Кл.т.=0.5	Α	НТМИ-6-66 УЗ	ПРЕМА		
	000	BB	표	Ктн=6000/100	В	HTMИ-6-66 У3	ПРЕМА	0	U первичное
9	010	<u>_</u>		№2611-70	С	НТМИ-6-66 УЗ	ПРЕМА	8000	·
	112000100010	우			-		=.///	18	I вторичный
	112	ЗРУ-6кВ КНС 1П ввод	Счетчик	Кл.т.=0.2 №14555-02 Ксч=1		A1R-3-AL-C8- зав. № 100917			U вторичное Время Энергия Р, Q
		3							Мощность P, Q

Tipo,	доли	СПИС	Taos	ицы т.0					
		~		Кл.т.=0.5	Α	ТОЛ-10	6352		
		6 KB	L	Ктт=100/5	В	ТОЛ-10	6141		I первичный
	_			№7069-79	С	ТОЛ-10	6358		
	360	ввод			Α	нет	нет		
	000	는 그	T.		В	нет	нет		U = 380B
7	900	冷수			С	нет	нет	20	
	112200600099	У-6кВ КНС 1П ТСН-1	Счетчик	Кл.т.=0.2 №14555-02		A1R-4-AL-C8-			I вторичный U вторичное Время
		ЗРУ	S	Ксч=1		зав. № 100917	5		Энергия Р, Q
									Мощность P, Q
		m		Кл.т.=0.5	Α	ТОЛ-10	6111		
		6 ĸB	L	Ктт=100/5	В	ТОЛ-10	2531		I первичный
	_			№7069-02	С	ТОЛ-10	2532		
	091	ввод			Α	нет	нет		
	300	1 구	프		В	нет	нет		U = 380B
∞	900	KHC 1П TCH-2			С	нет	нет	20	
	112200600091	3PУ-6кВ КН Т	Счетчик	Кл.т.=0.2 №14555-02 Ксч=1		A1R-4-AL-C8- зав. № 100919			I вторичный U вторичное Время Энергия Р, Q
									Мощность Р, Q

Таб	 Лиц ЗИ" 3	а 1. лин	7 Пе ская	речень ИК АИИ(ı" 110/35/6 кВ	СКУ	9			
номер ИК	код ИК	Присоединение	Вид СИ	К-т трансформации Класс точности № госреестра	Фаза	Тип	Зав. №	Ктт*Ктн	Изм. Величина
	1C 3a		успд	19495-03		TK-16L	200508031		Время
				Кл.т.=0.5	Α	ТФН-35М	58621		
			F	Ктт=300/5	В	отсутствует			I первичный
	_	5-1		№3690-73	С	ΤΦH-35M	15833		
	01,	7-1		Кл.т.=0.5	Α	3НОМ-35-65У1	1126856		
	1 112000100011 135kB KHC-15	王	Ктн=35000/100	В	3НОМ-35-65У1	1191439	00	U первичное	
_	00	B X		№912-70	С	3НОМ-35-65У1	1126919	21000	
	1120	ВЛ 35кВ КНС-15-1	Счетчик	Кл.т.=0.2 №14555-02 Ксч=1		A1R-3-AL-C29- зав. № 105842		,,	I вторичный U вторичное Время Энергия Р, Q Мощность Р, Q
				Кл.т.=0.5	Α	ТФН-35М	71621		
		Т-	⊨	Ктт=200/5	В	отсутствует			I первичный
		Ηä		№3690-73	С	ТФН-35М	16621		
	002	.T0		Кл.т.=0.5	Α	3НОМ-35-65У1	1126856		
	00	300	Η	Ктн=35000/100	В	3НОМ-35-65У1	1191439	00	U первичное
2	001	<u>-</u> 0		№912-70	С	3НОМ-35-65У1	1126919	14000	
	112000100002	Т Ктт=200/5 В отсутствует N≥3690-73 С ТФН-35М 1662 Кл.т.=0.5 А ЗНОМ-35-65У1 11268 В ЗНОМ-35-65У1 11268 В ЗНОМ-35-65У1 11269 В ЗНОМ-35-65У1 11269 Кл.т.=0.2 А1R-3-AL-C29-T+ N≥14555-02 Ксч=1 Зав. № 1058424			,	I вторичный U вторичное Время Энергия Р, Q Мощность Р, Q			

4 Кл.т.=0.5 А ТФН-35М 33872 Ктт=200/5 В отсутствует 1 первичный Ктл.т.=0.5 А ЗНОМ-35-65У1 1126856 Ктн=35000/100 В ЗНОМ-35-65У1 1191439 Ктн=35000/100 В ЗНОМ-35-65У1 1126919 Кл.т.=0.2 Кл.т.=0.2 А1R-3-AL-С29-Т+ И вторичный U вторичное Время Ксч=1 Зав. № 1058475 Энергия Р, Q				١. ا	Кл.т.=0.5	Α	ТФЗМ-35А-У1	41750		
Т Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н		1	1							
Кл.т.=0.5					Ктт=150/5	-	отсутствует			I первичный
Ксч=1 Зав. № 1058478 Энергия Р, Q Мощность Р, С Мо			Я-1		№3690-73	С	ТФЗМ-35А-У1	41712		
Ксч=1 Зав. № 1058478 Энергия Р, Q Мощность Р, С Мо		90	СКа		Кл.т.=0.5	Α	3НОМ-35-65У1	1126856		
Ксч=1 Зав. № 1058478 Энергия Р, Q Мощность Р, С Мо		00	айс	ᄑ	Ктн=35000/100	В	3НОМ-35-65У1	1191439	00	U первичное
Ксч=1 Зав. № 1058478 Энергия Р, Q Мощность Р, С Мо	က	00	Σ Σ	•	№912-70	С	3НОМ-35-65У1	1126919	05(
Кл.т.=0.5 A ТФН-35М 33872 Ктт=200/5 В отсутствует Ппервичный Кл.т.=0.5 А ЗНОМ-35-65У1 1126856 Ктн=35000/100 В ЗНОМ-35-65У1 1191439 Кл.т.=0.5 Ктл.т.=0.2 В ЗНОМ-35-65У1 1126919 Кл.т.=0.2 Кл.т.=0.2 А1R-3-AL-С29-Т+ Время В зав. № 1058475 Энергия Р, Q Мощность Р, С		11200	ВЛ 35кЕ	Счетчик	№14555-02		A1R-3-AL-C29-	T+	1	U вторичное Время
4 С Ктт=200/5 В отсутствует										Мощность P, Q
4 № 3690-73 С ТФН-35М 33838 4 № 3690-73 С ТФН-35М 33838 4 № 3690-73 С ТФН-35М 33838 Кл.т.=0.5 А 3HOM-35-65У1 1126856 В 3HOM-35-65У1 1191439 С 3HOM-35-65У1 1126919 Кл.т.=0.2 А1R-3-AL-С29-Т+ И вторичный U вторичное Время Энергия Р, Q Мощность Р, С Кл.т.=0.5 А ТФН-35М 19263					Кл.т.=0.5	Α	ТФН-35М	33872		
4 № 3690-73 С ТФН-35М 33838 Кл.т.=0.5 А 3HOM-35-65У1 1126856 Ктн=35000/100 В 3HOM-35-65У1 1191439 Кл.т.=0.2 Кл.т.=0.2 А1R-3-AL-C29-Т+ И вторичный Инфинисация Время Ксч=1 Зав. № 1058475 Энергия Р, Q Мощность Р, С Кл.т.=0.5 А ТФН-35М 19263			_		Ктт=200/5		отсутствует			I первичный
В ворин при		_	9		№3690-73	С	ТФН-35М	33838		
В ворин при		093	오		Кл.т.=0.5	Α	3НОМ-35-65У1	1126856		
В ворин при		00	C-3	프	Ктн=35000/100	В	3НОМ-35-65У1	1191439	00	U первичное
В ворин при	4)05	_ 굿		№912-70	С		1	40(
В ворин при		1200	ikB l	¥					<u>, , , , , , , , , , , , , , , , , , , </u>	· ·
В ворин при			35	ЭТЧИ			A1R-3-AL-C29-	T+		•
Кл.т.=0.5 А ТФН-35М 19263			ш	7			зав. № 105847	7 5		
				_						Мощность Р, Q
						-	ТФН-35М	19263		
										I первичный
Nº3690-73 C TΦH-35M 34787		l _	5-2		№3690-73	С	ТФН-35М	34787		
8 7 Кл.т.=0.5 А ЗНОМ-35-65У1 1089311		094	-15		Кл.т.=0.5	Α	3НОМ-35-65У1	1089311		
이 보 로 Ктн=35000/100 B 3HOM-35-65У1 1089116 영 U первичное		000	유	F	Ктн=35000/100		3HOM-35-65У1	1089116	00	U первичное
В На	5	 205	B K		№912-70	С	3НОМ-35-65У1	1413401	10(
Кл.т.=0.2 А1R-3-AL-С29-Т+ Ивторичный и вторичный и вторичное время Кл.т.=0.2 №14555-02 Время Ксч=1 зав. № 1058427 Энергия Р, Q		1120	ВЛ 35к	Счетчик	№14555-02				N	U вторичное Время
Кл.т.=0.5 А ТФЗМ-35А-У1 67574		1			Кл.т.=0.5	Α	ТФЗМ-35А-У1	67574		, , , , , ,
Стити Ктт=200/5 В отсутствует І первичный			я -2		Ктт=200/5	В				I первичный
№ 1 Nº3690-73 C TΦ3M-35A-У1 57325			ная		№3690-73			57325		
(S) Р Кл.т.=0.5 A ЗНОМ-35-65У1 1089311		395	T04		Кл.т.=0.5	Α		ł		
S S E Ктн=35000/100 B 3HOM-35-65У1 1089116 8 U первичное		00	300	I	Ктн=35000/100	-			00	U первичное
Ф В ЗНОМ-35-65У1 1089116 В Опервичное В В ЗНОМ-35-65У1 1413401 Опервичное В В В ЗНОМ-35-65У1 1413401 Опервичное В В В ЗНОМ-35-65У1 1413401 Опервичное В В В ЗНОМ-35-65У1 1413401 Опервичное В В В ЗНОМ-35-65У1 1413401 Опервичное В В В ЗНОМ-35-65У1 1413401 Опервичное В В В ЗНОМ-35-65У1 1413401 Опервичное В В В ЗНОМ-35-65У1 1413401 Опервичное В В В ЗНОМ-35-65У1 1413401 Опервичное В В В ЗНОМ-35-65У1 1413401 Опервичное В В В ЗНОМ-35-65У1 1413401 Опервичное В В В ЗНОМ-35-65У1 1413401 Опервичное В В В ЗНОМ-35-65У1 1413401 Опервичное В В В ЗНОМ-35-65У1 1413401 Опервичное В В В ЗНОМ-35-65У1 1413401 Опервичное В <td< td=""><td>9</td><td>005</td><td>-o-E</td><td> ' </td><td></td><td></td><td></td><td>1</td><td>400</td><td>·</td></td<>	9	005	-o-E	'				1	400	·
Народный причный причный причный причный причный причный причный причный причный причное причный причное причный причное причный причное причный причное причный причное причный прич		11200	ВЛ 35кВ Юг	Счетчик	№14555-02		A1R-3-AL-C29-	T+	_	U вторичное Время Энергия Р, Q
Кл.т.=0.5 A ТФЗМ-35А-У1 40772	\vdash	1			Κ □ τ −0 5	Λ	T#QM 254 \/1	40772		Мощность P, Q
				<u> </u>		-		70112		Іперемингій
			N	-			•	41760		т первидный
		9	,-кғ							
В Кл.т.=0.5 <u>А ЗНОМ-35-65У1 1089311</u>		60(icks	_						11 =6==
№ Нартине	_	500	Лай	⊨				1	200	о первичное
Ne912-70 C 3HOM-35-65У1 1413401 8	'	000	B		№912-70	C	ЗНОМ-35-65У1	1413401	105	1
№ 000 000 000 000 000 000 000 000 000 0		1120			•	U вторичное Время				
Мощность Р, С				ᆽ	Kcu=1		328 No 10584	59		Энергия Р. О

Прод	жпор	ение	: табл	іицы 1.7					
				Кл.т.=0.5	Α	ТФН-35М	44390		
		-2		Ктт=200/5	В	отсутствует			I первичный
				№3690-73	С	ТФН-35М	44394		
	076	S 2		Кл.т.=0.5	Α	3НОМ-35-65У1	1089311		
	000	<u></u>	Ŧ.	Ктн=35000/100	В	3НОМ-35-65У1	1089116	8	U первичное
∞	005	ΚH		№912-70	С	3НОМ-35-65У1	1413401	14000	
	112000500076	ВЛ 35кВ КНС-3 ЮБ	Счетчик	Кл.т.=0.2 №14555-02 Ксч=1		A1R-3-AL-C29- зав. № 10584			I вторичный U вторичное Время Энергия Р, Q Мощность Р, Q
				Кл.т.=0.5	Α	ТПШЛ-10	71101		,
			F	Ктт=3000/5	В	ТПШЛ-10	18622		I первичный
				№11077-87	С	ТПШЛ-10	82833		-
	777	1T		Кл.т.=0.5	Α	НАМИ-10	9183		
	000	кВ 1Т	표	Ктн=6000/100	В	НАМИ-10	9183	00	U первичное
6	005	9	0	№11094-87	С	НАМИ-10	9183	36000	
	112000500077	Ввод	Счетчик	Кл.т.=0.2 №14555-02 Ксч=1		A1R-3-AL-C29-T+ зав. № 1058469			I вторичный U вторичное Время Энергия P, Q
				V0 F	^	TOUG 40	4650		Мощность P, Q
			—	Кл.т.=0.5 Ктт=3000/5	A B	ТПШЛ-10 ТПШЛ-10	4652	-	L Goodinanii
			L		С		4183		I первичный
	8	⊥		№11077-87 Кл.т.=0.5	A	ТПШЛ-10	1610	_	
	007	3 2T	王	Кл.т.=0.5 Ктн=6000/100	B	НАМИ-10	515	-	Ппорынно
10)50	6 кВ	_	Nº11094-87	С	НАМИ-10	515	36000	U первичное
	112000	200 200 T		Кл.т.=0.2	C	НАМИ-10 A1R-3-AL-C29-	515 -T+	36	I вторичный U вторичное
			Счетчик	№14555-02 Ксч=1		зав. № 105846	67		Время Энергия Р, Q Мощность Р, Q

		-		речень ИК АИИС 10/35/6 кВ	С КУ	9			_
номер ИК	код ИК	Присоединение	Вид СИ	К-т трансформации Класс точности № госреестра	Фаза	Тип	Зав. №	Ктт*Ктн	Изм. Величина
	АИИС Зав. № 2005A08		успд	19495-03		TK-16L	200508035		Время
				Кл.т.=0.5	Α	ТФН-35М	38741		
			П	Ктт=200/5	В	отсутствует			I первичный
	(0	-1		№3690-73	С	ТФН-35М	39062		
	00	-12		Кл.т.=0.5	Α	НАМИ-35-УХЛ1	47		
	100	KHC-12	TH	Ктн=35000/100	В	НАМИ-35-УХЛ1	47	4000	U первичное
_	00	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\		№19813-00	C	НАМИ-35-УХЛ1	47	140	
	No 19813-00 C HAMИ-35-УХЛ1 4 HAMИ-35-УХ			`	I вторичный U вторичное Время Энергия Р, Q Мощность Р, Q				

Hpo	жпор	ение	табл	ицы 1.8					
				Кл.т.=0.5	Α	ТФН-35М	10075		
			F	Ктт=200/5	В	отсутствует			I первичный
		_		№3690-73	С	ТФН-35М	11420		
	392	ပ္ပဲ		Кл.т.=0.5	Α	НАМИ-35-УХЛ1	47		
	ŏ	두	프	Ктн=35000/100	В	НАМИ-35-УХЛ1	47	2	U первичное
2	305	35кВ ЦПС-1		№19813-00	С	НАМИ-35-УХЛ1	47	14000	
	112000500092	ВЛ 35	Счетчик	Кл.т.=0.2 №14555-02 Ксч=1		A1R-3-AL-C29-1 зав. № 105842	Γ+	-	I вторичный U вторичное Время Энергия Р, Q Мощность Р, Q
				Кл.т.=0.5	Α	ТФН-35М	22091		,
			F	Ктт=200/5	В	отсутствует			I первичный
		7	'	№3690-73	С	ТФН-35М	22069		
	161	12		Кл.т.=0.5	Α	НАМИ-35-УХЛ1	57		
	000	35kB KHC-12	프	Ктн=35000/100	В	НАМИ-35-УХЛ1	57	0	U первичное
3	05(幸		№19813-00	С	НАМИ-35-УХЛ1	57	14000	5p=
	00	KB.		14-10010 00		TIMIVIT-33-370TT	- 51	7	I вторичный
	112000500097	ВЛ 35	Кл.т.=0.2 A1R-3-AL-C29-T+ N≥14555-02 Ксч=1 зав. № 1058431						U вторичное Время Энергия Р, Q Мощность Р, Q
				Кл.т.=0.5	Α	ТФН-35М	21823		,
			F	Ктт=200/5	В	отсутствует			I первичный
				№3690-73	С	ТФН-35М	22071		p =
	86	35кВ ЦПС-2		Кл.т.=0.5	A	НАМИ-35-УХЛ1	57		
	Ö	I ⊑	王	Ктн=35000/100	В	НАМИ-35-УХЛ1			U первичное
4)50	BL	—	Nº19813-00	С	НАМИ-35-УХЛ1	57 57	4000	о первичное
	112000500098	ВЛ 35	Счетчик	Кл.т.=0.2 №14555-02 Ксч=1		A1R-3-AL-C29-ī зав. № 105842		_	I вторичный U вторичное Время Энергия Р, Q Мощность Р, Q
				Кл.т.=0.5	Α	ТЛК-10	19190		, , , ,
				Ктт=400/5	В	отсутствует			I первичный
				№9143-01	С	ТЛК-10	19143		- 1
	6	<u>-</u>		Кл.т.=0.5	A	НАМИТ-10-2УХЛ2	485		
	30C	37	王	Ктн=6000/100	В	НАМИТ-10-2УХЛ2	485	1	U первичное
5	50(岩	-	Nº16687-02	С			4800	о порвичное
",	00(Ã		142 10001-UZ		НАМИТ-10-2УХЛ2	485	48	
	112000500099	ВЛ 6кВ НВП-1	Счетчик	Кл.т.=0.2 №14555-02 Ксч=1		A1R-3-AL-C29-Т зав. № 105843			I вторичный U вторичное Время Энергия Р, Q Мощность Р, Q
				Кл.т.=0.5	Α	ТЛК-10	2062		·
			F	Ктт=400/5	В	отсутствует		1	I первичный
			'	№9143-01	С	ТЛК-10	18742	1	'
	00	Ņ		Кл.т.=0.5	A	НТМИ-6-66У3	508	1	
	010	3	표	Ктн=6000/100	В	HTMИ-6-66У3	508	1	U первичное
9	20	Ī	_	Nº2611-70	С	НТМИ-6-66У3	508	4800	25p200
	000	3KB		14=2011-10		1111VIVI-U-UUV3	506	48	I вторичный
	1120	112000500100 ВЛ 6кВ НВП-2 Счетчик ТН		Кл.т.=0.2 №14555-02 Ксч=1		A1R-3-AL-C29-1 зав. № 105843			U вторичное Время Энергия Р, Q
									Мощность P, Q

	Таблица 1.9 Перечень ИК АИИС КУЭ ПС "Очимкинская" 110/35/6 кВ											
номер ИК	код ИК	Присоединение	Вид СИ	К-т трансформации Класс точности № госреестра	Фаза	Тип	Зав. №	Ктт*Ктн	Изм. Величина			
	1C 3a		успд	19495-03		TK-16L	200508036		Время			
		-1	11	Кл.т.=0.5 Ктт=300/5 №3690-73	A B C	ТФЗМ-35А-У1 отсутствует ТФЗМ-35А-У1	72371 72180		I первичный			
-	112000500101	ВЛ 35кВ Пламя-1	표	Кл.т.=0.5 Ктн=35000/100 №912-70	A B C	3HOM-35-65У1 3HOM-35-65У1 3HOM-35-65У1	1192635 1158207 1191665	21000	U первичное			
	1120	ВЛ 35к	Счетчик	Кл.т.=0.2 №14555-02 Ксч=1		A1R-3-AL-C29- зав. № 105845		2	I вторичный U вторичное Время Энергия Р, Q Мощность Р, Q			
		(ая-1	П	Кл.т.=0.5 Ктт=300/5 №3690-73	A B C	ТФН-35М отсутствует ТФН-35М	1425 1421		I первичный			
2	112100300030	аклиновся	Ŧ	Кл.т.=0.5 Ктн=35000/100 №912-70	A B C	3HOM-35-65У1 3HOM-35-65У1 3HOM-35-65У1	1192635 1158207 1191665	21000	U первичное			
	11210	ВЛ 35кВ Паклиновская-1	Счетчик	Кл.т.=0.2 №14555-02 Ксч=1		A1R-3-AL-C29- зав. № 105844	T+	2	I вторичный U вторичное Время Энергия Р, Q Мощность Р, Q			
		1-	L	Кл.т.=0.5 Ктт=400/5 №3689-73	A B C	ТФ3М-35Б-I-У1 отсутствует ТФ3М-35Б-I-У1	18561 22982		I первичный			
ю	112100300031	ВЛ 35кВ Весенняя-1	НТ	Кл.т.=0.5 Ктн=35000/100 №912-70	A B C	3HOM-35-65У1 3HOM-35-65У1 3HOM-35-65У1	1192635 1158207 1191665	28000	U первичное			
	11210	ВЛ 35кВ	Счетчик	Кл.т.=0.2 №14555-02 Ксч=1		A1R-3-AL-C29- зав. № 105844		2	I вторичный U вторичное Время Энергия Р, Q Мощность Р, Q			
		-2	П	Кл.т.=0.5 Ктт=300/5 №3690-73	A B C	ТФ3М-35А-У1 отсутствует ТФ3М-35А-У1	72298 72236		I первичный			
4	112100300040	ВЛ 35кВ Пламя-2	НТ	Кл.т.=0.5 Ктн=35000/100 №912-70	A B C	3HOM-35-65У1 3HOM-35-65У1 3HOM-35-65У1	1134787 1463868 1134735	21000	U первичное			
	11210	ВЛ 35к	Счетчик	Кл.т.=0.2 №14555-02 Ксч=1		A1R-3-AL-C29- зав. № 105843	T+	2	I вторичный U вторичное Время Энергия Р, Q Мощность Р, Q			

11po	долж	ение	таол	ицы 1.9	1 1		1		
				Кл.т.=0.5	Α	ТФН-35М	27		
		7-2	⊨	Ктт=300/5	В	отсутствует			I первичный
		Кая		№3690-73	С	ТФН-35М	768		
	133	ЭВС		Кл.т.=0.5	Α	3НОМ-35-65У1	1134787		
	00	Σ Ĭ	王	Ктн=35000/100	В	3НОМ-35-65У1	1463868	0	U первичное
2	900	9K		№912-70	С	3НОМ-35-65У1	1134735	21000	
	112200600133	ВЛ 35кВ Паклиновская-2						2	I вторичный
	7	5KE	Счетчик	Кл.т.=0.2		A1R-3-AL-C29-	T+		U вторичное
		П 3	lет	№14555-02					Время
		æ.	S	Ксч=1		зав. № 105847	' 3		Энергия Р, Q
									Мощность P, Q
				Кл.т.=0.5	Α	ТФЗМ-35Б-І-У1	24609		
			T	Ктт=400/5	В	отсутствует			I первичный
		я-2		№3689-73	С	ТФЗМ-35Б-І-У1	19636		
	29	ВЛ 35кВ Весенняя-2		Кл.т.=0.5	Α	3НОМ-35-65У1	1134787		
	00	Se H	표	Ктн=35000/100	В	3НОМ-35-65У1	1463868	0	U первичное
9)90	Be	'	№912-70	С	3НОМ-35-65У1	1134735	28000	·
	112200600129	Θ						78	I вторичный
	112	35	ΖX	Кл.т.=0.2		A1R-3-AL-C29-	T+		U вторичное
		ВЛ	Счетчик	№14555-02					Время
			CHE	Ксч=1		зав. № 105844	13		Энергия Р, Q
									Мощность Р, Q
				Кл.т.=0.5	Α	ТЛМ-10	7556		
			TT	Ктт=1500/5	В	отсутствует			I первичный
		<u></u>	•	№2473-69	С	ТЛМ-10	5498		
	30	æ		Кл.т.=0.5	Α	НАМИ-10У2	889		
	00	9 Д	王	Ктн=6000/100	В	НАМИ-10У2	889	0	U первичное
7	900	380	'	№11094-87	С	НАМИ-10У2	889	8000	·
	112200600130	ЗРУ 7Р Ввод 6кВ						_	I вторичный
	7	7	Счетчик	Кл.т.=0.2		A1R-3-AL-C29-	T+		U вторичное
		3Р	ет	№14555-02					Время
			S	Ксч=1		зав. № 105844	. 9		Энергия Р, Q
									Мощность P, Q
			_	Кл.т.=0.5	Α	ТЛМ-10	7458		
		_	⊭	Ктт=1500/5	В	отсутствует			I первичный
	2	3 2T		№2473-69	С	ТЛМ-10	7559		
	112200600132	ЗРУ 7Р Ввод 6кВ	_	Кл.т.=0.5	Α	НАМИ-10У2	906		
	900	ДО	王	Ктн=6000/100	В	НАМИ-10У2	906	00	U первичное
∞	00:	BB		№11094-87	С	НАМИ-10У2	906	18000	
	122	7P	¥				_		I вторичный
	-	∑	Счетчик	Кл.т.=0.2		A1R-3-AL-C29-	1+		U вторичное
		က	чет	№14555-02		No 405045			Время
			S	Ксч=1		зав. № 105847	1		Энергия Р, Q
	<u> </u>	<u> </u>		Кл.т.=0.5	Α	TK-20	1012		Мощность P, Q
			T	Кл.т0.5 Ктт=100/5	В	TK-20	1012		I первичный
		_	-	Nº1407-60	С	TK-20	1123		тнерычный
)7	其		1407-00					
	010	6кВ ТСН	ェ		A B	нет	нет		U = 380B
6)60	ЖВ	TH		С	нет	нет	8	U - 300D
	200	<u>Ъ</u>			U	нет	нет	``	I propiali i i i i
	112200600107	3Py 7P	¥	Кл.т.=0.2		A1R-4-OL-C8-	Τ+		I вторичный U вторичное
		3Р	ĮT.	Nº14555-02		A IN-4-UL-U0-			О вторичное Время
			Счетчик	Ксч=1		зав. № 103236	3		Энергия Р, Q
									Мощность Р, Q
					•			•	. , , , ,

		-		еречень ИК АИИ ая" 110/35/6 кВ	IC K	УЭ			
номер ИК	код ИК	Присоединение	Вид СИ	К-т трансформации Класс точности № госреестра	Фаза	Тип	Зав. №	Ктт*Ктн	Изм. Величина
	1C 3a :005A		успд	19495-03		TK-16L	200508038		Время
		1-1	TT	Кл.т.=0.5 Ктт=200/5 №3690-73	A B C	ТФН-35М отсутствует ТФН-35М	14847 14833		I первичный
_	112200600100	35кВ Березовая-1	표	Кл.т.=0.5 Ктн=35000/100 №19813-00	A B C	НАМИ-35-УХЛ1 НАМИ-35-УХЛ1 НАМИ-35-УХЛ1	126 126 126	14000	U первичное
	11220	ВЛ 35кВ Е	Счетчик	Кл.т.=0.2 №14555-02 Ксч=1	3	А1R-3-AL-C29- зав. № 105840	T+	14	I вторичный U вторичное Время Энергия Р, Q Мощность Р, Q
		зя-1	П	Кл.т.=0.5 Ктт=200/5 №3690-73	A B C	ТФЗМ-35А-У1 отсутствует ТФЗМ-35А-У1	70958 70957		I первичный
2	112000100016	Тепловская-1	TH	Кл.т.=0.5 Ктн=35000/100 №19813-00	A B C	НАМИ-35-УХЛ1 НАМИ-35-УХЛ1 НАМИ-35-УХЛ1	126 126 126	4000	U первичное
	1120	ВЛ 35кВ	Счетчик	Кл.т.=0.2 №14555-02 Ксч=1		A1R-3-AL-C29- зав. № 105839		1	I вторичный U вторичное Время Энергия Р, Q Мощность Р, Q
		зя-2	L	Кл.т.=0.5 Ктт=200/5 №3690-73	A B C	ТФН-35М отсутствует ТФН-35М	12995 13022		I первичный
8	112000100021	35кВ Березовая-2	표	Кл.т.=0.5 Ктн=35000/100 №19813-00	A B C	НАМИ-35-УХЛ1 НАМИ-35-УХЛ1 НАМИ-35-УХЛ1	162 162 162	14000	U первичное
	1120	ВЛ 35кВ	Счетчик	Кл.т.=0.2 №14555-02 Ксч=1		A1R-3-AL-C29- зав. № 105840		· ·	I вторичный U вторичное Время Энергия Р, Q Мощность Р, Q
		ая-2	Ш	Кл.т.=0.5 Ктт=200/5 №3690-73	A B C	ТФН-35М отсутствует ТФН-35М	15653 12125		I первичный
4	112000100003	Тепловская-2	표	Кл.т.=0.5 Ктн=35000/100 №19813-00	A B C	НАМИ-35-УХЛ1 НАМИ-35-УХЛ1 НАМИ-35-УХЛ1	162 162 162	14000	U первичное
	11200	ВЛ 35кВ Т	Счетчик	Кл.т.=0.2 №14555-02 Ксч=1		A1R-3-AL-C29- зав. № 105839	T+	'	I вторичный U вторичное Время Энергия Р, Q Мощность Р, Q

11po,	долж	CITTIC	Taos	ицы 1.10					
		1T		Кл.т.=0.5	Α	ТЛМ-10	24755		
		ĸB)	L	Ктт=1500/5	В	отсутствует			I первичный
		9		№2473-00	С	ТЛМ-10	24137		
	900	Ввод		Кл.т.=0.5	Α	НТМИ-6-66У3	6538		
	00		王	Ктн=6000/100	В	НТМИ-6-66У3	6538	9	U первичное
5	001)2T		№2611-70	С	НТМИ-6-66У3	6538	18000	
	112000100008	ЗРУ-6кВ КНС2Т	Счетчик	Кл.т.=0.2 №14555-02 Ксч=1		A1R-3-AL-C29- зав. № 105846			I вторичный U вторичное Время Энергия Р, Q Мощность Р, Q
		2Т		Кл.т.=0.5	Α	ТОЛ-10	6580		
		KB 2	L	Ктт=1500/5	В	отсутствует			I первичный
		9		№7069-79	С	ТОЛ-10	6581		
	005	Ввод		Кл.т.=0.5	Α	НТМИ-6-66У3	4493		
	00	B.	표	Ктн=6000/100	В	НТМИ-6-66У3	4493	8000	U первичное
9	001	321		№2611-70	С	НТМИ-6-66У3	4493	180	
	112000100005	ЗРУ-6кВ КНС2Т	Счетчик	Кл.т.=0.2 №14555-02 Ксч=1		A1R-3-AL-C29- зав. № 105846			I вторичный U вторичное Время Энергия Р, Q Мощность Р, Q

				еречень ИК АИИ 10/35/6 кВ	СК	УЭ			
номер ИК	код ИК	Присоединение	Вид СИ	К-т трансформации Класс точности № госреестра	Фаза	Тип	Зав. №	Ктт*Ктн	Изм. Величина
	1C 3a		успд	19495-03		TK-16L	200508032		Время
				Кл.т.=0.5	Α	ТФМ-35-II-XЛ1	4364		
			Ш	Ктт=300/5	В	отсутствует			I первичный
	(9-1		№17552-98	С	ТФМ-35-II-ХЛ1	4363		
	080	ДНС-19-1		Кл.т.=0.5	Α	3НОМ-35-65У1	1310732		
	200	H	H.	Ктн=35000/100	В	3НОМ-35-65У1	1310694	00	U первичное
_	00			№912-70	С	3НОМ-35-65У1	1310631	21000	
	112000500080	ВЛ-35 кВ	Счетчик	Кл.т.=0.2 №14555-02 Ксч=1		A1R-3-AL-C29- зав. № 105840		,,	I вторичный U вторичное Время Энергия Р, Q Мощность Р, Q
				Кл.т.=0.5	Α	ТФМ-35-II-XЛ1	4365		
			Ш	Ктт=300/5	В	отсутствует			I первичный
	_	3-1		№17552-98	С	ТФМ-35-II-XЛ1	4366		
	900	C-1	_	Кл.т.=0.5	Α	3НОМ-35-65У1	1310732		
2	200	ΚŢ	ТН	Ктн=35000/100	В	3НОМ-35-65У1	1310694	21000	U первичное
	000	δÃ		№912-70	С	3НОМ-35-65У1	1310631	210	
	112000500081	ВЛ-35 кВ КНС-13-1	Счетчик	Кл.т.=0.2 №14555-02 Ксч=1		A1R-3-AL-C29- зав. № 105840		I вторичный U вторичное Время Энергия Р, Q Мощность Р, Q	

			Кл.т.=0.5	•				
			NJ.10.5	Α	ТФЗМ-35А-У1	72181		
		L	Ктт=300/5	В	отсутствует			I первичный
	9-2		№3690-73	С	ТФЗМ-35А-У1	72372		
085	7-1		Кл.т.=0.5	Α	3НОМ-35-65У1	1382501		
000	ឣ	표	Ктн=35000/100	В	3НОМ-35-65У1	1310630	8	U первичное
005			№912-70	С	3НОМ-35-65У1	1382486	70	
1120	ВЛ-35 к	Счетчик	Кл.т.=0.2 №14555-02 Ксч=1					I вторичный U вторичное Время Энергия Р, Q Мощность Р, Q
			Кл.т.=0.5	Α	ТФЗМ-35А-У1	723398		тощность г , ч
		╘	Ктт=300/5	В				I первичный
	3-2	'	№3690-73	С	ТФЗМ-35А-У1	72337		·
780	7-13		Кл.т.=0.5	Α	3НОМ-35-65У1	1382501		
000	HC	표	Ктн=35000/100	В	3НОМ-35-65У1	1310630	8	U первичное
005		,	№912-70	С	3НОМ-35-65У1	1382486	10	
1120	ВЛ-35 к	Счетчик	Кл.т.=0.2 №14555-02 Ксч=1				, (V	I вторичный U вторичное Время Энергия Р, Q Мощность Р, Q
	12000500087 112000	00500087 KB KHC-13-2 ВЛ	2000500087 112000 5 кВ КНС-13-2 ВЛ-35 кВ ТН ТТ СЧЕТЧИК	Nº912-70 N°912-70 N°912-7	000000000000000000000000000000000000	№912-70 С ЗНОМ-35-65У1 Кл.т.=0.2 Кл.т.=0.2 А1R-3-AL-C29-Т №14555-02 Ксч=1 зав. № 105840 Кл.т.=0.5 А ТФЗМ-35А-У1 Ктт=300/5 В отсутствует №3690-73 С ТФЗМ-35А-У1 Кл.т.=0.5 А ЗНОМ-35-65У1 Ктн=35000/100 В ЗНОМ-35-65У1 №912-70 С ЗНОМ-35-65У1	№ 912-70 С 3HOM-35-65У1 1382486 № 12-70 С 3HOM-35-65У1 1382486 № 14555-02 Кл.т.=0.2 А ПФЗМ-35А-У1 723398 Ктт=300/5 В отсутствует В отсутствует № 3690-73 С ТФЗМ-35А-У1 72337 Кл.т.=0.5 А ЗНОМ-35-65У1 1382501 Ктн=35000/100 В ЗНОМ-35-65У1 1310630 № 912-70 С 3HOM-35-65У1 1382486	ОО ОТ ТЕВ В В ОТ В В В В В В В В В В В В В В В В

				еречень ИК АИИ 10/35/6 кВ	СК	/ 9			
номер ИК	код ИК	Присоединение	Вид СИ	К-т трансформации Класс точности № госреестра	Фаза	Тип	Зав. №	Ктт*Ктн	Изм. Величина
	1C 3a 005A		успд	19495-03		TK-16L	200508033		Время
				Кл.т.=0.5	Α	ТФ3М-35-У1	50310		
		Т-Т	Ш	Ктт=300/5	В	отсутствует			I первичный
		Жа		№3689-73	С	ТФЗМ-35А-У1	50311		
	980	IOB(Кл.т.=0.5	Α	3НОМ-35-65У1	1362244		
	000)eM	TH	Ктн=35000/100	В	3НОМ-35-65У1	1362240	00	U первичное
_	005	ф	,	№912-70	O	3НОМ-35-65У1	1362243	21000	
	112000500086	ВЛ-35 кВ Ефремовская-1	Счетчик	Кл.т.=0.2 №14555-02 Ксч=1		A1R-3-AL-C29- зав. № 105843		· ·	I вторичный U вторичное Время Энергия Р, Q Мощность Р, Q
				Кл.т.=0.5	Α	ТФЗМ-35-У1	56097		
			П	Ктт=200/5	В	отсутствует			I первичный
		7		№3689-73	С	ТФЗМ-35-У1	56100		
	070	Зимняя-1		Кл.т.=0.5	Α	3НОМ-35-65У1	1362244		
	000	ZZ	TH	Ктн=35000/100	В	3НОМ-35-65У1	1362240	00	U первичное
2	205			№912-70	С	3НОМ-35-65У1	1362243	14000	
	112000500070	ВЛ-35 кВ	Счетчик	Кл.т.=0.2 №14555-02 Ксч=1		A1R-3-AL-C29- зав. № 105846		T	I вторичный U вторичное Время Энергия Р, Q Мощность Р, Q

	одоли								
				Кл.т.=0.5	Α	ТФЗМ-35-У1	29631		
		4-2	L	Ктт=300/5	В	отсутствует			I первичный
		Ефремовская-2		№3689-73	С	ТФЗМ-35-У1	29390		
	2000500073	OBC		Кл.т.=0.5	Α	3НОМ-35-65У1	4371011		
	8)eM	픈	Ктн=35000/100	В	3НОМ-35-65У1	1362193	000	U первичное
3	005	용		№912-70	С	3НОМ-35-65У1	1362165	210	
	120	Ω Π	J					(1)	I вторичный
	-		Счетчик	Кл.т.=0.2		A1R-3-AL-C29-	T+		U вторичное
		ВЛ-35	eT	№14555-02					Время
		B	ರ	Ксч=1		зав. № 105843	37		Энергия P, Q
									Мощность P, Q
				Кл.т.=0.5	Α	ТФЗМ-35-У1	52761		
		١	=	Ктт=200/5	В	отсутствует			I первичный
	_	Зимняя-2		№3689-73	С	ТФЗМ-35-У1	53791		
	2000500091	A F	_	Кл.т.=0.5	Α	3НОМ-35-65У1	4371011		
	1 000	371	픋	Ктн=35000/100	В	3НОМ-35-65У1	1362193	4000	U первичное
4	00	8		№912-70	С	3НОМ-35-65У1	1362165	40	
			,					_	I вторичный
	7	ВЛ-35	Счетчик	Кл.т.=0.2		A1R-3-AL-C29-	T+		U вторичное
		B	eT	№14555-02					Время
			ਨ	Ксч=1		зав. № 105843	35		Энергия Р, Q
									Мощность Р, Q

				еречень ИК АИИ орная" 110/35/6 і		/9			
номер ИК	код ИК	Присоединение	Вид СИ	К-т трансформации Класс точности № госреестра	Фаза	Тип	Зав. №	Ктт*Ктн	Изм. Величина
	1C 3a 005A		успд	19495-03		TK-16L	200508030		Время
				Кл.т.=0.5	Α	ТФМ-35-II-XЛ1	4225		
			Ш	Ктт=400/5	В	отсутствует			I первичный
	_	6-1		№17552-98	С	ТФМ-35-II-ХЛ1	4223		
	04,	7-1		Кл.т.=0.5	Α	НАМИ-35-УХЛ1	196		
	300	(H(H.	Ктн=35000/100	В	НАМИ-35-УХЛ1	196	00	U первичное
2	003	(B)		№19813-00	С	НАМИ-35-УХЛ1	196	28000	
	112100300041	ВЛ-35 кВ КНС-16-1	Счетчик	Кл.т.=0.2 №14555-02 Ксч=1		A1R-3-AL-C29- зав. № 105840		.,	I вторичный U вторичное Время Энергия Р, Q Мощность Р, Q
				Кл.т.=0.5	Α	ТФЗМ-35А-У1	34269		,
			L	Ктт=200/5	В	отсутствует			I первичный
	~	1-1	•	№3690-73	С	ТФЗМ-35А-У1	34260		
	038	ДНС-81-1		Кл.т.=0.5	Α	НАМИ-35-УХЛ1	196		
	300	품	TH	Ктн=35000/100	В	НАМИ-35-УХЛ1	196	4000	U первичное
9	300			№19813-00	С	НАМИ-35-УХЛ1	196	140	
	112100300038	ВЛ-35 кВ	Счетчик	Кл.т.=0.2 №14555-02 Ксч=1		A1R-3-AL-C29- зав. № 105840		, -	I вторичный U вторичное Время Энергия Р, Q Мощность Р, Q

1100	MICOE	CHIPIC	Taos	ицы 1.13					
				Кл.т.=0.5	Α	ТФМ-35-II-XЛ1	3279		
			L	Ктт=400/5	В	отсутствует			I первичный
	_	3-2		№17552-98	С	ТФМ-35-II-XЛ1	4224		
	036	KHC-16-2		Кл.т.=0.5	Α	НАМИ-35-УХЛ1	146		
	000	CHC	표	Ктн=35000/100	В	НАМИ-35-УХЛ1	146	8	U первичное
7	003	кВ к		№19813-00	С	НАМИ-35-УХЛ1	146	28000	
	112100300039	ВЛ-35 к	Счетчик	Кл.т.=0.2 №14555-02 Ксч=1		A1R-3-AL-C29- зав. № 105840			I вторичный U вторичное Время Энергия Р, Q Мощность Р, Q
				Кл.т.=0.5	Α	ТФЗМ-35А-У1	34257		тиощпооть г , а
			F	Ктт=200/5	В	отсутствует			I первичный
		1-2	'	№3690-73	С	ТФЗМ-35А-У1	34212		·
	2117803789	ДНС-81		Кл.т.=0.5	Α	НАМИ-35-УХЛ1	146		
	303	H	표	Ктн=35000/100	В	НАМИ-35-УХЛ1	146	00	U первичное
∞	178	кВ Д		№19813-00	С	НАМИ-35-УХЛ1	146	14000	
	1121	ВЛ-35 к	Счетчик	Кл.т.=0.2 №14555-02 Ксч=1		A1R-3-AL-C29- зав. № 105840			I вторичный U вторичное Время Энергия Р, Q
I									Мощность Р, Q

				еречень ИК АИИ 110/35/6 кВ	IC K	уэ			
номер ИК	код ИК	Присоединение	Вид СИ	К-т трансформации Класс точности № госреестра	Фаза	Тип	Зав. №	Ктт*Ктн	Изм. Величина
	1C 3a 005A		успд	19495-03		TK-16L	200508034		Время
		ם-1	L	Кл.т.=0.5 Ктт=200/5	A B	ТФМ-35-II-У1 отсутствует	3271		I первичный
	0	апа,		№17552-98	С	ТФМ-35-ІІ-У1	3269		
	379(Северо-Запад-1	_	Кл.т.=0.5	Α	НОМ-35-65У1	1354672		
_	780;	вер	프	Ктн=35000/100 №187-70	B C	HOM-35-65У1	1355017	14000	U первичное
	112117803790	ВЛ-35 кВ Се	Счетчик	Кл.т.=0.2 №14555-02 Ксч=1	O	HOM-35-65У1 A1R-3-AL-C29- зав. № 105842	22	71	I вторичный U вторичное Время Энергия Р, Q Мощность Р, Q
				Кл.т.=0.5	Α	ТФМ-35-II-У1	3268		
		_	F	Kττ=200/5 №17552-98	B C	отсутствует ТФМ-35-II-У1	3267		I первичный
	788	кра-		Кл.т.=0.5	A	НОМ-35-65У1	1354672		
	303.	Ися	프	Ктн=35000/100	В	НОМ-35-65У1	1355017	00	U первичное
2	1178	κB		№187-70	С	НОМ-35-65У1	1191570	14000	
	112117803788	ВЛ-35 кВ Искра-1	Счетчик	Кл.т.=0.2 №14555-02 Ксч=1		A1R-3-AL-C29-T+ зав. № 1058420			I вторичный U вторичное Время Энергия Р, Q Мощность Р, Q

1100	долж	CITTIC	1 aos	ицы 1.1 4					
				Кл.т.=0.5	Α	ТФЗМ-35А-ХЛ1	56073		
		а-2		Ктт=200/5	В	отсутствует			I первичный
		Северо-Запад-2		№3690-73	С	ТФЗМ-35А-ХЛ1	56101		
	782	-38		Кл.т.=0.5	Α	3НОМ-35-65У1	1350456		
	.03	ode	표	Ктн=35000/100	В	3НОМ-35-65У1	1350451	00	U первичное
3	178	eB		№912-70	С	3НОМ-35-65У1	1350450	14000	
	112117803782	ВЛ-35 кВ С	Счетчик	Кл.т.=0.2 №14555-02 Ксч=1		A1R-3-AL-C29- зав. № 105842			I вторичный U вторичное Время Энергия Р, Q
					_		T		Мощность P, Q
			١.	Кл.т.=0.5	Α	ТФНД-35М	213		
				Ктт=200/5	В	отсутствует			I первичный
		7-		№3689-73	С	ТФНД-35М	239		
	178	Искра-2		Кл.т.=0.5	Α	3НОМ-35-65У1	1350456		
	303	Z	프	Ктн=35000/100	В	3НОМ-35-65У1	1350451	8	U первичное
4	17803778	Θ		№912-70	С	3НОМ-35-65У1	1350450	14000	
	1121	ВЛ-35	Счетчик	Кл.т.=0.2 №14555-02 Ксч=1		A1R-3-AL-C29- зав. № 105842			I вторичный U вторичное Время Энергия Р, Q Мощность Р, Q

		-		еречень ИК АИИ ыкская" 110/35/6		/9			
номер ИК	код ИК	Присоединение	Вид СИ	К-т трансформации Класс точности № госреестра	Фаза	Тип	Зав. №	Ктт*Ктн	Изм. Величина
	1C 3a 005A		успд	19495-03		TK-16L	200508023		Время
				Кл.т.=0.5	Α	ТФЗМ-35А-У1	36733		
			ΤΤ	Ктт=300/5	В	отсутствует			I первичный
	_			№3690-73	С	ТФЗМ-35А-У1	36727		
	77.	3 1T		Кл.т.=0.5	Α	НАМИ-35-УХЛ1	182		
	303	35 кВ	Ŧ	Ктн=35000/100	В	НАМИ-35-УХЛ1	182	00	U первичное
_	178	1 35		№19813-00	С	НАМИ-35-УХЛ1	182	21000	
	112117803771	Ввод	Счетчик	Кл.т.=0.2 №14555-02 Ксч=1		A1R-3-AL-C8- зав. № 100952		,,	I вторичный U вторичное Время Энергия Р, Q Мощность Р, Q
				Кл.т.=0.5	Α	ТФЗМ-35А-У1	36724		
			Ш	Ктт=300/5	В	отсутствует			I первичный
	(№3690-73	С	ТФЗМ-35А-У1	38424	21000	
	766	3 2T		Кл.т.=0.5	Α	НАМИ-35-УХЛ1	194	21(
	303	35 кВ	Ŧ	Ктн=35000/100	В	НАМИ-35-УХЛ1	194		U первичное
2	178	1 35		№19813-00	С	НАМИ-35-УХЛ1	194		
	112117803766	Ввод	Счетчик	Кл.т.=0.2 №14555-02 Ксч=1		A1R-3-AL-C8- зав. № 100952			I вторичный U вторичное Время Энергия Р, Q Мощность Р, Q

Hpo	жпор	ение	таол	ицы 1.15					
		1T		Кл.т.=0.5	Α	ТОЛ-10	41039		
		6кВ	⊨	Ктт=1500/5	В	отсутствует			I первичный
		д 6		№7069-79	С	ТОЛ-10	8283		
	65	380		Кл.т.=0.5	Α	НТМИ-6-66	1438		
	037	10	프	Ктн=6000/100	В	НТМИ-6-66	1438	00	U первичное
3	78	>		№2611-70	С	НТМИ-6-66	1438	8000	
	112117803765	ЗРУ-6кВ КНС-1 МБ ввод	Счетчик	Кл.т.=0.2 №14555-02 Ксч=1		А1R-3-AL-С8- ⁻ зав. № 101266		18	I вторичный U вторичное Время Энергия Р, Q Мощность Р, Q
		2Т		Кл.т.=0.5	Α	ТОЛ-10	44388		
		6кВ 2	T	Ктт=1500/5	В	отсутствует			I первичный
		1 6		№7069-02	С	ТОЛ-10	41318		
	64	МБ ввод		Кл.т.=0.5	Α	НТМИ-6-66 УЗ	УУТС		
	337	Бв	Ξ	Ктн=6000/100	В	НТМИ-6-66 УЗ	УУТС	0	U первичное
4	78(Σ		№2611-70	С	НТМИ-6-66 УЗ	УУТС	8000	
	112117803764	ЗРУ-6кВ КНС-1	Счетчик	Кл.т.=0.2 №14555-02 Ксч=1		А1R-3-AL-С8- ⁻ зав. № 101261		18	I вторичный U вторичное Время Энергия Р, Q Мощность Р, Q
		~		Кл.т.=0.5	Α	ТОЛ-10	2172		
		6кЕ		Ктт=100/5	В	ТОЛ-10	2014		I первичный
		ввод 6кВ		№7069-79	С	ТОЛ-10	1065		
	63	BB •			Α	нет	нет		
	337	ME -1	표		В	нет	нет		U = 380B
2	78(Z 높			С	нет	нет	20	
	112117803763	3PY-6kB KHC-1 M5 TCH-1	Счетчик	Кл.т.=0.2 №14555-02 Ксч=1		А1R-4-AL-С8- ⁻ зав. № 100922			I вторичный U вторичное Время Энергия Р, Q Мощность Р, Q
		3		Кл.т.=0.5	Α	ТОЛ-10	2886		
		ввод 6кВ	П	Ктт=100/5	В	ТОЛ-10	2780		I первичный
		ОДО		№7069-02	С	ТОЛ-10	2560		
	62	. BB			Α	нет	нет		
	337	ME -2	王		В	нет	нет		U = 380B
9	78(HC-1 ME TCH-2			С	нет	нет	20	
	112117803762	3PY-6kB KHC-1 TCH	Счетчик	Кл.т.=0.2 №14555-02 Ксч=1		A1R-4-AL-C8- зав. № 100918			I вторичный U вторичное Время Энергия Р, Q Мощность Р, Q
					l			<u> </u>	

	Таблица 1.16 Перечень ИК АИИС КУЭ ПС "Мушкино" 110/35/6 кВ												
номер ИК	жод ИК	Присоединение	Вид СИ	К-т трансформации Класс точности № госреестра	Фаза	Тип	Зав. №	Ктт*Ктн	Изм. Величина				
	1C 3a		УСПД	19495-03		TK-16L	200508011 200508012		Время				
	2		Ш	Кл.т.=0.5 Ктт=200/5 №3690-73	A B C	ТФН-35М отсутствует ТФН-35М	46945 7477		I первичный				
~	112100700155	35 kB 1T	ТН	Кл.т.=0.5 Ктн=35000/100 №19813-00	A B C	НАМИ-35-УХЛ1 НАМИ-35-УХЛ1 НАМИ-35-УХЛ1	235 235 235	14000	U первичное				
	11210	Ввод	Счетчик	Кл.т.=0.2 №14555-02 Ксч=1		A1R-3-AL-C8- зав. № 101266	Т	1	I вторичный U вторичное Время Энергия Р, Q Мощность Р, Q				
			ТТ	Кл.т.=0.5 Ктт=200/5 №3690-73	A B C	ТФН-35М отсутствует ТФН-35М	5065 5827		I первичный				
2	112100700162	35 kB 2T	ТН	Кл.т.=0.5 Ктн=35000/100 №19813-00	A B C	НАМИ-35-УХЛ1 НАМИ-35-УХЛ1 НАМИ-35-УХЛ1	183 183 183	4000	U первичное				
	11210	Ввод (Счетчик	Кл.т.=0.2 №14555-02 Ксч=1		А1R-3-AL-С8- зав. № 101261	Т	14	I вторичный U вторичное Время Энергия Р, Q Мощность Р, Q				
		ная-1	TT	Кл.т.=0.5 Ктт=150/5 №3690-73	A B C	ТФН-35М отсутствует ТФН-35М	19683 15452		I первичный				
8	112100700159	омышлен	ТН	Кл.т.=0.5 Ктн=35000/100 №19813-00	A B C	НАМИ-35-УХЛ1 НАМИ-35-УХЛ1 НАМИ-35-УХЛ1	188 188 188	10500	U первичное				
	11210	ВЛ-35 кВ Промышленная-1	Счетчик	Кл.т.=0.2 №14555-02 Ксч=1	A1R-3-AL-C8-T зав. № 1012615			1	I вторичный U вторичное Время Энергия Р, Q Мощность Р, Q				
		1-1	LΙ	Кл.т.=0.5 Ктт=150/5 №3690-73	A B C	ТФЗМ-35А-У1 отсутствует ТФЗМ-35А-ХЛ1	71057 57094		I первичный				
4	112100700160	ВЛ-35 кВ КНС-10-1	ТН	Кл.т.=0.5 Ктн=35000/100 №19813-00	A B C	НАМИ-35-УХЛ1 НАМИ-35-УХЛ1 НАМИ-35-УХЛ1	-35-УХЛ1 188		U первичное				
	11210	ВЛ-35 к	Счетчик	Кл.т.=0.2 №14555-02 Ксч=1	A1R-3-AL-C8-T 3aB. № 1009515			10500	I вторичный U вторичное Время Энергия Р, Q Мощность Р, Q				

1000000000000000000000000000000000000	1100/	толж	СНИС	Taol	IИЦЫ 1.16				ı	
100 100					Кл.т.=0.5	Α	ТФЗМ-35А-ХЛ1	68312		
10				F						I первичный
Время дергия Р. Q мощность Р		_	<u>-</u>				ТФН-35М	18345		
Время Знергия Р. Q. Мощность Р. Q. Первичный Р. Q. Мощность Р. Q.		16	ŔĊ	_			НАМИ-35-УХЛ1	188		
Время Знергия Р. Q. Мощность Р. Q. Первичный Р. Q. Мощность Р. Q.		200	3 🗆	픋			НАМИ-35-УХЛ1	188	8	U первичное
Время Знергия Р. Q. Мощность Р. Q. Первичный Р. Q. Мощность Р. Q.	2	.00	5 KE		№19813-00	С	НАМИ-35-УХЛ1	188	140	
Время Знергия Р. О. Ипервичный Время Знергия Р. О. Ипервичный Время Знергия Р. О.		121	1-35)] `	•
8		1,	ВЛ	Ž			A1R-3-AL-C8-	Γ		•
1				чет			N: 400707			
1 1 1 1 1 1 1 1 1 1				Ŏ	KC4=1		3aB. № 100707	6		•
1 1 1 1 1 1 1 1 1 1					Vn + -0 5	Λ	TAU 25M	221006		Мощность Р, Q
1			-2	 -				221900		Lacobianina
1			тая	-			•	000		т первичныи
1		33	e E			_				
1)16	5	_					-	
1	1 (200	Mbl	亡					1 00	U первичное
1		00	lod		№19813-00	С	НАМИ-35-УХЛ1	190	105	
1		121	3 🗆	~				_		•
1		1	5 K	Ž			A1R-3-AL-C8-	I		•
1			1-3	чет			No 400700	0		•
1			BJ	Ö	KC4=1		3aB. № 100793	3		-
1					Vn + -0.5	Λ	T⊕H 35A	127		МОЩНОСТЬ P, Q
Ne3690-73 C ТФ3М-35-У1 28421 190 190 190 190 1 100				_				137		Гпорринций
80 00000000000000000000000000000000000			7	-				20424		гпервичный
80 00000000000000000000000000000000000		7	10-;			_				
80 00000000000000000000000000000000000		017	<u>.</u>	_						
80 00000000000000000000000000000000000		020	주	⊨					200	о первичное
80 00000000000000000000000000000000000		100	æ		№19813-00	C	НАМИ-35-УХЛ1	190	10,	1
80 00000000000000000000000000000000000		12	-35	¥	Vπ = -0.2		A1D 2 AL CO	F		•
80 00000000000000000000000000000000000		_	ВЛ	l 1			ATR-3-AL-CO-	1		•
В Кл.т.=0.5 В ОТСУТСТВУЕТ В КП.Т.=0.5 В ОТСУТСТВУЕТ В ПЕРВИЧНЫЙ				уче			3aв № 101170	0		
80 00000000000000000000000000000000000							000.11-101110			•
№ 3690-73 С ТФЗМ-35А-У1 39976 № 17000000000000000000000000000000000000					Кл.т.=0.5	Α	ТФЗМ-35А-У1	39963		,
№ 3690-73 С ТФЗМ-35А-У1 39976 № 17000000000000000000000000000000000000				L	Ктт=300/5	В	отсутствует			I первичный
В В НАМИ-35-УХЛ1 190 В НАМИ-35			01	'	№3690-73	С		39976		•
Боло О О О О О О О О О О О О О О О О О О		110	C-5						1	
Боло О О О О О О О О О О О О О О О О О О		002	三	E					õ	U первичное
60 №14555-02 Ксч=1 зав. № 1012685 Время Энергия Р, Q Мощность Р, Q 1	∞	10	Æ						100	,
60 №14555-02 Ксч=1 зав. № 1012685 Время Энергия Р, Q Мощность Р, Q 1		360	35						2	І вторичный
60 №14555-02 Ксч=1 зав. № 1012685 Время Энергия Р, Q Мощность Р, Q 1		21;	37-	Ζ	Кл.т.=0.2		A1R-3-AL-C8-	Г		•
Б Кл.т.=0.5 А ТВЛМ-10 1184 Первичный В Ктт=1500/5 В отсутствует Первичный В Кл.т.=0.5 А НАМИ-10У2 3315 Ктн=6000/100 В НАМИ-10У2 3315 Кл.т.=0.5 Кл.т.=0.5 В НАМИ-10У2 3315 Кл.т.=0.2 Кл.т.=0.2 НАМИ-10У2 3315 В Кл.т.=0.2 Кл.т.=0.2 Кл.т.=0.2 Кл.т.=0.2 Кл.т.=0.2 А1R-3-AL-C8-Т Время Энергия Р, Q				етч	№14555-02					•
6 Кл.т.=0.5 Кт=1500/5 № 1856-63 А ТВЛМ-10 В отсутствует С ТВЛМ-10 1184 2053 6 Кл.т.=0.5 Кл.т.=0.5 Ктн=6000/100 № 11094-87 А НАМИ-10У2 В НАМИ-10У2 ЗЗ15 С НАМИ-10У2 ЗЗ15 ЗЗ15 6 Кл.т.=0.5 				C	Ксч=1		зав. № 101268	5		Энергия Р, Q
Б С Ктт=1500/5 В отсутствует										Мощность P, Q
Ф № 1856-63 С ТВЛМ-10 2053 Кл.т.=0.5 А НАМИ-10У2 3315 Ктн=6000/100 В НАМИ-10У2 3315 № 11094-87 С НАМИ-10У2 3315 Кл.т.=0.2 НАМИ-10У2 3315 Кл.т.=0.2 А1R-3-AL-C8-Т U вторичный U вторичное Время Ксч=1 зав. № 1007068 Энергия Р, Q			١,	١.			ТВЛМ-10	1184		
										I первичный
			<u> </u>			С	ТВЛМ-10	2053		
		211	9 Д	_			НАМИ-10У2	3315		
		000	380	芷			НАМИ-10У2	3315	0	U первичное
	6)10	4-		№11094-87	С	НАМИ-10У2	3315) 	
		360	5						~	I вторичный
		21.	ā	ž	Кл.т.=0.2		A1R-3-AL-C8-	Γ		U вторичное
)-e	eT.	№14555-02					
			3P.	ပ်	Ксч=1		зав. № 100706	8		Энергия Р, Q
										Мощность P, Q

Прод	жпор	ение	: табл	ицы 1.16					
		_		Кл.т.=0.5	Α	ТВЛМ-10	34135		
		3 4T	╽	Ктт=1500/5	В	отсутствует			I первичный
		6 ĸB		№1856-63	С	ТВЛМ-10	35660		
	212) ДС		Кл.т.=0.5	Α	НАМИ-10У2	7179		
	00	BB(표	Ктн=6000/100	В	НАМИ-10У2	7179	8	U первичное
10	010	4		№11094-87	С	НАМИ-10У2	7179	18000	
	213601000212	ЗРУ-6кВ КС-4 ввод	Счетчик	Кл.т.=0.2 №14555-02 Ксч=1		A1R-3-AL-С8- зав. № 100789			I вторичный U вторичное Время Энергия Р, Q Мощность Р, Q
		7		Кл.т.=0.5	Α	Т-0,66 У3	8561		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
		끙	⊨	Ктт=150/5	В	Т-0,66 УЗ	21389		I первичный
		KB TCH-1		№17551-98	С	Т-0,66 УЗ	54057		·
	213	O			Α	нет	нет	1	
	000	ввод	T		В	нет	нет		U = 380B
7	010	8			С	нет	нет	30	
	213601000213	3PY-6kB KC-4	Счетчик	Кл.т.=0.2 №14555-02 Ксч=1		A1R-3-AL-C8-T зав. № 1009158			I вторичный U вторичное Время Энергия Р, Q Мощность Р, Q
				Кл.т.=0.5	Α	Т-0,66 УЗ	87312		,
		S	F	Ктт=150/5	В	Т-0,66 УЗ	86577		I первичный
		KB TCH-2	·	№17551-98	С	Т-0,66 УЗ	27840		
	216	9 7			Α	нет	нет		
١.,	000	ввод 6 і	Ŧ		В	нет	нет		U = 380B
12	010	4 BE			С	нет	нет	30	
	12 213601000216 3РУ-6кВ КС-4 ввод 6 к Счетчик ТН			Кл.т.=0.2 №14555-02	A1R-3-AL-C8-T				I вторичный U вторичное Время
		3РУ.	ن ک	Ксч=1		зав. № 100914	48		Энергия Р, Q Мощность Р, Q

				еречень ИК АИИ овая" 110/35/6 кЕ		уэ			
номер ИК	код ИК	Присоединение	Вид СИ	К-т трансформации Класс точности № госреестра	Фаза	Тип	Зав. №	Ктт*Ктн	Изм. Величина
	АИИС Зав. № 2005A08		успд	19495-03		TK-16L	200508019		Время
				Кл.т.=0.5	Α	ТФ3М-35А-У1	70887		
		_	F	Ктт=150/5	В	отсутствует			I первичный
	2	Таёжная-1		№3690-73	С	ТФЗМ-35А-У1	70858		
	77.	ΧΉ		Кл.т.=0.5	Α	НАМИ-35-УХЛ1	56		
	803	-aë	프	Ктн=35000/100	В	НАМИ-35-УХЛ1	56	0200	U первичное
	721 26 Кл.т.=0.5 Кл.т.=0.5 Ктн=35000/100 №19813-00		С	НАМИ-35-УХЛ1	56	105			
	СР Б Б Б Б Б Б Б Б Б Б Б Б Б Б Б Б Б Б Б							I вторичный U вторичное Время Энергия Р, Q Мощность Р, Q	

Hpo	долж	ение	таол	ицы 1.17					
				Кл.т.=0.5	Α	ТФЗМ-35А-У1	70874		
				Ктт=150/5	В	отсутствует			I первичный
		<u>-</u>		№3690-73	С	ТФЗМ-35А-У1	70875		
	92	Еловая-1		Кл.т.=0.5	Α	НАМИ-35-УХЛ1	56		
	37		프	Ктн=35000/100	В	НАМИ-35-УХЛ1	56	0	U первичное
7	780	山	'	№19813-00	С	НАМИ-35-УХЛ1	56	10500	•
	112117803776	ВЛ-35 кВ	Счетчик	Кл.т.=0.2 №14555-02 Ксч=1		А1R-3-AL-С8- зав. № 100956	Т	10	I вторичный U вторичное Время Энергия Р, Q
									Мощность P, Q
				Кл.т.=0.5	Α	ТФЗМ-35А-У1	68372		
			⊥	Ктт=200/5	В	отсутствует			I первичный
		Таёжная-2	•	№3690-73	С	ТФЗМ-35А-У1	70917		
	75	Hã		Кл.т.=0.5	Α	НАМИ-35-УХЛ1	58		
)37	ě	표	Ктн=35000/100	В	НАМИ-35-УХЛ1	58	0	U первичное
က	78(-	№19813-00	С	НАМИ-35-УХЛ1	58	14000	o nopen moo
	7	Θ		N= 19010-00		HAMMI-30-YAJI I	36	4	I вториши ий
	112117803775	ВЛ-35 кВ	Счетчик	Кл.т.=0.2 №14555-02		A1R-3-AL-C8-			I вторичный U вторичное Время
			Ö	Ксч=1		зав. № 100954	-7		Энергия P, Q Мощность P, Q
				Кл.т.=0.5	Α	ТФЗМ-35А-У1	70955		иющность г, Q
			L	Ктт=200/5	В		70955		I первичный
		8	—	Nº3690-73	С	отсутствует ТФЗМ-35А-У1	70903		тпервичный
	4	, K							
	377	Еловая-2	_	Кл.т.=0.5	A	НАМИ-35-УХЛ1	58		
4	803	5	王	Ктн=35000/100	В	НАМИ-35-УХЛ1	58	14000	U первичное
'	17	奇		№19813-00	С	НАМИ-35-УХЛ1	58	4	
	112117803774	ВЛ-35 кВ	Счетчик	Кл.т.=0.2 №14555-02 Ксч=1		А1R-3-AL-С8- ⁻ зав. № 100792			I вторичный U вторичное Время Энергия Р, Q Мощность Р, Q
				Кл.т.=0.5	Α	ТЛМ-10	4065		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
			L	Ктт=1000/5	В	отсутствует		1	I первичный
				№2473-00	С	ТЛМ-10	8860	1	-
	73	†		Кл.т.=0.5	A	НТМИ-6-66 УЗ	3854	1	
	137	B 1	표	Ктн=6000/100	В	НТМИ-6-66 УЗ	3854		U первичное
2	780	9 X	-	Nº2611-70	С			12000	о порвинное
	112117803773	ввод 6 кВ	Счетчик	Кл.т.=0.2 №14555-02 Ксч=1		НТМИ-6-66 У3 A1R-3-AL-C8- зав. № 100790		12	I вторичный U вторичное Время Энергия Р, Q Мощность Р, Q
				Кл.т.=0.5	Α	ТЛМ-10	9990		,
			F	Ктт=1500/5	В	отсутствует		1	I первичный
			'	№2473-00	С	ТОЛ-10	8317	1	•
	72	_		Кл.т.=0.5	A	НТМИ-6-66 УЗ	3034	1	
	37.	B 2T	H	Ктн=6000/100	В	НТМИ-6-66 УЗ	3034		U первичное
9	780	0 K	-	Nº2611-70	С	НТМИ-6-66 УЗ	3034	18000	C OP DA 11100
	11.	, Ц		14=2011-10		1 1 1 1VIVI-0-00 YS	3034	18	I вторичный
	112117803772	В НТМИ-6-66 УЗ 3034 № 2611-70 С НТМИ-6-66 УЗ 3034 Кл.т.=0.2 А1R-3-AL-C8-Т № 14555-02 Ксч=1 3ав. № 1007908						т вторичный U вторичное Время Энергия Р, Q	
									Мощность P, Q
					•				

	Таблица 1.18 Перечень ИК АИИС КУЭ ПС "Речная" 110/35/6 кВ											
номер ИК	код ИК	Присоединение	Вид СИ	К-т трансформации Класс точности № госреестра	Фаза	Тип	Зав. №	Ктт*Ктн	Изм. Величина			
	1C 3a		успд	19495-03		TK-16L	200508039		Время			
			TT	Кл.т.=0.5 Ктт=300/5	A B C	ТФЗМ-35А-У1 отсутствует	72369		I первичный			
_	112000500083	35кВ Горная-1	푠	№3690-73 Кл.т.=0.5 Ктн=35000/100 №19813-00	A B C	ТФЗМ-35А-У1 НАМИ-35-УХЛ1 НАМИ-35-УХЛ1 НАМИ-35-УХЛ1	72338 180 180 180	000	U первичное			
	112000	ВЛ 35кВ	Счетчик	Кл.т.=0.2 №14555-02 Ксч=1	3	А1R-3-AL-C29- зав. № 105839	T+	21	Опервичное Т вторичный U вторичное Время Энергия Р, Q Мощность Р, Q			
		я-1	П	Кл.т.=0.5 Ктт=200/5 №3690-73	A B C	ТФЗМ-35А-ХЛ1 отсутствует ТФЗМ-35А-ХЛ1	45402 44053		I первичный			
2	112000500079	Сосновая-1	ТН	Кл.т.=0.5 Ктн=35000/100 №19813-00	A B C	НАМИ-35-УХЛ1 НАМИ-35-УХЛ1 НАМИ-35-УХЛ1	180 180 180	14000	U первичное			
	11200	ВЛ 35кВ	Счетчик	Кл.т.=0.2 №14555-02 Ксч=1		A1R-3-AL-C29- зав. № 105839	T+	1	I вторичный U вторичное Время Энергия Р, Q Мощность Р, Q			
		-2	L	Кл.т.=0.5 Ктт=300/5 №3690-73	A B C	ТФ3М-35А-У1 отсутствует ТФ3М-35А-У1	72370 72237		I первичный			
က	112000500082	ВЛ 35кВ Горная-2	ТН	Кл.т.=0.5 Ктн=35000/100 №19813-00	A B C	НАМИ-35-УХЛ1 НАМИ-35-УХЛ1 НАМИ-35-УХЛ1	184 184 184	21000	U первичное			
	1120	ВЛ 35к	Счетчик	Кл.т.=0.2 №14555-02 Ксч=1		A1R-3-AL-C29- зав. № 105839		2	I вторичный U вторичное Время Энергия Р, Q Мощность Р, Q			
	_	1я-2	11	Кл.т.=0.5 Ктт=200/5 №3690-73	A B C	ТФЗМ-35А-ХЛ1 отсутствует ТФЗМ-35А-ХЛ1	44823 44329		I первичный			
4	112000500084	3 Сосновая-2	НТ	Кл.т.=0.5 Ктн=35000/100 №19813-00	A B C	НАМИ-35-УХЛ1 НАМИ-35-УХЛ1 НАМИ-35-УХЛ1	184 184 184	14000	U первичное			
	1120	ВЛ 35кВ	Счетчик	Кл.т.=0.2 №14555-02 Ксч=1		A1R-3-AL-C29- зав. № 105839	3-AL-C29-T+ U вторичный Время					

	Таблица 1.19 Перечень ИК АИИС КУЭ ПС "Средний Балык" 110/35/6 кВ												
номер ИК	код ИК	Присоединение	Вид СИ	К-т трансформации Класс точности № госреестра	Фаза	Тип	Зав. №	Ктт*Ктн	Изм. Величина				
	1C 3a		успд	19495-03		TK-16L	200508021 20050820		Время				
		7-	TT	Кл.т.=0.5 Ктт=200/5 №3690-73	A B C	ТФЗМ-35А-ХЛ1 отсутствует ТФЗМ-35А-ХЛ1	53152 53176		I первичный				
_	112100700138	ВЛ-35 кВ Летняя-1	Ŧ	Кл.т.=0.5 Ктн=35000/100 №19813-00	A B C	НАМИ-35-УХЛ1 НАМИ-35-УХЛ1 НАМИ-35-УХЛ1	186 186 186	14000	U первичное				
	11210	ВЛ-35 к	Счетчик	Кл.т.=0.2 №14555-02 Ксч=1		А1R-3-AL-С8- зав. № 100916	Т	<u> </u>	I вторичный U вторичное Время Энергия Р, Q Мощность Р, Q				
		-1	П	Кл.т.=0.5 Ктт=300/5 №21256-01	A B C	ТОЛ-35Б отсутствует ТОЛ-35Б	203 153		I первичный				
7	112100700144	ВЛ-35 кВ КНС-2-1	Ŧ	Кл.т.=0.5 Ктн=35000/100 №19813-00	A B C	НАМИ-35-УХЛ1 НАМИ-35-УХЛ1 НАМИ-35-УХЛ1	186 186 186	21000	U первичное				
	11210	ВЛ-35 к	Счетчик	Кл.т.=0.2 №14555-02 Ксч=1		А1R-3-AL-C8- зав. № 100794	Т	2	I вторичный U вторичное Время Энергия Р, Q				
		пык-1	۲	Кл.т.=0.5 Ктт=200/5 №3690-73	A B C	ТФ3М-35А-ХЛ1 отсутствует ТФ3М-35А-ХЛ1	46988 46957		Мощность Р, Q I первичный				
က	112100700145	жный-Бал	НТ	Кл.т.=0.5 Ктн=35000/100 №19813-00	A B C	НАМИ-35-УХЛ1 НАМИ-35-УХЛ1 НАМИ-35-УХЛ1	186 186 186	14000	U первичное				
	11210	ВЛ-35 кВ Южный-Балык-1	Счетчик	Кл.т.=0.2 №14555-02 Ксч=1		A1R-3-AL-C8- зав. № 101263		<u> </u>	I вторичный U вторичное Время Энергия Р, Q Мощность Р, Q				
		ม-1	11	Кл.т.=0.5 Ктт=200/5 №3690-73	A B C	ТФН-35М отсутствует ТФЗМ-35А-ХЛ1	5834 52780		I первичный				
4	112100700146	Дожимная	TH	Кл.т.=0.5 Ктн=35000/100 №19813-00	A B C	НАМИ-35-УХЛ1 НАМИ-35-УХЛ1 НАМИ-35-УХЛ1	186 186 186	14000	U первичное				
	11210	ВЛ-35 кВ	Счетчик	Кл.т.=0.2 №14555-02 Ксч=1		A1R-3-AL-C8- зав. № 100797		_	I вторичный U вторичное Время Энергия P, Q Мощность P, Q				

Hpo	долж	ение	таол	ицы 1.19						
				Кл.т.=0.5	Α	ТФЗМ-35А-ХЛ1	53177			
				Ктт=200/5	В	отсутствует			I первичный	
		1-2		№3690-73	С	ТФЗМ-35А-ХЛ1	52786			
	147	кВ Летняя-2		Кл.т.=0.5	Α	НАМИ-35-УХЛ1	127			
) 0	le _T	프	Ктн=35000/100	В	НАМИ-35-УХЛ1	127	0	U первичное	
2	200	В	'	№19813-00	С	НАМИ-35-УХЛ1	127	14000	•	
	112100700147	ВЛ-35 к	Счетчик	Кл.т.=0.2 №14555-02 Ксч=1		А1R-3-AL-С8- ⁻ зав. № 100920	Γ	-	I вторичный U вторичное Время Энергия Р, Q Мощность Р, Q	
				Кл.т.=0.5	Α	ТОЛ-35Б	192			
			F	Ктт=300/5	В	отсутствует			I первичный	
		~	_	№21256-01	С	ТОЛ-35Б	166			
	84	-2-;		Кл.т.=0.5	A	НАМИ-35-УХЛ1	127			
	01,	오	H	Ктн=35000/100	В	НАМИ-35-УХЛ1	127		U первичное	
9	020	~ ~	-		С			21000	о первичное	
	100			№19813-00	U	НАМИ-35-УХЛ1	127	2	I ====:::::::::::::::::::::::::::::::::	
	112100700148	ВЛ-35 кВ КНС-2-2	Б Кл.т.=0.2 A1R-3-AL-C8-T Б №14555-02 С Ксч=1 зав. № 1009548						I вторичный U вторичное Время Энергия Р, Q	
									Мощность Р, Q	
				Кл.т.=0.5	Α	ТФН-35М	16442			
		(-2	⊨	Ктт=200/5	В	отсутствует		1	I первичный	
			•	№3690-73	С	ΤΦH-35M	18995		·	
	49	Бал		Кл.т.=0.5	Α	НАМИ-35-УХЛ1	127			
	01,	-1ЫЙ-	₽ĬŽ	l 푸	Ктн=35000/100	В	НАМИ-35-УХЛ1	127	0	U первичное
_	020	A Ŧ	-	№19813-00	С	НАМИ-35-УХЛ1	127	14000	6 116p2/1 11166	
	100	<u> </u>		14=10010-00		TIMIVII-33-3 AJTI	127	4	I вторичный	
	112100700149	ВЛ-35 кВ Южный-Балык-2	Счетчик	Кл.т.=0.2 №14555-02 Ксч=1		A1R-3-AL-С8- ⁻ зав. № 100952			U вторичное Время Энергия Р, Q Мощность Р, Q	
				Кл.т.=0.5	Α	ТФЗМ-35А-ХЛ1	52757			
		~.	L	Ктт=200/5	В	отсутствует		1	I первичный	
		я -2		№3690-73	С	ТФЗМ-35А-ХЛ1	52776	1	- 	
	20	Дожимная		Кл.т.=0.5	A	НАМИ-35-УХЛ1	127	1		
	0	ΩŽ	표	Ктн=35000/100	В	НАМИ-35-УХЛ1	127	0	U первичное	
∞)7C	흕	-	Nº19813-00	С		127	14000	о порвинное	
	112100700150	ВЛ-35 кВ Д	Счетчик	Кл.т.=0.2 №14555-02 Ксч=1	O	НАМИ-35-УХЛ1 A1R-3-AL-C8- зав. № 100796	Γ	14	I вторичный U вторичное Время Энергия Р, Q	
									Мощность Р, Q	
		1T		Кл.т.=0.5	Α	ТОЛ-10	30296			
		Ω̈́	F	Ктт=1500/5	В	отсутствует			I первичный	
		J 6		№7069-79	С	ТОЛ-10	3957			
	51	СБ ввод 6 кВ		Кл.т.=0.5	Α	НТМИ-6-66 УЗ	7502	1		
)01	Б В	프	Ктн=6000/100	В	НТМИ-6-66 УЗ	7502	0	U первичное	
6	07(S.	'	№2611-70	С	НТМИ-6-66 УЗ	7502	18000	,	
	10	C-2						1 %	I вторичный	
	112100700151	<u>Q</u>			A1R-3-AL-C8- зав. № 100954			U вторичное Время Энергия Р, Q		
		3P.		ਨੂੰ Ксч=1 зав. № 1009546					Мощность Р, Q	
		. ` '							·	

Hpo	жпор	ение	табл	іицы 1.19					
		Æ		Кл.т.=0.5	Α	ТОЛ-10	8782		
		9	F	Ктт=1500/5	В	отсутствует			I первичный
		ввод		№7069-02	С	ТОЛ-10	11114		
	154	S BE		Кл.т.=0.5	Α	НТМИ-6-66 УЗ	57		
	9	CE	王 -	Ктн=6000/100	В	НТМИ-6-66 УЗ	57	00	U первичное
10	00	C-2 21		№2611-70	С	НТМИ-6-66 УЗ	57	18000	
	112100700154	ЗРУ-6кВ КНС-2 (2T	Счетчик	Кл.т.=0.2 №14555-02 Ксч=1	A1R-3-AL-C8-T 3aB. № 1007899			I вторичный U вторичное Время Энергия Р, Q Мощность Р, Q	
		Ţ.		Кл.т.=0.5	Α	TK-20	2389		
			F	Ктт=100/5	В	TK-20	891		I первичный
		СН КТП-1	·	№1407-60	С	TK-20	4578		-
	152	Ċ		Кл.т.=0.5	Α	НТМИ-6-66 У3	7502		
	00,	СБ	Ŧ.	Ктн=6000/100	В	НТМИ-6-66 УЗ	7502	0	U первичное
7	007	2-2		№2611-70	С	НТМИ-6-66 УЗ	7502	1200	
	112100700152	3PY-6kB KHC-2	Счетчик	Кл.т.=0.2 №14555-02 Ксч=1		A1R-3-AL-C8- зав. № 100790			I вторичный U вторичное Время Энергия Р, Q Мощность Р, Q
		-2		Кл.т.=0.5	Α	TK-20	6897		
			F	Ктт=100/5	В	TK-20	2536		I первичный
		СН КТП-2		№1407-60	С	TK-20	1266		
	153			Кл.т.=0.5	Α	НТМИ-6-66 УЗ	57		
	700	CE	王	Ктн=6000/100	В	НТМИ-6-66 УЗ	57	200	U первичное
12	00	C-2		№2611-70	С	НТМИ-6-66 УЗ	57	12(
	112100700153	3PY-6kB KHC-2 CE	Счетчик	Кл.т.=0.2 A1R-3-AL-C8-T №14555-02 Ксч=1 зав. № 1009169					I вторичный U вторичное Время Энергия Р, Q
		G							Мощность P, Q

				еречень ИК АИИ 110/35/6 кВ	IC K	/9			
номер ИК	код ИК	Присоединение	Вид СИ	К-т трансформации Класс точности № госреестра	Фаза	Тип	Зав. №	Ктт*Ктн	Изм. Величина
	АИИС Зав. U U U U U U U U U U U U U U U U U U U		ИПОХ	19495-03		TK-16L	200508026 200508027		Время
				Кл.т.=0.5	Α	ТФЗМ-35А-У1	45756		
		IЯ-1	F	Ктт=200/5	В	отсутствует			I первичный
	_	эва		№3690-73	С	ТФЗМ-35А-У1	46247		
	.92	Промысловая-1		Кл.т.=0.5	Α	НАМИ-35-УХЛ1	54		
	303	MÞ	ᄑ	Ктн=35000/100	В	НАМИ-35-УХЛ1	54	4000	U первичное
_	178	υ		№19813-00	С	НАМИ-35-УХЛ1	54	140	
	112117803761	ВЛ-35 кВ Г	Счетчик	Кл.т.=0.2 №14555-02 Ксч=1		A1R-3-AL-C8- зав. № 100708		`	I вторичный U вторичное Время Энергия Р, Q Мощность Р, Q

11po/	жиод	снис	Таол	ицы 1.20		T+014 054 \//	45400	1	
				Кл.т.=0.5	Α	ТФЗМ-35А-У1	45438		
		7		Ктт=200/5	В	отсутствует	45505		I первичный
	ω	ва		№3690-73	С	ТФЗМ-35А-У1	45525		
	128	8	_	Кл.т.=0.5	Α	НАМИ-35-УХЛ1	54		
	00	9	프	Ктн=35000/100	В	НАМИ-35-УХЛ1	54	00	U первичное
7	00	P		№19813-00	С	НАМИ-35-УХЛ1	54	14000	
	112100700128	ВЛ-35 кВ Поселковая-1						1	I вторичный
	1	75	Счетчик	Кл.т.=0.2		A1R-3-AL-C8-	Т		U вторичное
		<u>₽</u>	eT.	№14555-02					Время
		B.	ਨ	Ксч=1		зав. № 101267	' 4		Энергия Р, Q
									Мощность P, Q
				Кл.т.=0.5	Α	ТФЗМ-35А-У1	44810		
		ВЛ-35 кВ Промысловая-2		Ктт=200/5	В	отсутствует			I первичный
		Ba		№3690-73	С	ТФЗМ-35А-У1	45428		
	112100700129	E	_	Кл.т.=0.5	Α	НАМИ-35-УХЛ1	43		
	00	9	ᄑ	Ктн=35000/100	В	НАМИ-35-УХЛ1	43	0	U первичное
က)20	o O		№19813-00	С	НАМИ-35-УХЛ1	43	14000	
	100	은						14	I вторичный
	12	Θ	ž	Кл.т.=0.2		A1R-3-AL-C8-	Т		U вторичное
	_	35	Ī	№14555-02					Время
		4	Счетчик	Ксч=1		зав. № 101267	'A		Энергия P, Q
		Ф		104-1		3db. 142 101201	O		Мощность Р, Q
-				Кл.т.=0.5	Λ Ι	ТФЗМ-35А-У1	43730		IVIOЩПОСТВ Г , Q
				Ктт=200/5	A B		43730		I первичный
		я - 2	—	Nº3690-73	С	OTCYTCTBYET	50128		тпервичный
	0	Ba		№3090-73 Кл.т.=0.5		ТФЗМ-35А-У1			
	13(\ <u>\</u>	ェ		Α	НАМИ-35-УХЛ1	43		Ппорриша
	00.	ĕ	푸	KTH=35000/100	B C	НАМИ-35-УХЛ1	43 43	90	U первичное
4	112100700130	ВЛ-35 кВ Поселковая-2		№19813-00	C	НАМИ-35-УХЛ1	43	14000	1
	21(<u> </u>	\ \	16 00		A 4 D 0 A 1 00	-	_	I вторичный
	7	57	Счетчик	Кл.т.=0.2		A1R-3-AL-C8-	I		U вторичное
		<u>₽</u>	тeт	№14555-02					Время
		B	ರ	Ксч=1		зав. № 101261	3		Энергия Р, Q
									Мощность P, Q
		1T		Кл.т.=0.5	Α	ТОЛ-10	2171		
		Ã,		Ктт=1500/5	В	ТОЛ-10	2014		I первичный
			'	№7069-79	С	ТОЛ-10	2001		'
	31	Д		Кл.т.=0.5	Α	НТМИ-6-66 УЗ	3000		
	01	BB	표	Ктн=6000/100	В	НТМИ-6-66 УЗ	3000	0	U первичное
2)70	7	-	Nº2611-70	С			18000	о порвичнос
	112100700131	ЗРУ-6кВ КНС-1У ввод 6		IN≌∠O I I-/U	U	НТМИ-6-66 УЗ	3000	18	I promuu
	12	포	×	160.0		A4D 2 AL C0	-		I вторичный
	_	奇	Счетчик	Кл.т.=0.2		A1R-3-AL-C8-	1		U вторичное
		9-/	جو ا	№14555-02		No 404007	,		Время
		Ğ	Ŏ	Ксч=1		зав. № 101267	U		Энергия Р, Q
		ന		16. 0 =		TOP 10	50.454		Мощность P, Q
			,	Кл.т.=0.5	A	ТОЛ-10	59451		
		3 2T		Ктт=1500/5	В	ТОЛ-10	1804		I первичный
		Ğ.		№7069-02	С	ТОЛ-10	1066		
	4	9 д		Кл.т.=0.5	Α	НТМИ-6-66 УЗ	11670		
	113	BO	ᄑ	Ктн=6000/100	В	НТМИ-6-66 УЗ	11670	1	U первичное
	700	> B		№2611-70	С	НТМИ-6-66 УЗ	11670	00	- 3p
9	112100700134	ЗРУ-6кВ КНС-1У ввод		14-2011-10		TITIVIVI-O-OO JO	11070	18000	I вторичный
	21	X							·
	7	B	Счетчик	Кл.т.=0.2		A1R-3-AL-C8-	Т		U вторичное
		-6Ķ	eΤ	№14555-02					Время
		ΡŞ	ਨ	Ксч=1		зав. № 101268	37		Энергия Р, Q
		က				535. THE TO 1200	· •		Мощность Р, Q
1					1				иющность г, Q

1100	долж	CIIIIC	Tuos	ицы 1.20					
				Кл.т.=0.5	Α	TK-20	5632		
		<u>-</u>	Ш	Ктт=150/5	В	TK-20	1524		I первичный
	_	KHC-1У TCH-1		№1407-60	С	TK-20	7852		
	135	γT			Α	нет	нет		
	00,	:-1	TH		В	нет	нет	_	U = 380B
7	007	(HC			С	нет	нет	30	
	112100700135	ЗРУ-6кВ н	Счетчик	Кл.т.=0.2 №14555-02 Ксч=1		A1R-4-AL-C8- зав. № 100920			I вторичный U вторичное Время Энергия Р, Q
				I/0 F	^	TI(00	4000		Мощность P, Q
			_	Кл.т.=0.5	Α	TK-20	1239		
		-5	П	Ктт=150/5	В	TK-20	4589		I первичный
		CH		№1407-60	С	TK-20	6643		
	32	, Τ			Α	нет	нет		
	201	-1	TH		В	нет	нет		U = 380B
∞	112100700132	KHC-1У TCH-2			С	нет	нет	30	
	210								I вторичный
	1	-6к	ИK	Кл.т.=0.2		A1R-4-AL-C8-	Т		U вторичное
		ЗРУ-6кВ	Счетчик	№14555-02					Время
		3	$\frac{7}{2}$	Ксч=1		зав. № 100921	4		Энергия Р, Q
									Мощность Р, Q

				еречень ИК АИИ р" 110/35/6 кВ	IC K	УЭ			
номер ИК	код ИК	Присоединение	Вид СИ	К-т трансформации Класс точности № госреестра	Фаза	Тип	Зав. №	Ктт*Ктн	Изм. Величина
	1C 3a 2005A		успд	19495-03		TK-16L	200508013		Время
		-1		Кл.т.=0.5	Α	ТФМ-35-II-XЛ1	4220		
		ЫM	F	Ктт=300/5	В	отсутствует			I первичный
		щ		№17552-98	С	ТФМ-35-II-XЛ1	4211		
	224	Й		Кл.т.=0.5	Α	3НОМ-35-65 У1	1410319		
	000	H _H	표	Ктн=35000/100	В	3НОМ-35-65 У1	1410342	00	U первичное
_	010	Дег	·	№912-70	С	3НОМ-35-65 У1	1410329	21000	
	213601000224	ВЛ-35 кВ Западный Салым-1	Счетчик	Кл.т.=0.2 №14555-02 Ксч=1		А1R-3-AL-C8- зав. № 100793			I вторичный U вторичное Время Энергия Р, Q Мощность Р, Q
				Кл.т.=0.5	Α	ТФЗМ-35А-У1	71056		
		_	F	Ктт=150/5	В	отсутствует			I первичный
	10	Рэмовская		№3690-73	С	ТФЗМ-35А-У1	71052		
	225	ОВС		Кл.т.=0.5	Α	3НОМ-35-65 У1	1410319		
	000	ωe	프	Ктн=35000/100	В	3НОМ-35-65 У1	1410342	00	U первичное
2	010			№912-70	С	3НОМ-35-65 У1	1410329	10500	
	213601000225	ВЛ-35 кВ	Счетчик	Кл.т.=0.2 №14555-02 Ксч=1		А1R-3-AL-С8- зав. № 100956	,	I вторичный U вторичное Время Энергия Р, Q Мощность Р, Q	

1100,	доли	CITTIC	1405	ицы 1.∠1					
		-2		Кл.т.=0.5	Α	ТФЗМ-35А-ХЛ1	57375		
		·Μ	L	Ктт=200/5	В	отсутствует			I первичный
		Салым-2		№3690-73	С	ТФН-35М	18233		
	221			Кл.т.=0.5	Α	3НОМ-35-65ХЛ1	1362162		
	000	H _H	Ξ	Ктн=35000/100	В	3НОМ-35-65ХЛ1	1362156	00	U первичное
3	010	Западный	·	№912-70	С	3НОМ-35-65ХЛ1	1362131	14000	
	213601000221	ВЛ-35 кВ Заг	Счетчик	Кл.т.=0.2 №14555-02 Ксч=1		А1R-3-AL-С8- зав. № 100795			I вторичный U вторичное Время Энергия Р, Q Мощность Р, Q
				Кл.т.=0.5	Α	ТФЗМ-35А-У1	67630		
		_	L	Ктт=200/5	В	отсутствует			I первичный
		бор		№3690-73	С	ТФЗМ-35А-У1	67623		
	222	Водозабор		Кл.т.=0.5	Α	3НОМ-35-65ХЛ1	1362162		
	000	одс	王 -	Ктн=35000/100	В	3НОМ-35-65ХЛ1	1362156	8	U первичное
4	010	_		№912-70	С	3НОМ-35-65ХЛ1	1362131	14000	
	213601000222	ВЛ-35 кВ	Счетчик	Кл.т.=0.2 №14555-02 Ксч=1		А1R-3-AL-С8- ⁻ зав. № 100708		T	I вторичный U вторичное Время Энергия Р, Q Мощность Р, Q

	Таблица 1.22 Перечень ИК АИИС КУЭ ПС "Нефтеюганская" 110/35/6 кВ										
номер ИК	код ИК	Присоединение	Вид СИ	К-т трансформации Класс точности № госреестра	Фаза	Тип	Зав. №	Ктт*Ктн	Изм. Величина		
	АИИС Зав. № 2005A08		успд	19495-03	TK-16L 200508001			Время			
		1		Кл.т.=0.5	Α	ТФЗМ-35А-У1	33870	14000	I первичный		
	213701100246	ВЛ-35 кВ Карамышевская-1	L	Ктт=200/5	В	отсутствует					
				№3690-73	С	ТФЗМ-35А-ХЛ1	48009				
			王	Кл.т.=0.5	Α	НАМИ-35-УХЛ1	114				
				Ктн=35000/100	В	НАМИ-35-УХЛ1	114		U первичное		
_				№19813-00	С	НАМИ-35-УХЛ1	114				
			Счетчик	Кл.т.=0.2 №14555-02 Ксч=1		A1R-3-AL-C8- зав. № 100707		,	I вторичный U вторичное Время Энергия Р, Q Мощность Р, Q		
		ВЛ-35 кВ Городская-1	ТТ	L	F	Кл.т.=0.5	Α	ТФЗМ-35А-У1	40882		
	213701100265					=	=	F	Ктт=200/5	В	отсутствует
				№3690-73	С	ТФЗМ-35А-У1	40812				
			王	Кл.т.=0.5	Α	НАМИ-35-УХЛ1	114				
				Ктн=35000/100	В	НАМИ-35-УХЛ1	114	00	U первичное		
2	011			№19813-00	С	НАМИ-35-УХЛ1	114	4000			
	2137	ВЛ-35 кВ	Счетчик	Кл.т.=0.2 №14555-02 Ксч=1		A1R-3-AL-C8- зав. № 100706		-	I вторичный U вторичное Время Энергия Р, Q Мощность Р, Q		

11po/	ЖКОЈ	ение	Taol	IИЦЫ 1.22					
	213701100260	Связная-1	١.	Кл.т.=0.5	Α	ТФМ-35-II-ХЛ1	3277	00	
			F	Ктт=400/5	В	отсутствует			I первичный
				№17552-98	С	ТФМ-35-II-ХЛ1	4226		
				Кл.т.=0.5	Α	НАМИ-35-УХЛ1	114		
			픋	Ктн=35000/100	В	НАМИ-35-УХЛ1	114		U первичное
33				№19813-00	С	НАМИ-35-УХЛ1	114	28000	
	2137	ВЛ-35 кВ	Счетчик	Кл.т.=0.2 №14555-02 Ксч=1		A1R-3-AL-С8- ⁻ зав. № 100707		2	I вторичный U вторичное Время Энергия Р, Q Мощность Р, Q
				Кл.т.=0.5	Α	ТФЗМ-35А-ХЛ1	50280	21000	I первичный
		Ť	l ⊨	Ктт=300/5	В	отсутствует			
		ная		№3690-73	С	ТФЗМ-35А-ХЛ1	50472		
	258	J.		Кл.т.=0.5	Α	НАМИ-35-УХЛ1	114		U первичное І вторичный
	213701100258	тре	픋	Ктн=35000/100	В	НАМИ-35-УХЛ1	114		
4	11	eH.	'	№19813-00	С	НАМИ-35-УХЛ1	114		
	370	3.				134071 00 37011			
	213	ВЛ-35 кВ Центральная-1	Счетчик	Кл.т.=0.2 №14555-02 Ксч=1		A1R-3-AL-C8- зав. № 100708			U вторичное Время Энергия Р, Q Мощность Р, Q
				Кл.т.=0.5	Α	ТФЗМ-35А-ХЛ1	68196		I первичный
		1 - 2		Ктт=200/5	В	отсутствует			
	213701100257	ВЛ-35 кВ Карамышевская-2	-	№3690-73	С	ТФЗМ-35А-ХЛ1	68186		
5			王	Кл.т.=0.5	A	НАМИ-35-УХЛ1	113		
				Ктн=35000/100	В	НАМИ-35-УХЛ1	113	0	U первичное
				Nº19813-00	С	НАМИ-35-УХЛ1	113	14000	5 Sp. 11 11 10 10 10 10 10 10 10 10 10 10 10
	21370	ВЛ-35 кВ Ка	Счетчик	Кл.т.=0.2 №14555-02 Ксч=1		А1R-3-AL-C8- зав. № 101265	Т		I вторичный U вторичное Время Энергия Р, Q Мощность Р, Q
	29	ВЛ-35 кВ Городская-2		Кл.т.=0.5	Α	ТФН-35М	3848		
			F	Ктт=200/5	В	отсутствует		41001 113 113 113 0004 113	I первичный U первичное
				№3690-73	С	ТФЗМ-35А-ХЛ1	41001		
			E	Кл.т.=0.5	Α	НАМИ-35-УХЛ1	113		
	02				В	НАМИ-35-УХЛ1			
9	110			№19813-00	С	НАМИ-35-УХЛ1			
	213701100259		Счетчик	Кл.т.=0.2 №14555-02 Ксч=1		А1R-3-AL-C8- зав. № 100791	Т		I вторичный U вторичное Время Энергия Р, Q Мощность Р, Q
				Кл.т.=0.5	Α	ТФМ-35-II-XЛ1	3273		
		Z13701100264 ВЛ-35 кВ Связная-2	TH TH	Ктт=400/5	В	отсутствует		28000	I первичный
				№17552-98	C	ТФМ-35-II-XЛ1	4227		'
	213701100264			Кл.т.=0.5	A	НАМИ-35-УХЛ1	113		
					В	НАМИ-35-УХЛ1	113		U первичное
7					С	НАМИ-35-УХЛ1	113		о первичное
	70			14-70010-00		I IMIVIFUUTY AJ I I	110		I вторичный
	213.		ВЛ-35 н	Счетчик	Кл.т.=0.2 №14555-02 Ксч=1		А1R-3-AL-С8- ⁻ зав. № 101265		
]	MOЩHOUTEP, Q	

	ripodomkenne raomitali 1.22								
				Кл.т.=0.5	Α	ТФЗМ-35А-ХЛ1	50256		
	213701100244	ВЛ-35 кВ Центральная-2	L	Ктт=300/5	В	отсутствует			I первичный
				№3690-73	С	ТФЗМ-35А-ХЛ1	50270		
			ТН	Кл.т.=0.5	Α	НАМИ-35-УХЛ1	113	000	
				Ктн=35000/100	В	НАМИ-35-УХЛ1	113		U первичное
∞				№19813-00	С	НАМИ-35-УХЛ1	113	210	
									I вторичный
			ລ ∣ ≧	Кл.т.=0.2		A1R-3-AL-C8-	Γ		U вторичное
			Счет	№14555-02					Время
			$\ddot{\circ}$	Ксч=1		зав. № 100792	9		Энергия P, Q
									Мощность P, Q

Таблица 1.23 Перечень ИК АИИС КУЭ ПС "Островная" 110/35/6 кВ									
номер ИК	код ИК	Присоединение	Вид СИ	К-т трансформации Класс точности № госреестра	Фаза	Тип	Зав. №	Ктт*Ктн	Изм. Величина
	АИИС Зав. № 2005A08		успд	19495-03			200508003	Время	
	511808501869	.ลя-1	ΤΤ	Кл.т.=0.5 Ктт=200/5 №3690-73	A B C	ТФН-35М отсутствует ТФН-35М	12994 12227		I первичный
_		Імыринск	표	Кл.т.=0.5 Ктн=35000/100 №19813-00	A B C	НАМИ-35-УХЛ1 НАМИ-35-УХЛ1 НАМИ-35-УХЛ1	268 268 268	14000	U первичное
		ВЛ-35 кВ Шмыринская-1	Счетчик	Кл.т.=0.2 №14555-02 Ксч=1		A1R-3-AL-C8- зав. № 100794	Т	14	I вторичный U вторичное Время Энергия Р, Q Мощность Р, Q
	511808501870	ВЛ-35 кВ Север-1	П	Кл.т.=0.5 Ктт=200/5 №3690-73	A B C	ТФН-35М отсутствует ТФН-35М	77123 13417	14000	I первичный
2			표	Кл.т.=0.5 Ктн=35000/100 №19813-00	A B C	НАМИ-35-УХЛ1 НАМИ-35-УХЛ1 НАМИ-35-УХЛ1	268 268 268		U первичное
			Счетчик	Кл.т.=0.2 №14555-02 Ксч=1		A1R-3-AL-С8- зав. № 101267			I вторичный U вторичное Время Энергия Р, Q Мощность Р, Q
		ая-1	TT	Кл.т.=0.5 Ктт=600/5 №3690-73	A B C	ТФН-35М отсутствует ТФН-35М	52108 52197		I первичный
ဗ	511808501871	Кл.т.=0.5 А НАМИ-35-УХЛ1 89 Ктн=35000/100 В НАМИ-35-УХЛ1 89 № 19813-00 С НАМИ-35-УХЛ1 89		U первичное					
	51180	ВЛ-35 кВ (Счетчик	Кл.т.=0.2 №14555-02 Ксч=1		A1R-3-AL-C8- зав. № 100796	Т	4	I вторичный U вторичное Время Энергия Р, Q Мощность Р, Q

Hpo	цолж	ение	таол	ицы 1.23			1		
		0.1		Кл.т.=0.5	Α	ТФН-35М	26034		
		д <u>-</u> К	╘	Ктт=200/5	В	отсутствует			I первичный
	<u> </u>	Ka		№3690-73	С	ТФН-35М	26039		
	372	羊		Кл.т.=0.5	Α	НАМИ-35-УХЛ1	273		
	218	g	표	Ктн=35000/100	В	НАМИ-35-УХЛ1	273	Q	U первичное
4	85(₹	'	№19813-00	С	НАМИ-35-УХЛ1	273	14000	
	511808501872	ВЛ-35 кВ Шмыринская-2	Счетчик	Кл.т.=0.2 №14555-02 Ксч=1		A1R-3-AL-C8- зав. № 101266	Т	14	I вторичный U вторичное Время Энергия Р, Q
		ш	0	NOT 1		50B. 14- 101200	.0		Мощность P, Q
				Кл.т.=0.5	Α	ТФН-35М	26042		WOЩПОСТВТ, Q
			L	Ктт=200/5	В	отсутствует	20072		I первичный
			-	Nº3690-73	С	ТФН-35М	25044		т порыт пын
	ω	Север-2		Кл.т.=0.5	-				
	85	Be	_		Α	НАМИ-35-УХЛ1	273		
	01	Ce	王	Ктн=35000/100	В	НАМИ-35-УХЛ1	273	14000	U первичное
5	85			№19813-00	С	НАМИ-35-УХЛ1	273	40(
	511808501858	ВЛ-35 кВ	Счетчик	Кл.т.=0.2 №14555-02 Ксч=1		А1R-3-AL-С8- ⁻ зав. № 101265		1,	I вторичный U вторичное Время Энергия Р, Q
						003.14-101200			Мощность Р, Q
				Кл.т.=0.5	Α	ТФН-35М	52205		
		01	L	Ктт=600/5	В	отсутствует			I первичный
		Сургутская-2	-	№3690-73	С	ТФН-35М	51810		т порыт пыт
	0	Жa			-				
	98	ΣŢ	_	Кл.т.=0.5	Α	НАМИ-35-УХЛ1	273		
	0.0	Ιd	프	Ктн=35000/100	В	НАМИ-35-УХЛ1	273	42000	U первичное
9	385	S		№19813-00	С	НАМИ-35-УХЛ1	273	20	
	511808501860	ВЛ-35 кВ	Счетчик	Кл.т.=0.2 №14555-02 Ксч=1		А1R-3-AL-С8- зав. № 101264		7	I вторичный U вторичное Время Энергия P, Q
									Мощность P, Q
				Кл.т.=0.5	Α	ТЛМ-6	1222		
			F	Ктт=600/5	В	отсутствует			I первичный
				№3848-73	С	ТЛМ-6	1510		
	91	<u>, </u>		Кл.т.=0.5	Α	НАМИ-6	896		
	18	\geqslant	표	Ктн=6000/100	В	НАМИ-6	896	1	U первичное
_	50		—		С			7200	C Hopen Hoc
' -	808	五		№нет	U	НАМИ-6	896	72	,
	511808501861	KJI 6 kB TXY-1	Счетчик	Кл.т.=0.2 №14555-02 Ксч=1		А1R-3-AL-С8- ⁻ зав. № 100795			I вторичный U вторичное Время Энергия Р, Q Мощность Р, Q
				Кл.т.=0.5	Α	ТЛМ-6	9122		
			L	Ктт=300/5	В		5122	1	I первичный
			—			отсутствует	0004		і первидный
	က			№3848-73	С	ТЛМ-6	9224		
	87;	7		Кл.т.=0.5	Α	НАМИ-6	896		
	0	ŏ	프	Ктн=6000/100	В	НАМИ-6	896	ō	U первичное
∞	85	КЛ 6 кВ ОС-1		№нет	С	НАМИ-6	896	3600	
	180	9				👻		က	I вторичный
	511808501873	Б Б Кл.т.=0.2 A1R-3-AL-C8-T № 14555-02 Ксч=1 зав. № 1007947							U вторичное Время Энергия Р, Q
L					<u></u>				Мощность P, Q
	_								

11po)	цолж	ение	таол	ицы 1.23	, ,		T		· · · · · · · · · · · · · · · · · · ·
			١.	Кл.т.=0.5	Α	ТЛМ-6	3045	1	
			⊨	Ктт=400/5	В	отсутствует		4	I первичный
		ā		№3848-73	С	ТЛМ-6	7645	1	
	39	бы	_	Кл.т.=0.5	Α	НАМИ-6	896	1	
	316	<u>ф</u>	프	Ктн=6000/100	В	НАМИ-6	896]_	U первичное
6	989	Меу		№нет	С	НАМИ-6	896	4800	
	511806801639	β		I/c = =0.0		A4D 0 AL CO	т	4	I вторичный
	51	КЛ 6 кВ Мехдобыча	ž	Кл.т.=0.2		A1R-3-AL-C8-	I		U вторичное
		Ā	Счетчик	№14555-02					Время
			Ö	Ксч=1		зав. № 100922	:1		Энергия Р, Q
									Мощность Р, Q
				Кл.т.=0.5	Α	ТЛМ-6	7054		
			F	Ктт=400/5	В	отсутствует			I первичный
				№3848-73	С	ТЛМ-6	1556	_	
	오	Ŋ		Кл.т.=0.5	Α	НАМИ-6	928		
	164	\	프	Ктн=6000/100	В	НАМИ-6	928]	U первичное
10	380	3 T.		№нет	С	НАМИ-6	928	4800	
	511806801640	6 кВ ТХУ-2						4	I вторичный
	211	2	¥	Кл.т.=0.2		A1R-3-AL-C8-	Τ		U вторичное
	,		Счетчик	№14555-02					Время
			C46	Ксч=1		зав. № 100796	6		Энергия Р, Q
									Мощность Р, Q
				Кл.т.=0.5	Α	ТЛМ-6	9144	<u> </u>	, , , , , , , , , , , , , , , , , , , ,
			F	Ктт=300/5	В	отсутствует]	I первичный
				№3848-73	С	ТЛМ-6	9133]	
	<u> -</u>	CI		Кл.т.=0.5	Α	НАМИ-6	928]	
	163	OC-2		Ктн=6000/100	В	НАМИ-6	928]	U первичное
1	511806801631	ВС		№нет	С	НАМИ-6	928	3600	
	806	КЛ 6 кВ						36	I вторичный
	511	2	Ζ	Кл.т.=0.2		A1R-3-AL-C8-	Т		U вторичное
	~,		T4.	№14555-02					Время
			Счетчі	Kcч=1		зав. № 100598	5		Энергия Р, Q
									Мощность Р, Q
				Кл.т.=0.5	Α	ТЛМ-6	114		тощноого i , Q
			 -	Кл.т.=0.5 Ктт=200/5	В		114	1	I первичный
			F	Nº3848-73	С	отсутствует ТЛМ-6	91	1	тнерычпын
		<u>a</u>		№3646-73 Кл.т.=0.5	A		928	1	
	32	30Н	王	Кл.т0.5 Ктн=6000/100	В	НАМИ-6 НАМИ-6	928	1	U первичное
	016	MO	-	Ктн-6000/100 №нет	С	НАМИ-6		-	о первичное
12	511806801632	КЛ 6 кВ Промзона		IN≃∏CI		HAIVINI-0	928	2400	I вторичный
	180	æ		Кл.т.=0.2		A1D 2 AL CO	т	3	•
	51	9 П	Ž			A1R-3-AL-C8-	I		U вторичное
		ᅶ	Счетчик	№14555-02		No 100615	.0		Время
			ပ်	Ксч=1		зав. № 100919	13		Энергия Р, Q
									Мощность P, Q
					1			1	

				еречень ИК АИИ 0/35/6 кВ	IC K	/ 9				
номер ИК	код ИК	Присоединение	Вид СИ	К-т трансформации Класс точности № госреестра	Фаза	Тип	Зав. №	Ктт*Ктн	Изм. Величина	
	1C 3a :005A		успд	19495-03		TK-16L	200508006		Время	
		-1	П	Кл.т.=0.5 Ктт=300/5 №3690-73	A B C	ТФЗМ-35А-У1 отсутствует ТФЗМ-35А-У1	35809 35787		I первичный	
_	213701100238	Водозабор-1	TH	Кл.т.=0.5 Ктн=35000/100 №19813-00	A B C	НАМИ-35-УХЛ1 НАМИ-35-УХЛ1 НАМИ-35-УХЛ1	96 96 96	21000	U первичное	
	213701	ВЛ-35 кВ В	Счетчик	Кл.т.=0.2 №14555-02 Ксч=1	3	А1R-3-AL-C8- зав. № 101161	Т	21	I вторичный U вторичное Время Энергия Р, Q Мощность Р, Q	
		18-1	TT	Кл.т.=0.5 Ктт=300/5 №3690-73	A B C	ТФЗМ-35А-ХЛ1 отсутствует ТФЗМ-35А-ХЛ1	5821 35788		I первичный	
2	213701100266	1 осковска	TH	Кл.т.=0.5 Ктн=35000/100 №19813-00	A B C	НАМИ-35-УХЛ1 НАМИ-35-УХЛ1 НАМИ-35-УХЛ1	96 96 96	21000	U первичное	
	21370	ВЛ-35 кВ Московская-1	Счетчик	Кл.т.=0.2 №14555-02 Ксч=1		А1R-3-AL-С8- зав. № 101154	Т	21	I вторичный U вторичное Время Энергия Р, Q Мощность Р, Q	
		-1	L	Кл.т.=0.5 Ктт=200/5 №17552-98	A B C	ТФМ-35 IIУ1 отсутствует ТФМ-35 IIУ1	3265 3272		I первичный	
င	213724205073	Озерная-1	H	Кл.т.=0.5 Ктн=35000/100 №19813-00	A B C	НАМИ-35-УХЛ1 НАМИ-35-УХЛ1 НАМИ-35-УХЛ1	96 96 96	14000	U первичное	
	21372	ВЛ-35 кВ	Счетчик	Кл.т.=0.2 №14555-02 Ксч=1		А1R-3-AL-C8- зав. № 101156	Т	14	I вторичный U вторичное Время Энергия Р, Q Мощность Р, Q	
		ок-1	TT	Кл.т.=0.5 Ктт=200/5 №3690-73	A B C	ТФЗМ-35А-У1 отсутствует ТФЗМ-35А-У1	256 22146		I первичный	
4	213724205075	Суперблок-1	TH	Кл.т.=0.5 Ктн=35000/100 №19813-00	A B C	НАМИ-35-УХЛ1 НАМИ-35-УХЛ1 НАМИ-35-УХЛ1	96 96 96	14000	U первичное	
	21372	ВЛ-35 кВ (Счетчик	Кл.т.=0.2 №14555-02 Ксч=1		А1R-3-AL-C8- зав. № 101159	Т	1	I вторичный U вторичное Время Энергия Р, Q Мощность Р, Q	

11po)	жпор	ение	Taol	ицы 1.24			1	1	T
			١.	Кл.т.=0.5	Α	ТФЗМ-35А-ХЛ1	38740		
		2	F	Ктт=300/5	В	отсутствует			I первичный
		d _c		№3690-73	С	ТФЗМ-35А-ХЛ1	39078]	
)76	agu		Кл.т.=0.5	Α	НАМИ-35-УХЛ1	94		
	050	103	王	Ктн=35000/100	В	НАМИ-35-УХЛ1	94	0	U первичное
2	213724205076	ВЛ-35 кВ Водозабор-2		№19813-00	С	НАМИ-35-УХЛ1	94	21000	
	372	æ						2	I вторичный
	21	35	Ϊ¥	Кл.т.=0.2		A1R-3-AL-C8-	Т		U вторичное
		<u> </u>	Счетчик	№14555-02					Время
			ပ်	Ксч=1		зав. № 101162	20		Энергия P, Q
							T		Мощность P, Q
			١.	Кл.т.=0.5	Α	ТФЗМ-35А-ХЛ1	39071		
		8		Ктт=300/5	В	отсутствует			I первичный
		-KE		№3690-73	С	ТФЗМ-35Б-ІУ1	39074		
	177	3CK		Кл.т.=0.5	Α	НАМИ-35-УХЛ1	94		
	020	Ϋ́	王	Ктн=35000/100	В	НАМИ-35-УХЛ1	94	o	U первичное
9	42(Ν		№19813-00	С	НАМИ-35-УХЛ1	94	21000	
	213724205077	ВЛ-35 кВ Московская-2						2	I вторичный
	21	35 1	Ϊ	Кл.т.=0.2		A1R-3-AL-C8-	Т		U вторичное
		5	Счетчик	№14555-02					Время
		ш	۲ ک	Ксч=1		зав. № 101154	3		Энергия Р, Q
									Мощность P, Q
				Кл.т.=0.5	Α	ТФМ-35-II-XЛ1	70914		
			F	Ктт=200/5	В	отсутствует			I первичный
		7		№17552-98	С	ТФМ-35-II-XЛ1	23594		
	78	Озерная-2		Кл.т.=0.5	Α	НАМИ-35-УХЛ1	94		
)50	epi		Ктн=35000/100	В	НАМИ-35-УХЛ1	94	0	U первичное
_	420			№19813-00	С	НАМИ-35-УХЛ1	94	14000	
	213724205078	ВЛ-35 кВ						1 4	I вторичный
	213	-35	Ξ	Кл.т.=0.2		A1R-3-AL-C8-	Т		U вторичное
		ВЛ	етчик	№14555-02					Время
			Š	Ксч=1		зав. № 101154	5		Энергия Р, Q
									Мощность Р, Q
				Кл.т.=0.5	Α	ТФМ-35-II-У1	3266		, , ,
			L	Ктт=200/5	В	отсутствует		1	I первичный
		(-2	'	№17552-98	С	ТФМ-35-II-У1	3264	1	
	၇	Ę		Кл.т.=0.5	Α	НАМИ-35-УХЛ1	94	1	
	507	9dé	프	Ктн=35000/100	В	НАМИ-35-УХЛ1	94		U первичное
ω	213724205079	ВЛ-35 кВ Суперблок-2		№19813-00	С	НАМИ-35-УХЛ1	94	14000	
	724	B C						14	I вторичный
	13.	5 K	¥	Кл.т.=0.2		A1R-3-AL-C8-	Т		U вторичное
	(1	7-3	Счетчик		A1R-3-AL-C8-T				·
		B),	№14555-02	000 No 4044505				Время
				Ксч=1	зав. № 1011595				Энергия Р, Q
1									Мощность P, Q

		-		еречень ИК АИИ ая" 110/35/6 кВ	СК	УЭ			
номер ИК	код ИК	Присоединение	Вид СИ	К-т трансформации Класс точности № госреестра	Фаза	Тип	Зав. №	Ктт*Ктн	Изм. Величина
	1C 3a :005A		успд	19495-03		TK-16L	200508009		Время
				Кл.т.=0.5	Α	ТФЗМ-35А-ХЛ1	51937		
			TT	Ктт=200/5	В	отсутствует			I первичный
		<u>-</u>		№3690-73	С	ТФЗМ-35А-ХЛ1	51943		
	205	0-6		Кл.т.=0.5	Α	НАМИ-35-УХЛ1	267		
	000	Ϋ́	T	Ктн=35000/100	В	НАМИ-35-УХЛ1	267	00	U первичное
_	300	кВ КНС-6-1		№19813-00	С	НАМИ-35-УХЛ1	267	14000	
	213900900205	ВЛ-35 I	Счетчик	Кл.т.=0.2 №14555-02 Ксч=1		A1R-3-AL-С8- зав. № 100953		ı	I вторичный U вторичное Время Энергия Р, Q Мощность Р, Q
				Кл.т.=0.5	Α	ТФЗМ-35А-ХЛ1	46095		
			П	Ктт=200/5	В	отсутствует			I первичный
	6	7-7		№3690-73	С	ТФЗМ-35А-ХЛ1	48331		
	206	O-6		Кл.т.=0.5	Α	НАМИ-35-УХЛ1	97		
	900	Ϋ́	TH	Ктн=35000/100	В	НАМИ-35-УХЛ1	97	00	U первичное
2	300	Α̈́B		№19813-00	С	НАМИ-35-УХЛ1	97	14000	
	213900900206	ВЛ-35 кВ КНС-6-2	Счетчик	Кл.т.=0.2 №14555-02 Ксч=1		A1R-3-AL-С8- зав. № 100953	`	I вторичный U вторичное Время Энергия Р, Q Мощность Р, Q	

				еречень ИК АИИ я" 110/35/6 кВ	IC K	УЭ			
номер ИК	код ИК	Присоединение	Вид СИ	К-т трансформации Класс точности № госреестра	Фаза	Тип	Зав. №	Ктт*Ктн	Изм. Величина
	ИИС Зав. ⊇ 2005A08		19495-03		TK-16L 2005080			Время	
				Кл.т.=0.5	Α	ТФЗМ-35А-ХЛ1	57355		
		_	F	Ктт=200/5	В	отсутствует			I первичный
	ပ	Межевая-1		№3690-73	С	ТФЗМ-35А-ХЛ1	56102		
	3900900196	eB	_	Кл.т.=0.5	Α	НАМИ-35-УХЛ1	100		
	900	<u>e</u>	王	Ктн=35000/100	В	НАМИ-35-УХЛ1	100	00	U первичное
_	30C			№19813-00	С НАМИ-35-УХЛ1		100	14000	
	39(5 кВ	¥				_	1	I вторичный
	21	ВЛ-35	Ž	Кл.т.=0.2		A1R-3-AL-C8-	Г		U вторичное
		ВЛ	Счетчик	№14555-02		N. 400=00			Время
			Ó	Ксч=1	зав. № 1007081				Энергия P, Q
									Мощность P, Q

11po)	долж	ение	таол	ицы 1.26					
				Кл.т.=0.5	Α	ТФЗМ-35А-ХЛ1	56099		
			Ш	Ктт=200/5	В	отсутствует			I первичный
		7		№3690-73	С	ТФЗМ-35А-ХЛ1	56078		
	195	ари		Кл.т.=0.5	Α	НАМИ-35-УХЛ1	100		
	9	l io	T	Ктн=35000/100	В	НАМИ-35-УХЛ1	100	0	U первичное
2	600	кВ Косари-1		№19813-00	С	НАМИ-35-УХЛ1	100	14000	
	213900900195	ВЛ-35 к	Счетчик	Кл.т.=0.2		A1R-3-AL-C8-	Т	_	I вторичный U вторичное
			.ehO	№14555-02 Ксч=1		зав. № 101262	20		Время Энергия Р, Q Мощность Р, Q
				Кл.т.=0.5	Α	ТФЗМ-35А-ХЛ1	55394		
			ΤΤ	Ктт=200/5	В	отсутствует			I первичный
		я-2		№3690-73	С	ТФ3М-35А-ХЛ1	56085		
	97	Ва		Кл.т.=0.5	Α	НАМИ-35-УХЛ1	128		
	100	Xe	ΤH	Ктн=35000/100	В	НАМИ-35-УХЛ1	128	0	U первичное
က)60	Me	L	№19813-00	С	НАМИ-35-УХЛ1	128	14000	p
	06	Æ		11-10010 00		11/41/11/1-00-37/011	120	4	I вторичный
	213900900197	ВЛ-35 кВ Межевая-2	Счетчик	Кл.т.=0.2 №14555-02		A1R-3-AL-C8-	Т		U вторичное Время
			řΟ.	Ксч=1		зав. № 100707			Энергия Р, Q Мощность Р, Q
			١.	Кл.т.=0.5	Α	ТФЗМ-35А-ХЛ1	56071		
			11	Ктт=200/5	В	отсутствует			I первичный
		-2		№3690-73	С	ТФЗМ-35А-ХЛ1	56096		
	98	кВ Косари-2		Кл.т.=0.5	Α	НАМИ-35-УХЛ1	128		
	201	000	T	Ктн=35000/100	В	НАМИ-35-УХЛ1	128	o	U первичное
4	60	3		№19813-00	С	НАМИ-35-УХЛ1	128	14000	
	213900900198	5 K						<u> </u>	I вторичный
	213	ВЛ-35 н	ИĶ	Кл.т.=0.2		A1R-3-AL-C8-	Т		U вторичное
		B	Счетчик	№14555-02					Время
			ЬΟ	Ксч=1		зав. № 101261	4		Энергия Р, Q Мощность Р, Q
		ß		Кл.т.=0.5	Α	ТОЛ-10	6589		
		, 6ķ	ΤΤ	Ктт=1500/5	В	отсутствует			I первичный
		307		№7069-02	С	ТОЛ-10	6114		
	91	B		Кл.т.=0.5	Α	НТМИ-6-66У3	0646		
	201	χο	표	Ктн=6000/100	В	НТМИ-6-66У3	0646	0	U первичное
2	60	ენი 1T		№2611-70	С	НТМИ-6-66У3	0646	18000	•
	213900900191	ЗРУ-6кВ Приобское ввод 6кВ 1Т	Счетчик	Кл.т.=0.2 №14555-02 Ксч=1		А1R-3-AL-С8- зав. № 101263	Т	=======================================	I вторичный U вторичное Время Энергия Р, Q
		3Р	J	N04-1		3ab. IN≌ 101203	, ı		Унергия Р, Q Мощность Р, Q
		~		Кл.т.=0.5	Α	ТВЛМ-10	24783		мощнооты , Q
		6kE	L	Ктт=1500/5	В	отсутствует	24700	1	I первичный
		ро	_	Nº1856-63	С	ТВЛМ-10	8434	1	тпорылапын
	74	BB		Кл.т.=0.5	A	НТМИ-6-66У3		ł	
	018	06	ェ	Кл.т.=0.5 Ктн=6000/100	В		3802	_	Ппорриннос
9	060	эбск 2T	工			<u>НТМИ-6-66У3</u>	3802	8000	U первичное
	900)ИО		№2611-70	С	НТМИ-6-66У3	3802	18(1
	213900900194	Пр	¥	160-0		A4D 0 AL 00 :	-		I вторичный
	2	χ̈́Β	Σ	Кл.т.=0.2		A1R-3-AL-C8-	1		U вторичное
		В борона в в вот в в в в в в в в в в в в в в в в				12	Время Энергия Р, С	-	
		3Р	O	NO4-1		3ab. IN≥ 100/90	· _		Энергия Р, Q Мощность Р, Q
	l				333.112.1001002				.пощность г , ч

	400111			тіцы 1.20					
		6кВ		Кл.т.=0.5	Α	ТОЛ-10	2756		
			L	Ктт=100/5	В	ТОЛ-10	2757		I первичный
		ввод		№7069-02	C	ТОЛ-10	2740		
	247				Α	нет	нет		
	00	8 7	픋		В	нет	нет		U = 380B
7	011	Іриобское ТСН-1			С	нет	нет	20	
	213701100247	-6кВ Г	Счетчик	Кл.т.=0.2 №14555-02		A1R-4-AL-C8-			I вторичный U вторичное Время
		3Py	Ö	Ксч=1		зав. № 100918	01		Энергия P, Q Мощность P, Q

	Таблица 1.27 Перечень ИК АИИС КУЭ ПС "Приразломная" 110/35/6 кВ										
номер ИК	код ИК	Присоединение -	Вид СИ	К-т трансформации Класс точности № госреестра	Фаза	Тип	Зав. №	Ктт*Ктн	Изм. Величина		
	1C 3a		успд	19495-03		TK-16L	200508015		Время		
	36	. Яр-1	П	Кл.т.=0.5 Ктт=150/5 №3690-73 Кл.т.=0.5	A B C	ТФЗМ-35А-ХЛ1 отсутствует ТФЗМ-35А-ХЛ1	41761 41677		I первичный		
5	213601000236	кВ Белый Яр-1	ᄑ	КТН=35000/100 Nº19813-00	B C	НАМИ-35-УХЛ1 НАМИ-35-УХЛ1 НАМИ-35-УХЛ1	101 101 101	10500	U первичное		
	213	ВЛ-35 к	Счетчик	Кл.т.=0.2 №14555-02 Ксч=1		A1R-4-AL-C28- зав. № 106727			I вторичный U вторичное Время Энергия Р, Q Мощность Р, Q		
		іная-1	П	Кл.т.=0.5 Ктт=300/5 №3690-73	A B C	ТФЗМ-35А-ХЛ1 отсутствует ТФЗМ-35А-ХЛ1	68152 68138		I первичный		
9	213601000205	риразлом	표	Кл.т.=0.5 Ктн=35000/100 №19813-00	A B C	НАМИ-35-УХЛ1 НАМИ-35-УХЛ1 НАМИ-35-УХЛ1	101 101 101	21000	U первичное		
	2136	ВЛ-35 кВ Приразломная-1	Счетчик	Кл.т.=0.2 №14555-02 Ксч=1		A1R-4-AL-C28- зав. № 106726		7	I вторичный U вторичное Время Энергия Р, Q Мощность Р, Q		
		Яр-2	TT	Кл.т.=0.5 Ктт=300/5 №3690-73	A B C	ТФЗМ-35А-ХЛ1 отсутствует ТФЗМ-35А-ХЛ1	41880 41889		I первичный		
2	213601000209	Белый Я	표	Кл.т.=0.5 Ктн=35000/100 №19813-00	A B C	НАМИ-35-УХЛ1 НАМИ-35-УХЛ1 НАМИ-35-УХЛ1	105 105 105	21000	U первичное		
	21360	ВЛ-35 кВ I	Счетчик	Кл.т.=0.2 №14555-02 Ксч=1		A1R-4-AL-C28- зав. № 106728	T+	оз 2 I вторичны U вторично Время Энергия Р, Мощность Р			

Hpo	жпор	ение	таол	ицы 1.27					
		-		Кл.т.=0.5	Α	ТФЗМ-35Б-ІУ1	26133		
		19-2		Ктт=300/5	В	отсутствует			I первичный
	•	ина		№3690-73	С	ТФЗМ-35А-У1	31400		
	102	ЛОГ		Кл.т.=0.5	Α	НАМИ-35-УХЛ1	105		
	501	oa3	ፗ	Ктн=35000/100	В	НАМИ-35-УХЛ1	105	00	U первичное
∞	244	Ιри		№19813-00	С	НАМИ-35-УХЛ1	105	21000	
	213924405102	ВЛ-35 кВ Приразломная-2	Счетчик	Кл.т.=0.2 №14555-02 Ксч=1		А1R-4-AL-C28- ⁻ зав. № 106729			I вторичный U вторичное Время Энергия Р, Q Мощность Р, Q
				Кл.т.=0.5	Α	ТЛШ-10-1	69		
				Ктт=3000/5	В	ТЛШ-10-1	65		I первичный
		\ <u>o</u> 1		№11077-03	С	ТЛШ-10-1	594		
	109	C T		Кл.т.=0.5	Α	НАМИТ-10	0321		
	.05′	E,	H	Ктн=10000/100	В	НАМИТ-10	0321	90	U первичное
6	244	; ∏ 16⊦		№16687-97	С	НАМИТ-10	0321	00009	
	213924405109	3РУ-6кВ ПГТЭС №1 ввод 6кВ 1Т	Счетчик	Кл.т.=0.2 №14555-02 Ксч=1		A1R-4-AL-C28- зав. № 106726		9	I вторичный U вторичное Время Энергия Р, Q Мощность Р, Q
				Кл.т.=0.5	Α	ТЛШ-10-1	329		
				Ктт=3000/5	В	ТЛШ-10-1	543		I первичный
		Nº1		№11077-03	С	ТЛШ-10-1	539		
	110)C		Кл.т.=0.5	Α	НАМИТ-10	0320		
_	.02	T3 &	ፗ	Ктн=10000/100	В	НАМИТ-10	0320	00	U первичное
10	244	3 ∏I ¤ 6i		№16687-97	С	НАМИТ-10	0320	00009	
	213924405110	ЗРУ-6кВ ПГТЭС ввод 6кВ 2Т	Счетчик	Кл.т.=0.2 №14555-02 Ксч=1		A1R-4-AL-C28- зав. № 106729		9	I вторичный U вторичное Время Энергия Р, Q
									Мощность P, Q

				еречень ИК АИИ і Салым" 110/35/					
номер ИК	код ИК	Присоединение	Вид СИ	К-т трансформации Класс точности № госреестра	Фаза	Тип	Зав. №	Ктт*Ктн	Изм. Величина
	A/I/IC 3aB. № 2005A08		успд	19495-03		TK-16L	200508014		Время
		1-1		Кл.т.=0.5	Α	ТФЗМ-35А-ХЛ1	40921		
		алым-1	F	Ктт=100/5	В	отсутствует			I первичный
	4	Саг		№3690-73	C	ТФЗМ-35А-ХЛ1	40934		
	21,			Кл.т.=0.5	Α	НАМИ-35-УХЛ1	185		
	000	ЭНР	픋	Ктн=35000/100	В	НАМИ-35-УХЛ1	185		U первичное
_	010	Северный		№19813-00	C	С НАМИ-35-УХЛ1 185			
	213601000214	ВЛ-35 кВ Се	Счетчик	Кл.т.=0.2 №14555-02 Ксч=1		А1R-3-AL-C8- зав. № 100953			I вторичный U вторичное Время Энергия Р, Q Мощность Р, Q

11po,	долж	ение	таол	ицы 1.28				1	
			l .	Кл.т.=0.5	Α	ТФЗМ-35А-ХЛ1	40941		
			F	Ктт=100/5	В	отсутствует			I первичный
		Водозабор		№3690-73	С	ТФЗМ-35А-ХЛ1	40939		
	15	3a(Кл.т.=0.5	Α	НАМИ-35-УХЛ1	185		
	200	안	프	Ктн=35000/100	В	НАМИ-35-УХЛ1	185		U первичное
7	10			№19813-00	С	НАМИ-35-УХЛ1	185	7000	
	213601000215	ВЛ-35 кВ	Счетчик	Кл.т.=0.2 №14555-02 Ксч=1		А1R-3-AL-С8- ⁻ зав. № 100915			I вторичный U вторичное Время Энергия Р, Q
				1104-1		3db. Nº 100313	1		Мощность Р, Q
				Кл.т.=0.5	Α	ТФЗМ-35А-ХЛ1	38720		иющноств г , Q
		1-2	L	Ктт=100/5	В	отсутствует	30720		I первичный
		l le	-	Nº3690-73	С	ТФЗМ-35А-ХЛ1	38733		тпервичный
	_	Sar		№3090-73 Кл.т.=0.5					
	.12	ž	_		Α	НАМИ-35-УХЛ1	192		
_	000	윒	프	Ктн=35000/100	В	НАМИ-35-УХЛ1	192	8	U первичное
က	010	Северный Салым-2		№19813-00	С	НАМИ-35-УХЛ1	192	7000	
	213601000217	ВЛ-35 кВ Се	Счетчик	Кл.т.=0.2 №14555-02 Ксч=1		А1R-3-AL-С8- ⁻ зав. № 100956			I вторичный U вторичное Время Энергия Р, Q
		ш							Мощность P, Q
				Кл.т.=0.5	Α	ТФЗМ-35А-ХЛ1	38732		
		_		Ктт=100/5	В	отсутствует			I первичный
		Кая		№3690-73	С	ТФЗМ-35А-ХЛ1	38714		
	223	Рэмовская		Кл.т.=0.5	Α	НАМИ-35-УХЛ1	192		
	00	ЭМе	l 王	Ктн=35000/100	В	НАМИ-35-УХЛ1	192	0	U первичное
4)10			№19813-00	С	НАМИ-35-УХЛ1	192	2000	
	213601000223	ВЛ-35 кВ	Счетчик	Кл.т.=0.2 №14555-02 Ксч=1		А1R-3-AL-С8- ⁻ зав. № 100794			I вторичный U вторичное Время Энергия Р, Q
				Кл.т.=0.5	Λ.	TIIII 10	2050		Мощность P, Q
				Кл.т.=0.5 Ктт=2000/5	A B	ТЛШ-10	2858		I nonsuu ··· ··
		†				отсутствует	2002		I первичный
	7:			№11077-03	С	ТЛШ-10	2803	ļ	
	022	ввод 6кВ	_	Кл.т.=0.5	Α	НАМИ-10У2	4902	_	11 =
2	00	307	표	Ктн=6000/100	В	НАМИ-10У2	4902	24000	U первичное
",	301	3 BI		№11094-87	С	НАМИ-10У2	4902	24(<u> </u>
	213601000227	3РУ-6кВ	Счетчик	Кл.т.=0.2 №14555-02 Ксч=1		А1R-3-AL-С8- ⁻ зав. № 101264			I вторичный U вторичное Время Энергия Р, Q Мощность Р, Q
				Кл.т.=0.5	Α	ТЛШ-10	2754	-	
			l ⊨	Ктт=2000/5	В	отсутствует			I первичный
		2T		№11077-03	С	ТЛШ-10	3011	1	-
	228)KB		Кл.т.=0.5	A	НАМИ-10У3	3324	1	
	005	ввод 6кВ	픋	Ктн=6000/100	В	НАМИ-10У3	3324	0	U первичное
9	10	BBC	-	№11094-87	С	НАМИ-10У3	3324	24000	CSPD# 11100
	213601000228	ЗРУ-6кВ	этчик	Кл.т.=0.2 №14555-02		A1R-3-AL-C8-		5	I вторичный U вторичное Время
		3Py-6	Счетчик	Ксч=1	зав. № 1012664		4		Энергия P, Q Мощность P, Q

Tipo	долж	CHINC	Taos	1ицы 1.28					
				Кл.т.=0.5	Α	TK-20	28537		
			L	Ктт=300/5	В	TK-20	35581		I первичный
		_		№1407-60	С	TK-20	28286		
	226	TCH-1			Α	нет	нет		
	000	2			В	нет	нет		U = 380B
7	010	SkB			С	нет	нет	9	
	213601000226	ЗРУ-6кВ	Счетчик	Кл.т.=0.2 №14555-02 Ксч=1		A1R-4-AL-C28- зав. № 106728			I вторичный U вторичное Время Энергия Р, Q Мощность Р, Q
				Кл.т.=0.5	Α	TK-20	33525		ощноотв г , с
			L	Ктт=300/5	В	TK-20	35324		I первичный
		01	'	№1407-60	С	TK-20	28675		·
	220	TCH-2			Α	нет	нет		
	000	1	T.		В	нет	нет		U = 380B
∞	010	ЭĸВ			С	нет	нет	09	
	213601000220	ЗРУ-6кВ	Счетчик	Кл.т.=0.2 №14555-02 Ксч=1		A1R-4-AL-C28- зав. № 106729			I вторичный U вторичное Время Энергия Р, Q Мощность Р, Q

				еречень ИК АИИ ык" 220/35/10 кВ	IC K	уэ			
номер ИК	код ИК	Присоединение	Вид СИ	К-т трансформации Класс точности № госреестра	Фаза	Тип	Зав. №	Ктт*Ктн	Изм. Величина
	1C 3a		успд	19495-03		TK-16L	200508005		Время
				Кл.т.=0.5	Α	ТФЗМ-35Б-І-У1	19710		
			F	Ктт=300/5	В	отсутствует			I первичный
	8	-1		№3689-73	С	ТФМ-35-II-ХЛ1	4213		
	248	Север-1	_	Кл.т.=0.5	Α	НАМИ-35-УХЛ1	198		
1_	100		프	Ктн=35000/100	В	НАМИ-35-УХЛ1	198	21000	U первичное
_	.01	кВ		№19813-00	С	НАМИ-35-УХЛ1	198	210	
	213701100248	ВЛ-35 кВ	Счетчик	Кл.т.=0.2 №14555-02 Ксч=1		A1R-3-AL-C8- зав. № 100797			I вторичный U вторичное Время Энергия Р, Q Мощность Р, Q
				Кл.т.=0.5	Α	ТФМ-35-II-У1	3280		
		_	⊨	Ктт=400/5	В	отсутствует			I первичный
	2	Связная-1		№17552-98	С	ТФМ-35-II-У1	3287		
)24	13H6		Кл.т.=0.5	Α	НАМИ-35-УХЛ1	198		
2	100	CBS	프	Ктн=35000/100	В	НАМИ-35-УХЛ1	198	28000	U первичное
	701			№19813-00	С	НАМИ-35-УХЛ1	198	280	
	213701100245	ВЛ-35 кВ	Счетчик	Кл.т.=0.2 №14555-02 Ксч=1	A1R-3-AL-C8-T зав. № 1007976			I вторичный U вторичное Время Энергия Р, Q Мощность Р, Q	

11po)	ЖКОЈ	ение	Taol	ицы 1.29					.
				Кл.т.=0.5	Α	ТФМ-35-ІІХЛ1	3282		
			F	Ктт=400/5	В	отсутствует			I первичный
		<u></u>		№17552-98	С	ТФМ-35-ІІХЛ1	3278		
	33	웊		Кл.т.=0.5	Α	НАМИ-35-УХЛ1	198		
	200	ера	픈	Ктн=35000/100	В	НАМИ-35-УХЛ1	198	0	U первичное
က	7	m		№19813-00	С	НАМИ-35-УХЛ1	198	28000	
	213701100239	ВЛ-35 кВ Герань-1	Счетчик	Кл.т.=0.2 №14555-02 Ксч=1		А1R-3-AL-С8- зав. № 100794		28	I вторичный U вторичное Время Энергия Р, Q Мощность Р, Q
				Кл.т.=0.5	Λ.	ТФЗМ-35А-У1	70880		МОЩПОСТВ Г, Q
			⊢		A		70000		Lacobianina
				KTT=150/5	B C	отсутствует	70070		I первичный
	ΟI	Остров-1		№3690-73		ТФЗМ-35А-У1	70876		
	242	lod.	_	Кл.т.=0.5	A	НАМИ-35-УХЛ1	198		
	00	5	푸	Ктн=35000/100	В	НАМИ-35-УХЛ1	198	8	U первичное
4	011	g G		№19813-00	С	НАМИ-35-УХЛ1	198	10500	
	213701100242	ВЛ-35 кВ	Счетчик	Кл.т.=0.2 №14555-02 Ксч=1		A1R-3-AL-C8- ⁻ зав. № 100795		1	I вторичный U вторичное Время Энергия Р, Q Мощность Р, Q
				Кл.т.=0.5	Α	ТФЗМ-35А-У1	70889		
			l⊨	Ктт=150/5	В	отсутствует			I первичный
			'	№3690-73	С	ТФЗМ-35А-У1	70879		'
	49	7		Кл.т.=0.5	A	НАМИ-35-УХЛ1	198	1	
	002	Ē	Ŧ	Ктн=35000/100	В	НАМИ-35-УХЛ1	198	0	U первичное
2	110 KB	-	№19813-00	С	НАМИ-35-УХЛ1	198	10500	о перви тос	
	213701100249	ВЛ-35 кВ Пим-1	Счетчик	Кл.т.=0.2 №14555-02 Ксч=1		А1R-3-AL-C8- зав. № 100797	Т	1(I вторичный U вторичное Время Энергия Р, Q Мощность Р, Q
				Кл.т.=0.5	Α	ТФЗМ-35А-У1	19630		·
			l ⊨	Ктт=300/5	В	отсутствует			I первичный
		Ņ	l	№3690-73	С	ТФНД-35М	18718		
	:50	Север-2		Кл.т.=0.5	Α	НАМИ-35-УХЛ1	199		
	202)eB	王 -	Ктн=35000/100	В	НАМИ-35-УХЛ1	199	o	U первичное
9	7	B C		№19813-00	С	НАМИ-35-УХЛ1	199	21000	
	213701100250	ВЛ-35 кВ	Счетчик	Кл.т.=0.2 №14555-02 Ксч=1		А1R-3-AL-C8- зав. № 100795	Г	2.	I вторичный U вторичное Время Энергия Р, Q Мощность Р, Q
				Кл.т.=0.5	Α	ТФМ-35-II-У1	3283		·
			F	Ктт=400/5	В	отсутствует		1	I первичный
		4-2		№17552-98	С	ТФМ-35-II-У1	3284	1	·
	251	Hã		Кл.т.=0.5	Α	НАМИ-35-УХЛ1	199		
	005	Связная-2	[-	Ктн=35000/100	В	НАМИ-35-УХЛ1	199	0	U первичное
7	11(№19813-00	С	НАМИ-35-УХЛ1	199	28000	
	3701 5 kB		Счетчик	Кл.т.=0.2 №14555-02 Ксч=1		А1R-3-AL-C8- зав. № 100794	Г	7	I вторичный U вторичное Время Энергия Р, Q
			$oxed{oxed}$						Мощность Р, Q

Hpo)	долж	ение	табл	іицы 1.29					
				Кл.т.=0.5	Α	ТФМ-35-ІІХЛ1	3281		
				Ктт=400/5	В	отсутствует			I первичный
		2-2		№17552-98	С	ТФМ-35-ІІХЛ1	3286		
	267	Герань-2		Кл.т.=0.5	Α	НАМИ-35-УХЛ1	199		
	00	ep_	프	Ктн=35000/100	В	НАМИ-35-УХЛ1	199	8	U первичное
∞	011	ΩŜ		№19813-00	С	НАМИ-35-УХЛ1	199	28000	
	213701100267	ВЛ-35 кВ	Счетчик	Кл.т.=0.2 №14555-02 Ксч=1		А1R-3-AL-C8- зав. № 100796			I вторичный U вторичное Время Энергия Р, Q Мощность Р, Q
				Кл.т.=0.5	Α	ТФЗМ-35А-У1	70891		·
				Ктт=150/5	В	отсутствует			I первичный
		3-2		№3690-73	С	ТФЗМ-35А-У1	70877		
	240	Остров-2		Кл.т.=0.5	Α	НАМИ-35-УХЛ1	199		
	00	Эст	H H	Ктн=35000/100	В	НАМИ-35-УХЛ1	199	8	U первичное
6	011			№19813-00	С	НАМИ-35-УХЛ1	199	0200	
	213701100240	ВЛ-35 кВ	Счетчик	Кл.т.=0.2 №14555-02 Ксч=1	A1R-3-AL-C8-T зав. № 1012682				I вторичный U вторичное Время Энергия Р, Q Мощность Р, Q
				Кл.т.=0.5	Α	ТФН-35М	8766		
			F	Ктт=200/5	В	отсутствует		1	I первичный
		OI.		№3689-73	С	ТФН-35М	8188		-
	241	,-M		Кл.т.=0.5	Α	НАМИ-35-УХЛ1	199		
	00;		Ŧ	Ктн=35000/100	В	НАМИ-35-УХЛ1	199	8	U первичное
10	011	B		№19813-00	С	НАМИ-35-УХЛ1	199	14000	
	10 213701100241 ВЛ-35 кВ Пим-2		Счетчик	Кл.т.=0.2 №14555-02 Ксч=1		A1R-3-AL-C8-Т зав. № 1007944			I вторичный U вторичное Время Энергия Р, Q
									Мощность P, Q

		-		еречень ИК АИИ " 110/35/6 кВ	IC K	уэ			
номер ИК	код ИК	Присоединение	Вид СИ	К-т трансформации Класс точности № госреестра	Фаза	Тип	Зав. №	Ктт*Ктн	Изм. Величина
	АИИС Зав. № 2005A08		успд	19495-03		TK-16L	200508007		Время
				Кл.т.=0.5	Α	ТФН-35М	13096		
		1	F	Ктт=300/5	В	отсутствует			I первичный
	0	`-К		№3690-73	C	ТФН-35М	12019		
	080	Озерная-1		Кл.т.=0.5	Α	3НОМ-35-65У1	1426462		
	205)36		Ктн=35000/100	В	3НОМ-35-65У1	1426448	000	U первичное
_	242	кВ С		№912-70	С	3НОМ-35-65У1	1426399	210	
	- Right Structure (1975) 1.242050 1.00		A1R-3-AL-C8-T зав. № 1007921			,,	I вторичный U вторичное Время Энергия Р, Q Мощность Р, Q		

Ne3690-73 C TΦH-35M 41102 M. 126462 M. 142648 M. 1426499 M. 1426499 M. 1426499 M. 1426499 M. 1426499 M. 1426499 M. 1426498 M. 1426498 M. 1426498 M. 1426498 M. 1426499 M. 1426498 M. 142	ервичный ервичное оричный торичное Зремя ргия Р, Q ность Р, Q ервичный
Negago-73 C ToH-35M 41102 H	ервичное оричный торичное Зремя ргия Р, Q ность Р, Q
No. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	оричный горичное Зремя ргия Р, Q ность Р, Q
C 3HOM-35-6591 1426399 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	оричный горичное Зремя ргия Р, Q ность Р, Q
C 3HOM-35-6591 1426399 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	оричный горичное Зремя ргия Р, Q ность Р, Q
C 3HOM-35-6591 1426399 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	торичное Время ргия Р, Q ность Р, Q
Контантант Конта	торичное Время ргия Р, Q ность Р, Q
R	Время ргия Р, Q ность Р, Q ервичный
Кл.т.=0.5 A ТФН-35М 3537 Ктт=300/5 B отсутствует Ппе	ргия Р, Q ность Р, Q рвичный
Кл.т.=0.5 A ТФН-35М 3537 Ктт=300/5 В отсутствует	ность Р, Q
Кл.т.=0.5 A ТФН-35М 3537 Ктт=300/5 B отсутствует № 3690-73 C ТФН-35М 3526 Кл.т.=0.5 A 3HOM-35-65У1 1426462 Ктн=35000/100 B 3HOM-35-65У1 1426448 № 912-70 C 3HOM-35-65У1 1426399 Кл.т.=0.2 А1R-3-AL-C8-Т № 14555-02 Ксч=1 Зав. № 1007894	рвичный
E Ктт=300/5 №3690-73 В отсутствует от тфн-35М з526 Кл.т.=0.5 Кл.т.=0.5 Ктн=35000/100 № 3HOM-35-65У1 1426448 Кл.т.=0.5 Ктн=35000/100 В 3HOM-35-65У1 1426448 № 912-70 С 3HOM-35-65У1 1426399 Кл.т.=0.2 Кл.т.=0.2 Кл.т.=0.2 Кл.т.=0.2 Ксч=1 Кл.т.=0.2 Ксч=1 А1R-3-AL-C8-Т В Энер Мощи	
E Nº3690-73 С ТФН-35М 3526 Кл.т.=0.5 A 3HOM-35-65У1 1426462 Ктн=35000/100 В 3HOM-35-65У1 1426448 № 912-70 С 3HOM-35-65У1 1426399 Кл.т.=0.2 А1R-3-AL-C8-Т U вт Кл.т.=0.2 Ксч=1 3ав. № 1007894 Энер Мощи	
1 Вто 2 Вто 3 Вто 1 Вто 1 Вто 2 Вто 3 Вто 4 Вто 4 Вто	эрвичное
1 Вто 2 Вто 3 Вто 1 Вто 1 Вто 2 Вто 3 Вто 4 Вто 4 Вто	эрвичное
1 Вто 2 Вто 3 Вто 1 Вто 1 Вто 2 Вто 3 Вто 4 Вто 4 Вто	ервичное
1 Вто 2 Вто 3 Вто 1 Вто 1 Вто 2 Вто 3 Вто 4 Вто 4 Вто	
На На На № 14555-02 В ван. № 1007894 В не мощи Мощи Мощи Мощи Мощи Мощи	
На На На № 14555-02 В ван. № 1007894 В не мощи Мощи Мощи Мощи Мощи Мощи	оричный
— о Ксч=1 зав. № 1007894 Энеј Мощ	торичное
Мощ	Время
	ргия Р, Q
TALLOEM 00000	ность Р, Q
Кл.т.=0.5 А ТФН-35М 22328	
	рвичный
С ТФН-35М 12017 Кл.т.=0.5 А 3HOM-35-65У1 1077969 Ктн=35000/100 В 3HOM-35-65У1 1127071 Ктн=35000 В 3HOM-35-65У1 1127071 <t< td=""><td></td></t<>	
80 Н 10 Кл.т.=0.5 10 А 3HOM-35-65У1 1077969 10 В 10 В <	
4 1	ервичное
4 1 1 0 </td <td></td>	
m 10	оричный торичное
	оричное Время
	ргия Р, Q
	ность Р, Q
Кл.т.=0.5 А ТФН-35М 17022	
□ □ Ктт=300/5 В отсутствует I пе	рвичный
Nº3690-73 C TΦH-35M 32812	
8	_
New Section 1 New Section 2 New Section	ервичное
у В Д Д Ктн=35000/100 В ЗНОМ-35-65У1 1127071 О О О О О О О О О О О О О О О О О О О	
	оричный
	торичное
	Время
	ргия Р, Q
Кл.т.=0.5 А ТФН-35М 3524	ность P, Q
	рвичный
New Section 1 New Section 2007 B отсутствует Пере	Роичпои
6 Ублитине Кл.т.=0.5 А ЗНОМ-35-65У1 1077969 Ктн=35000/100 В ЗНОМ-35-65У1 1127071 №912-70 С ЗНОМ-35-65У1 1096628 Кп.т.=0.2 А1R-3-AL-C8-Т U пе	ервичное
6 10	PDNINUC
	กทุนบบบาน
	оричный торичное
	торичное
	•

11po/	ЖІСОД	ение	Taon	ицы 1.30					
				Кл.т.=0.5	Α	ТЛМ-10	5519		
			⊨	Ктт=400/5	В	отсутствует			I первичный
				№2473-00	С	ТЛМ-10	5631		
	365	Py-2-1		Кл.т.=0.5	Α	НАМИ-6	779		
	018	\.\.\.\.	프	Ктн=6000/100	В	НАМИ-6	779		U первичное
7	85	ВР		№нет	С	НАМИ-6	779	4800	
	511808501865	КЛ 6кВ	Счетчик	Кл.т.=0.2 №14555-02 Ксч=1		А1R-3-AL-С8- ⁻ зав. № 100791		4	I вторичный U вторичное Время Энергия Р, Q
									Мощность P, Q
				Кл.т.=0.5	Α	ТЛМ-10	5542		
			T	Ктт=400/5	В	отсутствует			I первичный
		7		№2473-00	С	ТЛМ-10	6636		
	99	БИС-1		Кл.т.=0.5	Α	НАМИ-6	932		
	018	-3 E	王	Ктн=6000/100	В	НАМИ-6	932	0	U первичное
∞	85(宁		№нет	С	НАМИ-6	932	4800	
	511808501866	КЛ 6кВ КНС-3	Счетчик	Кл.т.=0.2 №14555-02 Ксч=1		А1R-3-AL-С8- ⁻ зав. № 100791		4	I вторичный U вторичное Время Энергия Р, Q Мощность Р, Q
				Кл.т.=0.5	Α	ТЛМ-10	4982		
			F	Ктт=400/5	В	отсутствует			I первичный
		7-2	·	№2473-00	С	ТЛМ-10	5938		-
	67	й		Кл.т.=0.5	Α	НАМИ-6	779		
	118	3 E	표	Ктн=6000/100	В	НАМИ-6	779		U первичное
6	850	ᅌ		№нет	С	НАМИ-6	779	4800	-
	511808501867	КЛ 6кВ КНС-3 БИС-2	Счетчик	Кл.т.=0.2 №14555-02 Ксч=1		А1R-3-AL-С8- ⁻ зав. № 100707	Г	4	I вторичный U вторичное Время Энергия Р, Q Мощность Р, Q
				Кл.т.=0.5	Α	ТЛМ-10	2756		
			L	Ктт=300/5	В	отсутствует]	I первичный
				№2473-00	С	ТЛМ-10	7918]	
	68	7-2		Кл.т.=0.5	Α	НАМИ-6	932	[
)18	Py-2-2	프	Ктн=6000/100	В	НАМИ-6	932	_	U первичное
9	85(3 P	'	№нет	С	НАМИ-6	932	3600	·
	511808501868	КЛ 6кВ	Счетчик	Кл.т.=0.2 №14555-02 Ксч=1		А1R-3-AL-С8- ⁻ зав. № 100790	Γ	ε	I вторичный U вторичное Время Энергия Р, Q Мощность Р, Q
					<u>l</u>				IVIOЩHOCTЬ P, Q

				еречень ИК АИИ кая" 110/35/6 кВ	IC K	УЭ			
номер ИК	код ИК	Присоединение	Вид СИ	К-т трансформации Класс точности № госреестра	Фаза	Тип	Зав. №	Ктт*Ктн	Изм. Величина
	1C 3a		успд	19495-03		TK-16L	200508008		Время
		ая-1	П	Кл.т.=0.5 Ктт=300/5 №3690-73	A B C	ТФЗМ-35А-У1 отсутствует ТФЗМ-35А-У1	69731 67617		I первичный
_	511806801624	Дашковская-1	TH	Кл.т.=0.5 Ктн=35000/100 №19813-00	A B C	НАМИ-35-УХЛ1 НАМИ-35-УХЛ1 НАМИ-35-УХЛ1	174 174 174	21000	U первичное
	511806	ВЛ-35кВ Д	Счетчик	Кл.т.=0.2 №14555-02 Ксч=1		А1R-3-AL-C8- зав. № 101264	Т	21	I вторичный U вторичное Время Энергия Р, Q Мощность Р, Q
		ая-2	TT	Кл.т.=0.5 Ктт=300/5 №3690-73	A B C	ТФЗМ-35А-У1 отсутствует ТФЗМ-35А-У1	67576 67749		I первичный
2	511806801625	Дашковская-2	TH	Кл.т.=0.5 Ктн=35000/100 №19813-00	A B C	НАМИ-35-УХЛ1 НАМИ-35-УХЛ1 НАМИ-35-УХЛ1	189 189 189	21000	U первичное
	51180	ВЛ-35 кВ Д	Счетчик	Кл.т.=0.2 №14555-02 Ксч=1		A1R-3-AL-C8- зав. № 100707	Т	2	I вторичный U вторичное Время Энергия Р, Q Мощность Р, Q
		-1	TT	Кл.т.=0.5 Ктт=600/5 №2473-00	A B C	ТЛМ-10 отсутствует ТЛМ-10	6695 6575		I первичный
8	511806801623	кВ КНС-1-1	ТН	Кл.т.=0.5 Ктн=6000/100 №380-49	A B C	НТМИ-6 НТМИ-6 НТМИ-6	11562 11562 11562	7200	U первичное
	5118	9 Дова	Счетчик	Кл.т.=0.2 №14555-02 Ксч=1		A1R-3-AL-С8- зав. № 100789			I вторичный U вторичное Время Энергия Р, Q Мощность Р, Q
		-2	Ш	Кл.т.=0.5 Ктт=600/5 №2473-00	A B C	ТЛМ-10 отсутствует ТЛМ-10	6643 6355		I первичный
4	511806801618	кВ КНС-1-2	НТ	Кл.т.=0.5 Ктн=6000/100 №380-49	A B C	НТМИ-6 НТМИ-6 НТМИ-6	6451 6451 6451	7200	U первичное
	5118	9 Довв	Счетчик	Кл.т.=0.2 №14555-02 Ксч=1		A1R-3-AL-C8- зав. № 100796		, -	I вторичный U вторичное Время Энергия Р, Q Мощность Р, Q

				еречень ИК АИИ -Сургутская" 110								
номер ИК	код ИК	Присоединение	Вид СИ	К-т трансформации Класс точности № госреестра	Фаза	Тип	Зав. №	Ктт*Ктн	Изм. Величина			
	1C 3a		успд	19495-03		TK-16L	200508002		Время			
		кая-1	TT	Кл.т.=0.5 Ктт=150/5 №3690-73	A B C	ТФ3М-35А-У1 отсутствует ТФ3М-35А-У1	27704 27687		I первичный			
-	511806801633	Пироковс	표	Кл.т.=0.5 Ктн=35000/100 №19813-00	A B C	НАМИ-35-УХЛ1 НАМИ-35-УХЛ1 НАМИ-35-УХЛ1	211 211 211	10500	U первичное			
	51180	ВЛ-35 кВ Широковская-1	Счетчик	Кл.т.=0.2 №14555-02 Ксч=1		A1R-3-AL-C8- зав. № 100914	Т	_	I вторичный U вторичное Время Энергия Р, Q Мощность Р, Q			
		1-н	Ш	Кл.т.=0.5 Ктт=150/5 №3689-73	A B C	ТФЗМ-35А-У1 отсутствует ТФЗМ-35А-У1	10884 28164		I первичный			
2	2 511806801630	Уфимска	з Уфимска	3 Уфимска	ВЛ-35 кВ Уфимская-1	TH	Кл.т.=0.5 Ктн=35000/100 №19813-00	A B C	НАМИ-35-УХЛ1 НАМИ-35-УХЛ1 НАМИ-35-УХЛ1	211 211 211	10500	U первичное
	51180	ВЛ-35 кВ	Счетчик	Кл.т.=0.2 №14555-02 Ксч=1		A1R-3-AL-C8- зав. № 100794	Т	-	I вторичный U вторичное Время Энергия Р, Q Мощность Р, Q			
		кая-2	F	Кл.т.=0.5 Ктт=150/5 №3689-73	A B C	ТФЗМ-35-У1 отсутствует ТФЗМ-35-У1	28153 27652		I первичный			
က	511806801634	Широковс	표	Кл.т.=0.5 Ктн=35000/100 №19813-00	A B C	НАМИ-35-УХЛ1 НАМИ-35-УХЛ1 НАМИ-35-УХЛ1	95 95 95	10500	U первичное			
	5118	ВЛ-35 кВ Широковская-2	Счетчик	Кл.т.=0.2 №14555-02 Ксч=1		A1R-3-AL-C8- зав. № 100708		_	I вторичный U вторичное Время Энергия Р, Q Мощность Р, Q			
	6	ая-2	ш	Кл.т.=0.5 Ктт=150/5 №3689-73	A B C	ТФЗМ-35-У1 отсутствует ТФЗМ-35-У1	28139 28165		I первичный			
4	511806801629	ВЛ-35 кВ Уфимская-2	HL	Кл.т.=0.5 Ктн=35000/100 №19813-00	A B C	НАМИ-35-УХЛ1 НАМИ-35-УХЛ1 НАМИ-35-УХЛ1	95 95 95	10500	U первичное			
	5118	ВЛ-35 кВ	Счетчик	Кл.т.=0.2 №14555-02 Ксч=1		A1R-3-AL-C8- зав. № 100790		_	I вторичный U вторичное Время Энергия Р, Q Мощность Р, Q			

	OJIJI	Спис	Taon	ицы 1.32					
				Кл.т.=0.5	Α	ТОЛ-10	41034		
		11	F	Ктт=1500/5	В	отсутствует			I первичный
		ìкВ		№7069-79	С	ТОЛ-10	48337		
	336	д 6		Кл.т.=0.5	Α	НТМИ-6-66	3375		
	016	звс	王	Ктн=6000/100	В	НТМИ-6-66	3375	0	U первичное
2	89(20 ו		№2611-70	С	НТМИ-6-66	3375	18000	
	511806801636	6кВ №120 ввод 6кВ						_	I вторичный
	51	B	ИK	Кл.т.=0.2		A1R-3-AL-C8-	Т		U вторичное
			Счетчик	№14555-02					Время
		РУ	ပ်	Ксч=1		зав. № 100795	53		Энергия P, Q
									Мощность P, Q
				Кл.т.=0.5	Α	ТОЛ-10	27944		
		2T	T	Ктт=1500/5	В	отсутствует			I первичный
		Ã		№7069-02	С	ТОЛ-10	8012		
	337	ввод 6кВ		Кл.т.=0.5	Α	НТМИ-6-66 УЗ	4276		
	016	380	프	Ктн=6000/100	В	НТМИ-6-66 УЗ	4276	0	U первичное
9	99	20 1		№2611-70	С	НТМИ-6-66 УЗ	4276	18000	
	511806801637	6кВ №120						7	I вторичный
	51	ВМ	Счетчик	Кл.т.=0.2		A1R-3-AL-C8-	Т		U вторичное
		6k	ет	№14555-02					Время
		РУ	$\frac{7}{2}$	Ксч=1		зав. № 100795	52		Энергия Р, Q
									Мощность P, Q
		-		Кл.т.=0.5	Α	TK-20	1244		
		TCH-1		Ктт=200/5	В	TK-20	35341		I первичный
		3 T(№1407-60	С	TK-20	28612		
	511806801635	ввод 6кВ			Α	нет	нет		
	016	од	프		В	нет	нет		U = 380B
7	990) BB			С	нет	нет	40	
	18(6кВ №120							I вторичный
	51	$\frac{9}{2}$	Счетчик	Кл.т.=0.2		A1R-4-OL-C4-	·T		U вторичное
		ìкВ	ŀЕТ	№14555-02					Время
		Py 6	Ö	Ксч=1		зав. № 100593	9		Энергия P, Q
		Ф					_		Мощность P, Q
		-5		Кл.т.=0.5	Α	TK-20	2030		
		TCH-2	⊨	Ктт=200/5	В	TK-20	8515		I первичный
		<u>–</u>		№1407-60	С	TK-20	7232		
	322	ввод 6кВ			Α	нет	нет		
	016	ОД	王		В	нет	нет		U = 380B
1	99() BB			С	нет	нет	40	
∞		\circ							I вторичный
	18(7				445 6 61 64	т	1	
8	511806801622	Nº12	чик	Кл.т.=0.2		A1R-3-OL-C4-	· I		U вторичное
ω	5118(kB №12	етчик	№14555-02					Время
ω	5118(PY 6kB №120	Счетчик			A1R-3-OL-С4- зав. № 100517			·

				еречень ИК АИИ кая" 110/35/6кВ	IC K	УЭ			
номер ИК	код ИК	Присоединение	Вид СИ	К-т трансформации Класс точности № госреестра	Фаза	Тип	Зав. №	Ктт*Ктн	Изм. Величина
	АИИС Зав. Б № 2005A08 > 19495-0		19495-03		TK-16L	200508022		Время	
				Кл.т.=0.5	Α	TG-145	1226		
			Ш	Ктт=300/5	В	TG-145	1224		I первичный
				№15651-96	С	TG-145	1349		
	38	\vdash		Кл.т.=0.5	Α	CPB-123	8642613		
	016	B 1	TH	Ктн=110000/100	В	CPB-123	8642609	0	U первичное
_	989	10k		№15853-96	С	CPB-123	8642610	00099	
	511806801638	BB 110kB 1T	Счетчик	Кл.т.=0.2 №14555-02 Ксч=1		A1R-4-AL-C28- зав. № 107991		9	I вторичный U вторичное Время Энергия Р, Q Мощность Р, Q
				Кл.т.=0.5	Α	TG-145	1228		· · · · · ·
			TT	Ктт=300/5	В	TG-145	1229		I первичный
				№15651-96	С	TG-145	1227		
	26	L		Кл.т.=0.5	Α	CPB-123	8642614		
	016	ß 2	Ŧ	Ктн=110000/100	В	CPB-123	8642612	0	U первичное
7	989	110kB 2T		№15853-96	C	CPB-123	8642611	00099	
	2 511806801626 BB 110kB 2T		Счетчик	Кл.т.=0.2 №14555-02 Ксч=1		A1R-4-AL-C28- зав. № 107996		9	I вторичный U вторичное Время Энергия Р, Q Мощность Р, Q
									MOЩHOUTE F, Q

				еречень ИК АИИ кая" 110/35/6 кВ	IC K	уэ			
номер ИК	код ИК	Присоединение	Вид СИ	К-т трансформации Класс точности № госреестра	Фаза	Тип	Зав. №	Ктт*Ктн	Изм. Величина
	1C 3a 005A	Зав. 5A08 > 19495-03 TK-16L 2		200508007	Время				
				Кл.т.=0.5	Α	TG-145	1347		
			ΤΤ	Ктт=300/5	В	TG-145	1348		I первичный
				№15651-96	С	TG-145	1339		
	386	1		Кл.т.=0.5	Α	CPB-123	8645022		
	013	Ö	TH	Ктн=110000/100	В	CPB-123	8645020	0	U первичное
3	58	110кВ		№15853-96	С	CPB-123	8645023	00099	
	88 1089				A1R-4-AL-C28-T+ зав. № 1067273		99	I вторичный U вторичное Время Энергия Р, Q Мощность Р, Q	

1100,	4001711	011110	1000	ицы 1.5-т					
				Кл.т.=0.5	Α	TG-145	1350		
				Ктт=300/5	В	TG-145	1351		I первичный
				№15651-96	С	TG-145	1352		
	388	2T		Кл.т.=0.5	Α	CPB-123	8645021		
	1805801;	0кВ	Ŧ.	Ктн=110000/100	В	CPB-123	8645019	00	U первичное
4		110		№15853-96	С	CPB-123	8645024	00099	
	18	BB 1						9	I вторичный
	51	ш	ЧИК	Кл.т.=0.2		A1R-4-AL-C28-	T+		U вторичное
			Счет	№14555-02					Время
			S	Ксч=1		зав. № 106725	3		Энергия Р, Q
									Мощность P, Q

				еречень ИК АИИ вская" 110/35/6 к		уэ			
номер ИК	код ИК	Присоединение	Вид СИ	К-т трансформации Класс точности № госреестра	Фаза	Тип	Зав. №	Ктт*Ктн	Изм. Величина
	1C 3a 005A		успд	19495-03		TK-16L	200508018		Время
			TT	Кл.т.=0.5 Ктт=300/5 №15651-96	A B C	TG-145 TG-145 TG-145	1440 1441 1442		I первичный
5	511805801389	110kB 1T	TH	Кл.т.=0.5 Ктн=110000/100 №15853-96	A B C	CPB-123 CPB-123 CPB-123	8642699 8642698 8642697	00099	U первичное
	51180	BB 1	Счетчик	Кл.т.=0.5 №16666-97 Ксч=1		EA05RALX-P4B зав. № 010937		99	I вторичный U вторичное Время Энергия Р, Q Мощность Р, Q
			П	Кл.т.=0.5 Ктт=300/5 №15651-96	Ктт=300/5 B TG-145 1444			I первичный	
9	511805801387	BB 110kB 2T	TH	Кл.т.=0.5 Ктн=110000/100 №15853-96	A B C	CPB-123 CPB-123 CPB-123	8642683 8642688 8642619	00099	U первичное
	51180	BB 1	Счетчик	Кл.т.=0.5 №16666-97 Ксч=1		EA05RALX-P4B зав. № 010937	N-3	99	I вторичный U вторичное Время Энергия Р, Q Мощность Р, Q

АИИС является иерархической, многоуровневой, интегрированной, автоматизированной системой и состоящей из информационно-измерительных комплексов, информационно-вычислительных комплексов электроустановок (далее - ИВКЭ) и центрального информационно-вычислительного комплекса (далее - ИВК).

Принцип работы АИИС КУЭ заключается в трансформировании первичных фазных токов и напряжений измерительными трансформаторами в аналоговые сигналы низкого уровня, которые по проводным линиям связи поступают на соответствующие входы электронного счетчика электрической энергии (уровень – ИИК). В счетчике мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются соответствующие мгновенные значения активной, реактивной и полной мощности, с учетом коэффициентов трансформации измерительных трансформаторов тока (ТТ) и напряжения (ТН). Электрическая энергия, как интеграл по времени от мощности, вычисляется для интервалов времени 30 мин.

Средняя активная (реактивная) электрическая мощность вычисляется как среднее значение вычисленных мгновенных значений мощности на интервале времени усреднения 30 мин.

Цифровой сигнал с выходов счетчиков по проводным линиям связи (интерфейс RS-485 и ИРПС) поступает на входы локальных УСПД (уровень – ИВКЭ), где осуществляется хранение измерительной информации, ее накопление и передача накопленных данных на верхний уровень системы (ИВК).

Измерительно-вычислительный комплекс электроустановок (ИВКЭ), включает в себя:

- локальное УСПД типа ТК 16 L;
- преобразователь АТП (ИРПС-RS422)
- модем RS422 V23;
- радиостанция Motorola GM-340 с АФУ
- Модем SHDSL типа ZyXEL Prestige 791R EE
- блок питания 12В;
- Источник бесперебойного питания.

Данные с ИВКЭ на ИВК передаются по радиоканалу со скоростью 9600 Бод при помощи радиостанций Motorola GM-340 с антенно-фидерным устройством (АФУ), работающих в диапазоне частот 403 – 447 МГц, или посредством сети Ethernet по каналу, образованному физической линией и модемами SHDSL.

Измерительно-вычислительный комплекс (ИВК), включает:

- сервера сбора и баз данных на пяти базах энергообеспечения (БЭО):
 - о Юганская (ЮБЭО);
 - о Мамонтовская (МБЭО);
 - о Майская (МсБЭО);
 - о Пойковская (ПБЭО);
 - о Приобская (ПрБЭО;

- рабочие станции оператора Compaq d310;
- устройства синхронизации единого времени Acutime 2000 GPS;
- источник бесперебойного питания Smart UPS 700;
- радиостанция Motorola GM-340 с АФУ
- блок питания радиостанции 12В;
- центральный сервер баз данных, выполняющий функции сервера сбора данных с промежуточных серверов БД репликацией баз с использованием каналов корпоративной вычислительной сети (КВС);

На верхнем уровне системы выполняется дальнейшая обработка измерительной информации, формирование и хранение поступающей информации, оформление справочных и отчетных документов. Передача информации в заинтересованные организации осуществляется от сервера базы данных, по коммутируемым телефонным линиям, через Интернет-провайдера по оптоволоконной линии связи, по оптическому (инфракрасному) каналу связи с Нефтеюганскими Электрическими Сетями.

АИИС оснащена системой обеспечения единого времени (COEB), включающей в себя приемник сигналов точного времени от спутников глобальной системы позиционирования (GPS). Погрешность системного времени не превышает 5 с.

Система единого времени (CEB) выполнена на базе устройства синхронизации единого времени Acutime 2000 GPS .

Для защиты измерительной системы от несанкционированных изменений (корректировок) предусмотрен многоступенчатый доступ к текущим данным и параметрам настройки системы (электронные ключи, индивидуальные пароли и программные средства для защиты файлов и базы данных).

ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Основные технические характеристики АИИС представлены в таблице 2.

Таблица 2 – Основные технические характеристики АИИС

		а 2.1 Характеристики измерительных каналов ыть-Ях" 500/220/110/35 кВ				
ИИ	ſК	Наименование параметра		Значен	ие	
		Номинальный ток (Iн₁/Iн₂)		200 / 5 A		
		Допустимый диапазон первичного тока		10240) A	
		Номинальная нагрузка ТТ		50 BA	4	
		Номинальное напряжение (Uн ₁ /Uн ₂)		35000 / 1	00 B	
	KHC-12 Б-1	Номинальная нагрузка ТН		360 B	A	
		Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0,8	3 cosφ=0,5	
_	Ϋ́	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5	±4.6	
	â	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.5	±2.5	
	35kB	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.3	±2.0	
	ВЛ	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	,6	sinφ=0,87	
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4		±2.35	
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7	,	±1.6	
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.6	+	±1.5	
		Номинальный ток (Iн ₁ /Iн ₂)		200 / 5		
	35кВ КНС-1- 1		Допустимый диапазон первичного тока		10240	
		Номинальная нагрузка ТТ		50 BA		
		Номинальное напряжение (Uн ₁ /Uн ₂)		35000 / 1		
		Номинальная нагрузка ТН		360 B		
		Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0,8	3 cosφ=0,5	
7		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5	±4.6	
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн₁	±1.2	±1.5	±2.5	
		в точке диапазона тока I1 = 1,0 - 1,2 Iн ₁	±1.1	±1.3	±2.0	
	ВЛ	раницы допускаемой относительной погрешности результата мерений количества реактивной электрической энергии при sinφ=0,6 рверительной вероятности 0,95:		,6	sinφ=0,87	
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4		±2.35	
		в точке диапазона тока I1 = 0,2 - 1,0 ⋅Iн ₁	±1.7	,	±1.6	
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.6	1	±1.5	
		Номинальный ток (Iн₁/Iн₂)		300 / 5	Α	
		Допустимый диапазон первичного тока		15360	Α	
		Номинальная нагрузка ТТ		30 BA	4	
		Номинальное напряжение (Uн ₁ /Uн ₂)		35000 / 1	00 B	
	<u>.</u>	Номинальная нагрузка ТН		360 B	A	
	Звездная-1	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0,8	3 cosφ=0,5	
က	3B(в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5	±4.6	
	35kB	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.5	±2.5	
	35	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.3	±2.0	
	ВЛ	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	,6	sinφ=0,87	
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Ін ₁	±2.4		±2.35	
		в точке диапазона тока I1 = 0,2 - 1,0 ·lн ₁	±1.7		±1.6	
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.6		±1.5	

	Номинальный ток (Iн₁/Iн₂)		300 / 5 /			
	томинальный ток (пт/тт <u>2)</u>	300 / 5 A				
	Допустимый диапазон первичного тока		15360 A			
	Номинальная нагрузка TT					
	Номинальное напряжение (Uн₁/Uн₂)					
<u>-</u>	Номинальная нагрузка ТН		360 BA			
енняя-	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0,8	cosφ=0,5		
ဝိ	·	±1.9	±2.5	±4.6		
Θ		±1.2	±1.5	±2.5		
351		±1.1	±1.3	±2.0		
ВЛ	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	,6	sinφ=0,87		
	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4		±2.35		
				±1.6		
		±1.6		±1.5		
			400 / 5 /	4		
	•					
				0 B		
	·					
енняя-1	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при	cosφ=1	cosφ=0,8	cosφ=0,5		
3ec	·	±1.9	±2.5	±4.6		
		±1.2	±1.5	±2.5		
35k				±2.0		
ВЛ	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:			sinφ=0,87		
	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁			±2.35		
	в точке диапазона тока	±1.7		±1.6		
	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.6		±1.5		
	Номинальный ток (Iн₁/Iн₂)		200 / 5 A	A		
	Допустимый диапазон первичного тока		١			
	Номинальная нагрузка ТТ					
	Номинальное напряжение (Uн₁/Uн₂)	;	0 B			
~	Номинальная нагрузка ТН		360 BA			
	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0,8	cosφ=0,5		
Ξ	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁		±2.5	±4.6		
â	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.5	±2.5		
351	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.3	±2.0		
ВЛ	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:			sinφ=0,87		
	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁			±2.35		
	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁			±1.6		
	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.6		±1.5		
2	Номинальный ток (Iн ₁ /Iн ₂)					
	Допустимый диапазон первичного тока		10240	4		
Ò	Номинальная нагрузка TT		30 BA	·		
五	Номинальное напряжение (Uн₁/Uн₂)		35000 / 10	0 B		
Ω̈́	Номинальная нагрузка ТН		360 BA			
ВЛ 35	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0,8	cosφ=0,5		
	35кВ КНС-1- 2 ВЛ 35кВ КНС-12 Б-2 ВЛ 35кВ Весенняя-1	Номинальная нагрузка ТТ Номинальное напряжение (UH ₁ /UH ₂) Праницы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95: В точке диапазона тока 11 = 0,0 - 1,0 - 1H ₁ В точке диапазона тока 11 = 0,0 - 1,0 - 1H ₁ В точке диапазона тока 11 = 0,0 - 1,0 - 1H ₁ В точке диапазона тока 11 = 0,0 - 1,0 - 1H ₁ В точке диапазона тока 11 = 0,0 - 1,0 - 1H ₁ В точке диапазона тока 11 = 0,0 - 1,0 - 1H ₁ В точке диапазона тока 11 = 0,0 - 1,0 - 1H ₁ В точке диапазона тока 11 = 0,0 - 1,0 - 1H ₁ В точке диапазона тока 11 = 0,0 - 1,0 - 1H ₁ В точке диапазона тока 11 = 0,0 - 1,0 - 1H ₁ Номинальная нагрузка ТТ Номинальная нагрузка ТТ Номинальная нагрузка ТТ Праницы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95: В точке диапазона тока 11 = 0,0 - 1,0 - 1H ₁ В точке диапазона тока 11 = 0,0 - 1,0	Номинальная нагрузка ТТ Границы допускаемой относительной погрешности результата имерений количества активной электрической энергии при доверительной вероятности 0,95: В точке диапазона тока 11 = 0,05 - 0,2 - lh₁ ± 1.2 В точке диапазона тока 11 = 0,05 - 0,2 - lh₁ ± 1.1 Границы допускаемой относительной погрешности результата имерений количества реактивной электрической энергии при доверительной вероятности 0,95: В точке диапазона тока 11 = 0,0 - 1,2 - lh₁ ± 1.1 Границы допускаемой относительной погрешности результата имерений количества реактивной электрической энергии при доверительной вероятности 0,95: В точке диапазона тока 11 = 0,0 - 1,2 - lh₁ ± 1.7 В точке диапазона тока 11 = 0,0 - 1,2 - lh₁ ± 1.7 Номинальная нагрузка ТТ Номинальная нагрузка ТТ Номинальная нагрузка ТН Границы допускаемой относительной погрешности результата имерений количества активной электрической энергии при доверительной вероятности 0,95: В точке диапазона тока 11 = 1,0 - 1,2 - lh₁ ± 1.9 В точке диапазона тока 11 = 0,0 - 1,2 - lh₁ ± 1.9 В точке диапазона тока 11 = 0,0 - 1,2 - lh₁ ± 1.1 В точке диапазона тока 11 = 1,0 - 1,2 - lh₁ ± 1.1 В точке диапазона тока 11 = 1,0 - 1,2 - lh₁ ± 1.1 В точке диапазона тока 11 = 0,0 - 0,2 - lh₁ ± 1.1 В точке диапазона тока 11 = 1,0 - 1,2 - lh₁ ± 1.1 В точке диапазона тока 11 = 1,0 - 1,2 - lh₁ ± 1.1 Номинальная нагрузка ТТ Номинальная нагрузка ТН Номинальная нагрузка ТТ Номинальная нагрузка ТН Номинальная нагрузка ТТ Номинальная нагрузка ТП Номинальная нагрузка ТП Номинальная нагрузка ТП Номинальная нагрузка ТП Номинальная нагрузка ТТ Номинальная нагрузка ТТ Номинальная нагрузка ТТ Номинальная нагрузка	Номинальная нагрузка ТТ Тем обращения обращения обращения (UH ₁ /UH ₂) Тем обращения обраще		

Hpo	жкор	ение таблицы 2.1			Γ
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5	±4.6
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.5	±2.5
		в точке диапазона тока	±1.1	±1.3	±2.0
		Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	,6	sinφ=0,87
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4		±2.35
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7		±1.6
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.6		±1.5
		Номинальный ток (Iн ₁ /Iн ₂)		400 / 5	5 A
		Допустимый диапазон первичного тока		2048	0 A
		Номинальная нагрузка TT		50 B	A
		Номинальное напряжение (Uн₁/Uн₂)		35000 / ⁻	100 B
	7	Номинальная нагрузка ТН		360 E	BA
	Звездная-2	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0	,8 cosφ=0,5
8	3E	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5	±4.6
	35кВ	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.5	±2.5
	135	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.3	±2.0
	ВЛ	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	,6	sinφ=0,87
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4		±2.35
		в точке диапазона тока	±1.7		±1.6
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.6		±1.5
		Номинальный ток (Iн ₁ /Iн ₂)		300 / 9	
		Допустимый диапазон первичного тока		1536	0 A
		Номинальная нагрузка ТТ		50 B	A
	Осенняя-2	Номинальное напряжение (Uн ₁ /Uн ₂)		35000 /	
		Номинальная нагрузка ТН		360 E	BA
		Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0	,8 cosφ=0,5
6		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5	±4.6
	35кВ	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.5	±2.5
	1 35	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.3	±2.0
	ВЛ	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0		sinφ=0,87
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4		±2.35
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7		±1.6
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.6		±1.5
		Номинальный ток (Iн ₁ /Iн ₂)		400 / 5	
		Допустимый диапазон первичного тока		2048	
		Номинальная нагрузка ТТ		50 B	
		Номинальное напряжение (Uн ₁ /Uн ₂)	;	35000 /	
	4-2	Номинальная нагрузка ТН		360 E	3A
	НЯЯ	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при	cosφ=1	cosφ=0	,8 cosφ=0,5
	ЭËН	измерении количества активной электрической энергии при доверительной вероятности 0,95:	- τοσφ-1	- 0.5φ-0	,υ τοσφ-υ,υ
10	Весенняя-2	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5	±4.6
	(B)	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.5	±2.5
	35кВ	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.3	±2.0
	ВЛ	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	ти результата		sinφ=0,87
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4		±2.35
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7		±1.6
1		в точке диапазона тока I1 = 1,0 - 1,2 ⋅lн₁	±1.6		±1.5

Таблица 2.2 Характеристики измерительных каналов

ПС "Правдинская" 220/110/35/10 кВ

ИИ	łК	Наименование параметра		Значе	ние	
		Номинальный ток (Iн ₁ /Iн ₂)		200 / 5	5 A	
		Допустимый диапазон первичного тока		1024) A	
		Номинальная нагрузка TT		50 B	BA	
	_	Номинальное напряжение (Uн₁/Uн₂)		35000 / 1	100 B	
	ЭЯ-	Номинальная нагрузка ТН		360 E	BA	
	Промышленная-1	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0,	8 cosφ=0,5	
~	OME	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5	±4.6	
	Пр	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.5	±2.5	
	Æ	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.3	±2.0	
	ВЛ-35	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	,6	sinφ=0,87	
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4		±2.35	
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7	'	±1.6	
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.6		±1.6	
		Номинальный ток (Ін ₁ /Ін ₂)		200 / 5	5 A	
		Допустимый диапазон первичного тока		1024) A	
	5 кВ ДНС-3-1	Номинальная нагрузка TT		50 B	Ą	
		Номинальное напряжение (Uн₁/Uн₂)		35000 / 1	100 B	
		Номинальная нагрузка ТН		360 E	3A	
		Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0,	8 cosφ=0,5	
7		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5	±4.6	
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.5	±2.5	
	ВЛ-35	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.3	±2.0	
	B	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	,6	sinφ=0,87	
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4		±2.35	
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7		±1.6	
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.6		±1.6	
		Номинальный ток (Iн ₁ /Iн ₂)		200 / 5		
		Допустимый диапазон первичного тока		1024		
		Номинальная нагрузка ТТ		30 B		
	я-2	Номинальное напряжение (Uн₁/Uн₂)		35000 / 1		
	На	Номинальная нагрузка ТН		360 E	BA	
	Промышленная-2	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0,	8 cosφ=0,5	
က	pod	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5	±4.6	
	3 🗆	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.5	±2.5	
	5 KB	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.3	±2.0	
	ВЛ-35	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	,6	sinφ=0,87	
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4		±2.35	
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7		±1.6	
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.6		±1.6	

	1	onii taomin 2.2					
		Номинальный ток (Iн ₁ /Iн ₂)		150 / 5	Α		
		Допустимый диапазон первичного тока		7.5180 A			
		Номинальная нагрузка ТТ		50 BA	4		
		Номинальное напряжение (Uн ₁ /Uн ₂)	;	35000 / 1	00 B		
		Номинальная нагрузка ТН		360 B	A		
	ДНС-3-2	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0,8	3 cosφ=0,5		
4	ĸВД	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5	±4.6		
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.5	±2.5		
	ВЛ-35	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.3	±2.0		
	BJ	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	,6	sinφ=0,87		
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4		±2.35		
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7		±1.6		
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.6		±1.6		

		а 2.3 Характеристики измерительных каналов ркатеевы" 220/10/6 кВ					
ИІ	ИΚ	Наименование параметра		Значен	ие		
		Номинальный ток (Iн ₁ /Iн ₂)		300 / 5 A			
		Допустимый диапазон первичного тока		15360	Α		
		Номинальная нагрузка TT		10 BA			
		Номинальное напряжение (Uн ₁ /Uн ₂)		6000 / 10	0 B		
	кВ 1 Турбаза	Номинальная нагрузка ТН		50 BA) BA		
		Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0,8	cosφ=0,5		
_		в точке диапазона тока I₁ = 0,05 - 0,2 ·Iн₁	±1.9	±2.5	±4.6		
	9	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.5	±2.5		
	ер	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.2	±1.9		
	фидер	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0),6	sinφ=0,87		
		в точке диапазона тока I ₁ = 0,05 - 0,2 Iн ₁ ±2.4			±2.35		
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7		±1.71		
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.5	;	±1.56		

	Таблица 2.4 Характеристики измерительных каналов ПС "Ленинская" 220/110/35 кВ							
И	ИК	Наименование параметра	Значение					
		Номинальный ток (Iн₁/Iн₂)		200 / 5 A	\			
	_	Допустимый диапазон первичного тока		10240 <i>A</i>	4			
	Сибирская-	Номинальная нагрузка TT		50 BA				
		Номинальное напряжение (Uн ₁ /Uн ₂)	;	35000 / 100) B			
	бир	Номинальная нагрузка ТН		360 BA				
~	δÃ	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0,8	cosφ=0,5			
	ВЛ-35	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5	±4.6			
	a a	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.5	±2.5			
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.3	±2.0			

	OIIM	ение таолицы 2.4					
		Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	,6	s	inφ=0,87	
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4			±2.35	
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7			±1.6	
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.6			±1.6	
		Номинальный ток (Iн ₁ /Iн ₂)		200	/5A		
		Допустимый диапазон первичного тока	10240 A				
		Номинальная нагрузка TT	50 BA				
		Номинальное напряжение (Uн₁/Uн₂)	35000 / 100 B				
	_	Номинальная нагрузка ТН		360) BA		
	Тюменская-1	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ	=0,8	cosφ=0,5	
7	짇	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2	.5	±4.6	
	кВ 1	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.	.5	±2.5	
	5 K	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.	.3	±2.0	
	ВЛ-35	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:		±1.1 ±1.3		inφ=0,87	
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4			±2.35	
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7			±1.6	
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.6			±1.6	
		Номинальный ток (Iн ₁ /Iн ₂)		200	/ 5 A	ı	
	Самарская-1	Допустимый диапазон первичного тока		102	240 A	١	
		Номинальная нагрузка TT		50	ВА		
		Номинальное напряжение (Uн₁/Uн₂)		35000	/ 100) B	
		Номинальная нагрузка ТН		360) BA		
		Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1 cosφ:		=0,8	cosφ=0,5	
3	Са	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2	.5	±4.6	
	κ̈́B	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.	.5	±2.5	
	35	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.	.3	±2.0	
	ВЛ-35	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0,6		sinφ=0,87		
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4	,		±2.35	
		в точке диапазона тока	±1.7			±1.6	
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.6	_		±1.6	
		Номинальный ток (Iн₁/Iн₂)			/ 5 A		
		Допустимый диапазон первичного тока			480 A	١	
		Номинальная нагрузка ТТ			BA		
		Номинальное напряжение (Uн₁/Uн₂)		35000	/ 100) B	
	_	Номинальная нагрузка ТН		360) BA		
	Лесная-1	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ:	=0,8	cosφ=0,5	
4	кВ Л	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2		±4.6	
	35 K	в точке диапазона тока	±1.2	±1.		±2.5	
	ВЛ-35	в точке диапазона тока	±1.1	±1.	.3	±2.0	
	B	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0		s	inφ=0,87	
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4			±2.35	
		в точке диапазона тока	±1.7			±1.6	
		в точке диапазона тока	±1.6			±1.6	

Прод	MICO	ение таолицы 2.4	•				
		Номинальный ток (Iн₁/Iн₂)	200 / 5 A				
		Допустимый диапазон первичного тока		10240) A		
		Номинальная нагрузка ТТ		50 BA	4		
	Сибирская-2	Номинальное напряжение (Uн₁/Uн₂)		00 B			
		Номинальная нагрузка ТН		360 B	60 BA		
		Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0,8	3 cosφ=0,5		
2	Сиб	в точке диапазона тока I₁ = 0,05 - 0,2 ·Iн₁	±1.9	±2.5	±4.6		
	ĸB (в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.5	±2.5		
	55 K	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.3	±2.0		
	ВЛ-35	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	,6	sinφ=0,87		
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4		±2.35		
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7		±1.6		
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.6		±1.6		
		Номинальный ток (Iн ₁ /Iн ₂)		200 / 5	Α		
	Тюменская-2	Допустимый диапазон первичного тока		10240) A		
		Номинальная нагрузка TT		50 BA			
		Номинальное напряжение (Uн₁/Uн₂)	3!		00 B		
		Номинальная нагрузка ТН		360 B	60 BA		
		Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0,ξ	3 cosφ=0,5		
9		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5	±4.6		
	ŘΒ	в точке диапазона тока I1 = 0,2 - 1,0 ·lн ₁	±1.2	±1.5	±2.5		
	35	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.3	±2.0		
	ВЛ-35	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	,6	sinφ=0,87		
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4		±2.35		
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7		±1.6		
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.6		±1.6		
		Номинальный ток (Iн ₁ /Iн ₂)		200 / 5	Α		
		Допустимый диапазон первичного тока		10240	A		
		Номинальная нагрузка ТТ		50 BA			
		Номинальное напряжение (Uн₁/Uн₂)		35000 / 1			
	Ŋ	Номинальная нагрузка ТН		360 B	<u> </u>		
	Самарская-2	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0,8	3 cosφ=0,5		
7	Ca	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5	±4.6		
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.5	±2.5		
	35	в точке диапазона тока	±1.1	±1.3	±2.0		
	ВЛ-35 кВ	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	,6	sinφ=0,87		
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4		±2.35		
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7		±1.6		
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.6		±1.6		

1 - 7	1	onne raesingsi 2. i					
		Номинальный ток (Iн ₁ /Iн ₂)		400 / 5	Α		
		Допустимый диапазон первичного тока		20480	.480 A		
		Номинальная нагрузка ТТ		50 BA	\		
		Номинальное напряжение (Uн₁/Uн₂)	;	35000 / 1	00 B		
		Номинальная нагрузка ТН		360 BA			
	Лесная-2	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0,8	cosφ=0,5		
∞		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5	±4.6		
	5 B	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.5	±2.5		
	ВЛ-35	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.3	±2.0		
	BJ	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	,6	sinφ=0,87		
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Ін ₁			±2.35		
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7		±1.6		
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.6		±1.6		

ИИК	Наименование параметра	Значение			
	Номинальный ток (Iн ₁ /Iн ₂)	1000 / 5 A			
	Допустимый диапазон первичного тока		501200	A	
	Номинальная нагрузка ТТ		30 BA		
	Номинальное напряжение (Uн ₁ /Uн ₂)	2	220000 / 10	0 B	
	Номинальная нагрузка ТН		400 BA		
AT1	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0,8	cosφ=0,5	
1 220кВ	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5	±4.6	
52(в точке диапазона тока I1 = 0,2 - 1,0 ·lн ₁	±1.3	±1.6	±2.6	
BB	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.2	±1.3	±2.0	
	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0,6 sinφ=		sinφ=0,87	
	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.7		±2.6	
	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±2.1	±2.1 ±2.1		
	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.9		±2.01	
	Номинальный ток (Iн ₁ /Iн ₂)	1000 / 5 A			
	Допустимый диапазон первичного тока	501200 A			
	Номинальная нагрузка ТТ	30 BA			
	Номинальное напряжение (Uн ₁ /Uн ₂)	220000 / 100 B			
	Номинальная нагрузка ТН		400 BA	•	
3 AT2	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0,8	cosφ=0,ξ	
2 220кВ	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5	±4.6	
	в точке диапазона тока I1 = 0,2 - 1,0 ⋅Iн ₁	±1.3	±1.6	±2.6	
BB	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.2	±1.3	±2.0	
	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0,6 sinφ=0,			
	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.7		±2.6	
	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±2.1		±2.13	
	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.9		±2.01	

11po ₂	ЖКОЈ	ение таблицы 2.5					
		Номинальный ток (Iн₁/Iн₂)) / 5 /		
		Допустимый диапазон первичного тока		Ą			
		Номинальная нагрузка ТТ					
		Номинальное напряжение (Uн ₁ /Uн ₂)	2	220000	/ 10	0 B	
		Номинальная нагрузка ТН		400) BA		
	220kB	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	COSφ=	=0,8	cosφ=0,5	
က	22(в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.	.5	±4.6	
	СЭВ	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.3	±1.	.6	±2.6	
	S	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.2	±1.	.3	±2.0	
		Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	,6	s	inφ=0,87	
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.7			±2.6	
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±2.1			±2.13	
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.9			±2.01	
		Номинальный ток (Iн ₁ /Iн ₂)			/ 5 A		
		Допустимый диапазон первичного тока		\			
		Номинальная нагрузка TT					
		Номинальное напряжение (Uн₁/Uн₂)	1	110000 / 100 B			
		Номинальная нагрузка ТН		400 BA			
	110кВ Приобская	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=	=0,8	cosφ=0,5	
4	~ 	в точке диапазона тока I₁ = 0,05 - 0,2 ·Iн₁	±1.9	±2.	.5	±4.6	
	OKE.	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.3	±1.	.6	±2.6	
	7	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.2	±1.	.4	±2.0	
	ВЛ	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	,6	s	inφ=0,87	
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.7			±2.6	
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±2.1			±2.13	
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.9			±2.01	
		Номинальный ток (Iн ₁ /Iн ₂)		600	/ 5 A		
		Допустимый диапазон первичного тока		30	720 <i>A</i>	\	
		Номинальная нагрузка TT	30 BA				
	<u></u>	Номинальное напряжение (Uн₁/Uн₂)	1	10000) / 10	0 B	
	ж	Номинальная нагрузка ТН		400) BA		
	110кВ Правдинская	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	COSφ=	=0,8	cosφ=0,5	
2	Тра	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.		±4.6	
	Ä	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.3	±1.		±2.6	
	10 _K	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.2	±1.	.3	±2.0	
	BJ 11	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	,6	s	inφ=0,87	
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.7	±2.7		±2.6	
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±2.1			±2.13	
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.9			±2.01	

1100)	жиод	ение таблицы 2.5					
		Номинальный ток (Iн₁/Iн₂)) / 5 A		
		Допустимый диапазон первичного тока		4			
		Номинальная нагрузка ТТ	30 BA				
		Номинальное напряжение (Uн ₁ /Uн ₂)	•	110000 / 100 B			
		Номинальная нагрузка ТН		40	0 BA		
	ВЛ 110кВ Югра -1	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ	9,0=	cosφ=0,5	
9	ВК	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2	2.5	±4.6	
	10K	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.3	±1	.6	±2.6	
	111	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.2	±1	.4	±2.0	
	BJ	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	,6	S	inφ=0,87	
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.7	•		±2.6	
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±2.1			±2.13	
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.9)		±2.01	
		Номинальный ток (Iн₁/Iн₂)		600) / 5 A	\	
		Допустимый диапазон первичного тока		30720 A			
		Номинальная нагрузка TT		30 BA			
	ВЛ 110кВ Шубинская 3	Номинальное напряжение (Uн₁/Uн₂)	,	0 B			
		Номинальная нагрузка ТН		400 BA			
		Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0,8		cosφ=0,5	
7		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2	2.5	±4.6	
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.3	±1	.6	±2.6	
	10k	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.2	±1	.4	±2.0	
	ВЛ 1	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	sinφ=0,6 sinφ=		inφ=0,87	
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.7	•		±2.6	
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±2.1			±2.13	
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.9	1		±2.01	
		Номинальный ток (Iн₁/Iн₂)		600) / 5 A	1	
		Допустимый диапазон первичного тока		30	720 <i>F</i>	٦	
		Номинальная нагрузка ТТ		30) BA		
		Номинальное напряжение (Uн₁/Uн₂)	110000 / 100 B			0 B	
	ı -2	Номинальная нагрузка ТН		40	0 BA		
	ВЛ 110кВ Правдинская	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ	9,0=	cosφ=0,5	
∞	Тра	в точке диапазона тока I₁ = 0,05 - 0,2 ·Iн₁	±1.9	±2	2.5	±4.6	
	βŪ	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.3		.6	±2.6	
	10k	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.2		.4	±2.0	
	ВЛ 1	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	,6	S	inφ=0,87	
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.7	,		±2.6	
		в точке диапазона тока 11 = 0,2 - 1,0 ·Ін ₁	±2.1			±2.13	
		в точке диапазона тока 11 = 0,2 - 1,0 чит	±1.9			±2.01	
		D TO IND AND HOUSE TO NO. 11 1,0 1,4 III]					

Прод	ЖКОЈ	ение таблицы 2.5					
		Номинальный ток (Iн ₁ /Iн ₂)		600	/ 5 A	L	
		Допустимый диапазон первичного тока		30720 A			
		Номинальная нагрузка TT		30	BA		
		Номинальное напряжение (Uн₁/Uн₂)	•	110000	/ 10	0 B	
	01	Номинальная нагрузка ТН		400	ВА		
	ВЛ 110кВ Югра -2	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=	8,0	cosφ=0,5	
6	<u> </u>	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.	5	±4.6	
	10	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.3	±1.0	6	±2.6	
	П 1	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.2	±1.4	4	±2.0	
	[B]	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	φ=0,6		sinφ=0,87	
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.7	7		±2.6	
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±2.1			±2.13	
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.9)		±2.01	
		Номинальный ток (Iн ₁ /Iн ₂)		1200 / 5 A			
		Допустимый диапазон первичного тока		601440 A			
		Номинальная нагрузка ТТ		30	BA		
		Номинальное напряжение (Uн ₁ /Uн ₂)		110000 / 100 B			
		Номинальная нагрузка ТН		400 BA			
	10	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0,8		cosφ=0,5	
10	B-1	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.	5	±4.6	
	J3B-110	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.3	±1.0	6	±2.6	
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.2	±1.3	3	±2.0	
		Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	,6 s		inφ=0,87	
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.7	.7		±2.6	
		в точке диапазона тока	±2.1			±2.13	
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.9)		±2.01	

ИІ	ИИК Наименование параметра				Значение				
		Номинальный ток (Iн ₁ /Iн ₂)		200 / 5 A					
		Допустимый диапазон первичного тока		102	240 <i>F</i>	4			
		Номинальная нагрузка ТТ		50	ВА				
	<u>-</u>	Номинальное напряжение (Uн ₁ /Uн ₂)		35000	/ 100) B			
	íая	Номинальная нагрузка ТН		360 BA					
	Малобалыкская-1	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	COSφ=	=0,8	cosφ=0,5			
_		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2	.5	±4.6			
	≅	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1	.5	±2.5			
	δ	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1	.3	±2.0			
	ВЛ-35 н	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0),6	S	inφ=0,87			
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4			±2.35			
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7	,		±1.6			
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.5	,		±1.56			

ттрод	JOJIM	ение таолицы 2.6					
		Номинальный ток (Iн₁/Iн₂)			/ 5 A		
		Допустимый диапазон первичного тока		10240 A 50 BA			
		Номинальная нагрузка ТТ					
		Номинальное напряжение (Uн ₁ /Uн ₂)		35000	/ 100) B	
		Номинальная нагрузка ТН		360) BA		
	кВ Юрьевская-1	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	COSφ=	=0,8	cosφ=0,5	
7	Opt	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.	.5	±4.6	
	ά Τ	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.	.5	±2.5	
	ξ5 ×	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.	.3	±2.0	
	ВЛ-35	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	,6	S	inφ=0,87	
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4			±2.35	
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7			±1.6	
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.5	,		±1.56	
		Номинальный ток (Iн ₁ /Iн ₂)		200	/ 5 A	\	
		Допустимый диапазон первичного тока		4			
		Номинальная нагрузка TT					
		Номинальное напряжение (Uн₁/Uн₂)) B			
	Малобалыкская-2	Номинальная нагрузка ТН) BA	_	
		Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	COSφ=	=0,8	cosφ=0,5	
က		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.	.5	±4.6	
	⊠	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.	.5	±2.5	
	δ	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.	.3	±2.0	
	ВЛ-35	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	,6	s	inφ=0,87	
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4			±2.35	
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7			±1.6	
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.5			±1.56	
		Номинальный ток (Iн₁/Iн₂)		200	/ 5 A	1	
		Допустимый диапазон первичного тока		102	240 <i>F</i>	4	
		Номинальная нагрузка TT		50 BA			
		Номинальное напряжение (Uн₁/Uн₂)		35000 / 100 B			
	4-2	Номинальная нагрузка ТН		360) BA		
	Юрьевская-2	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	COSφ	=0,8	cosφ=0,5	
4	ΘĎ	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.	.5	±4.6	
	δĀ	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.	.5	±2.5	
	35 k	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.	.3	±2.0	
	ВЛ-35	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	,6	s	inφ=0,87	
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4	+24 +4		±2.35	
		в точке диапазона тока 11 = 0,2 - 1,0 · Iн ₁				±1.6	
		в точке диапазона тока 11 = 0,2 - 1,0 ·Iн ₁ в точке диапазона тока 11 = 1,0 - 1,2 ·Iн ₁	±1.5			±1.56	
		р точко дианазона тока тт − 1,0 - 1,2 ·1H1	±1.0	'		±1.00	

11007	(OJIJI	сние таолицы 2.0				
		Номинальный ток (Iн₁/Iн₂)		1500 /		
		Допустимый диапазон первичного тока		75180		
		Номинальная нагрузка ТТ		A		
	 	Номинальное напряжение (Uн₁/Uн₂)		6000 / 1	00 B	
	Æ 1	Номинальная нагрузка ТН		75 B	Α	
	ввод 6 к	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0,	.8 cosφ=0),5
2	1	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5	±4.6)
4)		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.5	±2.5)
	KHC	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.3	±2.0)
	3PУ-6kB	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	sinφ=0,6 sind		
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4		±2.35	
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7		±1.6	
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.5		±1.56	
		Номинальный ток (Iн₁/Iн₂)		1500 /	5 A	
		Допустимый диапазон первичного тока		75180	00 A	
		Номинальная нагрузка TT		A		
		Номинальное напряжение (Uн₁/Uн₂)		00 B		
	2T	Номинальная нагрузка ТН		A		
	ІС 1П ввод 6 кВ	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0,	.8 cosφ=0),5
9		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5	±4.6	i
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.5	±2.5	5
	KHC	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.3	±2.0)
	ЗРУ-6кВ	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0,6 sinφ		sinφ=0,87	
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4		±2.35	
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7		±1.6	
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.5		±1.56	
		Номинальный ток (Iн ₁ /Iн ₂)		100 / 5		
		Допустимый диапазон первичного тока		5120) A	
	_	Номинальная нагрузка TT		10 B		
	TCH-1	Номинальное напряжение (Uн ₁ /Uн ₂)		380	В	
		Номинальная нагрузка ТН		1		
	ввод 6 кВ	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0,	8 cosφ=0),5
7	1∏ в	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.8	±2.4	±4.4	
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.1	±1.3	±2.3	
	KHC	в точке диапазона тока	±0.9	±1.0	±1.6)
	ЗРУ-6кВ н	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	,6	sinφ=0,87	
	3	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4		±2.3	
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.6		±1.5	
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.4		±1.4	

	1	onne raonnam 2.0					
		Номинальный ток (Iн₁/Iн₂)		100	/ 5 A	1	
		Допустимый диапазон первичного тока	5120 A				
	7	Номинальная нагрузка ТТ	10 BA				
	CH-2	Номинальное напряжение (Uн₁/Uн₂)		38	80 B		
	⊢	Номинальная нагрузка ТН					
	ввод 6 кВ	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ	=0,8	cosφ=0,5	
∞	Ë	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.8	±2.4		±4.4	
	$\frac{\circ}{1}$	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.1	±1	.3	±2.3	
	KHC	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±0.9	±1	.0	±1.6	
	ЗРУ-6кВ	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	,6 s		inφ=0,87	
	3F	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4			±2.3	
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.6	i	•	±1.5	
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.4			±1.4	

Таблица 2.7 Характеристики измерительных каналов

ПС "Иглинская" 110/35/6 кВ

ИІ	ИΚ	Наименование параметра		Значени	1 е		
		Номинальный ток (Iн₁/Iн₂)		300 / 5 A	4		
		Допустимый диапазон первичного тока	15360 A				
		Номинальная нагрузка TT		50 BA			
		Номинальное напряжение (UH ₁ /UH ₂)		35000 / 10	0 B		
		Номинальная нагрузка ТН		150 BA			
	35кВ КНС-15-1	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0,8	cosφ=0,5		
_	立	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5	±4.6		
	5KE	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.5	±2.5		
	П 3	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.3	±2.0		
	ĽΘ	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	,6	sinφ=0,87		
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4		±2.35		
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7	1	±1.6		
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.5		±1.56		
		Номинальный ток (Iн₁/Iн₂)		200 / 5 A			
		Допустимый диапазон первичного тока		10240 A			
		Номинальная нагрузка ТТ		50 BA			
	7	Номинальное напряжение (Uн ₁ /Uн ₂)		35000 / 100 B			
	ая	Номинальная нагрузка ТН		150 BA			
	Юго-Восточная	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0,8	cosφ=0,5		
7	0-B	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5	±4.6		
	Ŋ	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.5	±2.5		
	35кВ	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.3	±2.0		
	ВЛ 35	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	,6	sinφ=0,87		
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4		±2.35		
		в точке диапазона тока I1 = 0,2 - 1,0 ⋅Iн ₁	±1.7	'	±1.6		
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.5		±1.56		

11po ₂	ОЛЖ	ение таблицы 2.7					
		Номинальный ток (Iн₁/Iн₂)		150 / 5	Α		
		Допустимый диапазон первичного тока		7.5180	Α		
		Номинальная нагрузка ТТ	50 BA				
		Номинальное напряжение (Uн₁/Uн₂)	35000 / 100 B				
	_	Номинальная нагрузка ТН		150 B/	4		
	-К	Границы допускаемой относительной погрешности результата					
	CK	измерений количества активной электрической энергии при	cosφ=1	cosφ=0,8	cosφ=0,5		
က	Лай	доверительной вероятности 0,95:	110	.0.5	14.6		
(1)	35кВ Майская-1	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5	±4.6		
	35K	в точке диапазона тока I1 = 0,2 - 1,0 ·lн ₁	±1.2	±1.5	±2.5		
	ВЛ Э	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.3	±2.0		
	В	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	,6	sinφ=0,87		
		в точке диапазона тока I ₁ = 0,05 - 0,2 · Iн ₁	±2.4		±2.35		
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7	•	±1.6		
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.5		±1.56		
		Номинальный ток (Iн ₁ /Iн ₂)		200 / 5	A		
		Допустимый диапазон первичного тока		10240	A		
		Номинальная нагрузка TT		50 BA	1		
		Номинальное напряжение (Uн₁/Uн₂)		35000 / 100 B			
	7	Номинальная нагрузка ТН		150 BA			
	35кВ КНС-3 ЮБ	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0,8	cosφ=0,5		
4		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5	±4.6		
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.5	±2.5		
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.3	±2.0		
	вл з	Границы допускаемой относительной погрешности результата			1		
	В	измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	,6	sinφ=0,87		
		в точке диапазона тока I₁ = 0,05 - 0,2 ·Iн₁	±2.4		±2.35		
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7	•	±1.6		
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.5	1	±1.56		
		Номинальный ток (Iн ₁ /Iн ₂)		300 / 5	A		
		Допустимый диапазон первичного тока		15360	Α		
		Номинальная нагрузка ТТ		ı			
		Номинальное напряжение (Uн₁/Uн₂)		35000 / 10	00 B		
		Номинальная нагрузка ТН		150 B	4		
	35кВ КНС-15-2	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0,8	cosφ=0,5		
5	Ŧ	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5	±4.6		
	Æ	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.5	±2.5		
	35	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.3	±2.0		
	ВЛ	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	,6	sinφ=0,87		
		в точке диапазона тока I ₁ = 0,05 - 0,2 Iн ₁	±2.4		±2.35		
			±1.7				
				в точке диапазона тока I1 = 0,2 - 1,0 · lн ₁ в точке диапазона тока I1 = 1,0 - 1,2 · lн ₁		,	±1.6 ±1.56

	,000	ение Таолицы 2.7	1			-	
		Номинальный ток (Iн₁/Iн₂)) / 5 A		
		Допустимый диапазон первичного тока			.240 A	١	
		Номинальная нагрузка TT	50 BA				
	35кВ Юго-Восточная -2	Номинальное напряжение (Uн ₁ /Uн ₂)	;	35000 / 100 B			
		Номинальная нагрузка ТН		150 BA			
		Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosq	9=0,8	cosφ=0,5	
9	9-e	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2	2.5	±4.6	
	호	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1	.5	±2.5	
	â	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1		.3	±2.0	
	ВЛ 35	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0			inφ=0,87	
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4	,		±2.35	
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7			±1.6	
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.5			±1.56	
\vdash		Номинальный ток (Iн ₁ /Iн ₂)) / 5 A		
7		Допустимый диапазон первичного тока			.180 /		
		Номинальная нагрузка ТТ) BA	•	
		Номинальное напряжение (Uн ₁ /Uн ₂)) / 100) B	
		Номинальное напряжение (онтона)			0 BA	, ,	
	35кВ Майская-2	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosq	9,0=	cosφ=0,5	
	Β̈́	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2	2.5	±4.6	
	35k	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1	.5	±2.5	
	BJT (в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1	.3	±2.0	
		Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0,6		sinφ=0,87		
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4		±2.35		
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7	±1.7		±1.6	
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.5		±1.56		
		Номинальный ток (Iн₁/Iн₂)		200) / 5 A		
		Допустимый диапазон первичного тока	<u></u>	10.	.240 A	\	
		Номинальная нагрузка TT		50) BA		
		Номинальное напряжение (Uн ₁ /Uн ₂)	,	35000) / 100) B	
	5 -2	Номинальная нагрузка ТН		15	0 BA		
	КНС-3 ЮБ	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosq	8,0=	cosφ=0,5	
∞	H	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2	2.5	±4.6	
	B X	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1	.5	±2.5	
	35кВ	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1	.3	±2.0	
	ВЛ 3	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	,6	s	inφ=0,87	
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4			±2.35	
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7			±1.6	
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.5			±1.56	

11po)	жпор	ение таблицы 2.7				
		Номинальный ток (Iн₁/Iн₂)		3000 / 5	A	
		Допустимый диапазон первичного тока		1503600	Α	
		Номинальная нагрузка TT		20 BA		
		Номинальное напряжение (Uн ₁ /Uн ₂)		6000 / 100) B	
		Номинальная нагрузка ТН		75 BA		
	кВ 1T	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0,8	cosφ=0,5	
6	9	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.8	±2.5	±4.6	
	ввод	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.5	±2.5	
	BB	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.2	±1.9	
		Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0),6	sinφ=0,87	
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4		±2.35	
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7	,	±1.6	
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.5		±1.56	
		Номинальный ток (Iн₁/Iн₂)		Α		
		Допустимый диапазон первичного тока	1503600 A			
		Номинальная нагрузка TT	20 BA			
		Номинальное напряжение (Uн₁/Uн₂)	6000 / 100 B			
		Номинальная нагрузка ТН	75 BA			
10	кВ 2Т	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0,8	cosφ=0,5	
	9	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.8	±2.5	±4.6	
	ввод	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.5	±2.5	
	BE	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.2	±1.9	
		Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0),6	sinφ=0,87	
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4		±2.35	
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7		±1.6	
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.5)	±1.56	

ИИ	К	Наименование параметра		Значени	1 е		
		Номинальный ток (Iн₁/Iн₂)		200 / 5 <i>A</i>	4		
		Допустимый диапазон первичного тока		10240 A			
		Номинальная нагрузка TT		50 BA			
	-	Номинальное напряжение (Uн ₁ /Uн ₂)		35000 / 100 B			
		Номинальная нагрузка ТН		360 BA			
	KHC-12 -	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0,8	cosφ=0,5		
_	幸	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5	±4.6		
	1 35кВ	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.5	±2.5		
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.3	±2.0		
	ВЛ	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	,6	sinφ=0,87		
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4		±2.35		
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7	'	±1.6		
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.6	;	±1.6		

Прод	MICOJ	ение таолицы 2.8	1			
		Номинальный ток (Iн₁/Iн₂)		200 / 5		
	35кВ ЦПС-1	Допустимый диапазон первичного тока		10240 50 BA	A	
		Номинальная нагрузка ТТ				
		Номинальное напряжение (Uн₁/Uн₂)		35000 / 10	0 B	
		Номинальная нагрузка ТН		360 BA		
		Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0,8	cosφ=0,5	
7	ā	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5	±4.6	
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.5	±2.5	
	ВП	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.3	±2.0	
		Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	1,6	sinφ=0,87	
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4		±2.35	
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7	'	±1.6	
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.6		±1.6	
		Номинальный ток (Ін₁/Ін₂)		200 / 5	۸	
3		Допустимый диапазон первичного тока		10240		
		Номинальная нагрузка ТТ		50 BA		
	KHC-12 -2	Номинальное напряжение (Uн₁/Uн₂)		35000 / 10	0 B	
		Номинальная нагрузка ТН		360 BA		
		Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0,8	cosφ=0,5	
	幸	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5	±4.6	
	35кВ	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.5	±2.5	
	ВЛЗ	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.3	±2.0	
		Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:			sinφ=0,87	
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4	±2.4		
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7	,	±1.6	
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.6		±1.6	
		Номинальный ток (Iн ₁ /Iн ₂)		200 / 5		
		Допустимый диапазон первичного тока		10240		
		Номинальная нагрузка TT		50 BA		
		Номинальное напряжение (Uн₁/Uн₂)		35000 / 10	0 B	
		Номинальная нагрузка ТН		360 BA		
	35кВ ЦПС-2	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0,8	cosφ=0,5	
4	ã	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5	±4.6	
	35	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.5	±2.5	
	ВЛ	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.3	±2.0	
		Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	,6	sinφ=0,87	
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4		±2.35	
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7		±1.6	
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн₁	±1.6	; <u> </u>	±1.6	

1100/	TOTIV	ение таолицы 2.8				
		Номинальный ток (Iн₁/Iн₂)		400 / 5 <i>A</i>	4	
		Допустимый диапазон первичного тока		20480 /	4	
		Номинальная нагрузка TT		10 BA		
		Номинальное напряжение (UH ₁ /UH ₂)		6000 / 100) B	
		Номинальная нагрузка ТН		200 BA		
	6кВ НВП-1	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0,8	cosφ=0,5	
2	ВЬ	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5	±4.6	
	6к	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.5	±2.5	
	ВЛ	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.2	±2.0	
		Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	,6	sinφ=0,87	
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4		±2.35	
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7		±1.6	
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.6		±1.5	
		Номинальный ток (Iн ₁ /Iн ₂)		4		
		Допустимый диапазон первичного тока	20480 A			
		Номинальная нагрузка ТТ	10 BA			
		Номинальное напряжение (Uн₁/Uн₂)	6000 / 100 B 75 BA			
		Номинальная нагрузка ТН		1		
	6кВ НВП-2	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0,8	cosφ=0,5	
9	ВЬ	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5	±4.6	
	6к	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.5	±2.5	
	ВЛ	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.2	±2.0	
		Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	,6	sinφ=0,87	
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4		±2.35	
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7		±1.6	
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.6		±1.5	

		а 2.9 Характеристики измерительных каналов нимкинская" 110/35/6 кВ					
И	ик	Наименование параметра	Значение				
		Номинальный ток (Iн₁/Iн₂)		300 / 5 A			
		Допустимый диапазон первичного тока		15360 A			
		Номинальная нагрузка TT		50 BA			
	Пламя-1	Номинальное напряжение (Uн ₁ /Uн ₂)		35000 / 100 B			
		Номинальная нагрузка ТН		150 I			
1		Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0	,8	cosφ=0,5	
	3 🗆	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5		±4.6	
	35kB	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.5		±2.5	
	ВЛ 3	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.3		±2.0	
	В	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0),6	S	inφ=0,87	
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4			±2.35	
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7	,		±1.6	
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.5	5		±1.56	

11po,	TOTIN	ение таолицы 2.9						
		Номинальный ток (Iн₁/Iн₂)		300 / 5 A				
		Допустимый диапазон первичного тока	15360 A					
		Номинальная нагрузка TT		50 BA				
	Ξ	Номинальное напряжение (Uн₁/Uн₂)		35000 / 100 B				
		Номинальная нагрузка ТН		150 BA				
	Паклиновская-1	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0,8	cosφ=0,5			
2	akū	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5	±4.6			
	3 □	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.5	±2.5			
	35кВ	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.3	±2.0			
	ВЛ 3	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	,6	sinφ=0,87			
		в точке диапазона тока I₁ = 0,05 - 0,2 ·Iн₁	±2.4		±2.35			
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7	,	±1.6			
		в точке диапазона тока I1 = 1,0 - 1,2 · lн ₁	±1.5		±1.56			
		Номинальный ток (Iн ₁ /Iн ₂)	_	400 / 5 /				
		Допустимый диапазон первичного тока		20480				
		Номинальная нагрузка ТТ		30 BA				
		Номинальная нагрузка т т Номинальное напряжение (Uн ₁ /Uн ₂)		35000 / 10	0 B			
	35кВ Весенняя-1	Номинальное наприжение (онугонд)		150 BA				
		Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0,8	cosφ=0,5			
3		D TOURS TRACTOROUS TORS 1 = 0.05	±1.9	±2.5	±4.6			
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.2	±1.5	±2.5			
		в точке диапазона тока I1 = 0,2 - 1,0 · Iн ₁	±1.2	±1.3	±2.0			
	ВЛ (в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	<u> </u>	±1.5	12.0			
	В	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	,6	sinφ=0,87			
		в точке диапазона тока I₁ = 0,05 - 0,2 ·Iн₁	±2.4		±2.35			
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7		±1.6			
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.5	;	±1.56			
		Номинальный ток (Iн ₁ /Iн ₂)		300 / 5 /	4			
		Допустимый диапазон первичного тока		15360 /				
		Номинальная нагрузка TT		50 BA				
		Номинальное напряжение (Uн₁/Uн₂)		35000 / 10	0 B			
		Номинальная нагрузка ТН		150 BA				
	35кВ Пламя-2	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0,8	cosφ=0,5			
4	3 П.	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5	±4.6			
	5KE	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.5	±2.5			
	вл з	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.3	±2.0			
	B.	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	1,6	sinφ=0,87			
		в точке диапазона тока I₁ = 0,05 - 0,2 ·Iн₁	±2.4		±2.35			
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7		±1.6			
		в точке диапазона тока 11 = 0,2 - 1,0 чи ₁	±1.5		±1.56			
		ם וטארט באומוומטטחמ וטאמ דו – דו,ט - דו,ט - דו,ט יוחן	±1.0		± 1.00			

1100/	JOJIM	ение таолицы 2.9					
		Номинальный ток (Iн₁/Iн₂)		300 / 5			
		Допустимый диапазон первичного тока		15360			
		Номинальная нагрузка ТТ	50 BA				
		Номинальное напряжение (Uн ₁ /Uн ₂)		35000 / 1			
	-2	Номинальная нагрузка ТН		150 B	4		
	Паклиновская-2	Границы допускаемой относительной погрешности результата					
	BCF	измерений количества активной электрической энергии при	cosφ=1	cosφ=0,8	cosφ=0,5		
	HO	доверительной вероятности 0,95:	·				
2	<u> </u>	в точке диапазона тока I₁ = 0,05 - 0,2 ·Iн₁	±1.9	±2.5	±4.6		
	Па		±1.9	±2.5	±4.0 ±2.5		
	ĸВ	в точке диапазона тока I1 = 0,2 - 1,0 · Iн ₁	_				
	35KB	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.3	±2.0		
	ВЛ	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при	ain0		oin0.07		
	_	измерении количества реактивной электрической энергий при доверительной вероятности 0,95:	sinφ=0	,0	sinφ=0,87		
			10.4		.0.05		
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4		±2.35		
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7		±1.6		
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.5		±1.56		
		Номинальный ток (Iн₁/Iн₂)		400 / 5			
		Допустимый диапазон первичного тока		20480			
		Номинальная нагрузка ТТ		30 BA			
		Номинальное напряжение (Uн₁/Uн₂)		35000 / 1			
	Весенняя-2	Номинальная нагрузка ТН		150 B	4		
		Границы допускаемой относительной погрешности результата					
1		измерений количества активной электрической энергии при	cosφ=1	cosφ=0,8	cosφ=0,5		
		доверительной вероятности 0,95:					
9		в точке диапазона тока I₁ = 0,05 - 0,2 ·Iн₁	±1.9	±2.5	±4.6		
	3 B	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.5	±2.5		
	35кВ	в точке диапазона тока I1 = 1,0 - 1,2 · Iн ₁	±1.1	±1.3	±2.0		
	вл з	B 10-like Arianasona Toka 11 – 1,0 – 1,2 mij		1 21.0	± 2 .0		
	В	Границы допускаемой относительной погрешности результата			sinφ=0,87		
		измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	,6			
		доверительной вероятности о,ээ.			±2.35		
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4	±2.4			
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7		±1.6		
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.5		±1.56		
		Номинальный ток (Iн₁/Iн₂)		1500 / 5	A		
		Допустимый диапазон первичного тока		751800			
		Номинальная нагрузка TT		10 BA			
		Номинальное напряжение (Uн₁/Uн₂)		6000 / 10	0 B		
		Номинальная нагрузка ТН		75 BA	1		
	1T						
		Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при	cosφ=1	cosφ=0,8	cosφ=0,5		
	, 6k	доверительной вероятности 0,95:	σοσφ-1	σοσφ-σ,σ	- 0.50		
_	Ввод 6кВ		±1.9	±2.5	±4.6		
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·I _H	±1.9 ±1.2	±2.5 ±1.5	±4.6 ±2.5		
	7P	в точке диапазона тока I1 = 0,2 - 1,0 · Iн ₁	_				
	РУ	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.3	±2.0		
	3	Границы допускаемой относительной погрешности результата					
		измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	Ö,	sinφ=0,87		
			1 .		.0.05		
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4		±2.35		
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7		±1.6		
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.5		±1.56		

11po	долж	ение таблицы 2.9				
		Номинальный ток (Iн₁/Iн₂)		1500 /	5 A	
		Допустимый диапазон первичного тока		75180	00 A	
		Номинальная нагрузка ТТ		10 B	A	
		Номинальное напряжение (Uн₁/Uн₂)		6000 / 1	00 B	
		Номинальная нагрузка ТН		75 B	A	
	д 6кВ 2Т	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0	.8 cosφ=0,5	
∞	Ввод	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5	±4.6	
	7P E	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.5	±2.5	
	7 7	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.3	±2.0	
	3PY	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	,6	sinφ=0,87	
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4		±2.35	
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7		±1.6	
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.5		±1.56	
		Номинальный ток (Iн₁/Iн₂)		5 A		
		Допустимый диапазон первичного тока	5120 A			
		Номинальная нагрузка ТТ	10 BA			
		Номинальное напряжение (Uн₁/Uн₂)	380 B			
		Номинальная нагрузка ТН				
	з тсн 1	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0	8 cosφ=0,5	
တ	6кВ	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.8	±2.4	±4.4	
	7P	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.1	±1.3	±2.3	
	ЗРУ	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±0.9	±1.0	±1.6	
	3}	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	,6	sinφ=0,87	
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4		±2.3	
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн₁	±1.6		±1.6	
		В 10-ис дианазона тока 11 – 0,2 - 1,0 чи	±1.0		±1.6 ±1.4	

	Таблица 2.10 Характеристики измерительных каналов ПС "Тепловская" 110/35/6 кВ									
ИІ	ИΚ	Наименование параметра Значение								
1		Номинальный ток (Ін₁/Ін₂)		200	/ 5 A	1				
	7-	Допустимый диапазон первичного тока		10240 A						
		Номинальная нагрузка ТТ		50 BA						
		Номинальное напряжение (Uн₁/Uн₂)		35000 / 100 B						
		Номинальная нагрузка ТН		360	ВА					
	Березовая-1	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=	:0,8	cosφ=0,5				
	Be	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.	5	±4.6				
	35кВ	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.	5	±2.5				
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.	3	±2.0				
	ВЛ	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0),6	s	sinφ=0,87				
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4			±2.35				
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7	,		±1.6				
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.6	6		±1.6				

Номинальный ток (Iн/Ih₂) Допустимый диалазон первичного тока Номинальная нагрузка ТТ Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95: В точке диалазона тока I₁ = 0,05 - 0,2 -Ih₁ В точке диалазона тока I₁ = 0,05 - 0,2 -Ih₁ В точке диалазона тока I₁ = 0,05 - 0,2 -Ih₁ В точке диалазона тока I₁ = 0,05 - 0,2 -Ih₁ В точке диалазона тока I₁ = 0,05 - 0,2 -Ih₁ В точке диалазона тока I₁ = 0,05 - 0,2 -Ih₁ В точке диалазона тока I₁ = 0,05 - 0,2 -Ih₁ В точке диалазона тока I1 = 1,0 - 1,2 -Ih₁ В точке диалазона тока I1 = 0,0 - 1,0 -Ih₁ В точке диалазона тока I1 = 0,0 - 1,0 -Ih₁ В точке диалазона тока I1 = 0,0 - 1,0 -Ih₁ В точке диалазона тока I1 = 0,0 - 1,0 -Ih₁ В точке диалазона тока I1 = 0,0 - 1,0 -Ih₁ В точке диалазона тока I1 = 0,0 - 1,0 -Ih₁ Номинальный ток (Iн/Ih₂) Допустимый диалазон первичного тока Номинальная нагрузка ТТ Номинальная нагрузка ТТ Бо ВА Номинальная нагрузка ТТ Бо ВА Номинальная нагрузка ТТ Бо ВА Поминальная нагрузка ТТ Бо ВА Поминальная нагрузка ТТ Бо ВА В точке диалазона тока I1 = 0,0 - 1,2 -Ih₁ Траницы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95: В точке диалазона тока I1 = 0,0 - 0,2 -Ih₁ В точке диалазона тока I1 = 0,0 - 0,2 -Ih₁ В точке диалазона тока I1 = 0,0 - 0,2 -Ih₁ В точке диалазона тока I1 = 0,0 - 0,2 -Ih₁ В точке диалазона тока I1 = 0,0 - 0,2 -Ih₁ В точке диалазона тока I1 = 0,0 - 0,2 -Ih₁ В точке диалазона тока I1 = 1,0 - 1,2 -Ih₁ Бо Точке диалазона тока I1 = 0,0 - 0,2 -Ih₁ В точке диалазона тока I1 = 1,0 - 1,2 -Ih₁ Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95: В точке диалазона тока I1 = 0,0 - 0,2 -Ih₁ В точке диалазона тока I1 = 0,0 - 0,2 -Ih₁ В точке диалазона тока I1 = 0,0 - 0,2 -Ih₁ В точке диалазона тока I1 = 0,0 - 0,2 -Ih₁ В точке диалазона тока I1 =
Номинальная нагрузка ТТ Номинальная нагрузка ТТ Номинальная нагрузка ТН Праницы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95: В точке диапазона тока 1; = 0,05 - 0,2 - lh1; ±1.2 ±1.5 ±2.5 ±4.6 в точке диапазона тока 1; = 0,05 - 0,2 - lh1; ±1.1 ±1.3 ±2.0 Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95: В точке диапазона тока 1; = 0,05 - 0,2 - lh1; ±1.1 ±1.3 ±2.0 гочке диапазона тока 1; = 0,05 - 0,2 - lh1; ±2.4 ±2.35 в точке диапазона тока 1; = 0,05 - 0,2 - lh1; ±1.7 ±1.6 ±1.6 Homuнальный ток (lh1/lh2) 200 / 5 A допустимый диапазона тока 1; = 1,0 - 1,2 - lh1; ±1.6 ±1.6 Homuнальная нагрузка ТТ 50 ВА Номинальная нагрузка ТН 50 ВА Поминальная нагрузка ТН 35000 / 100 В в точке диапазона тока 1; = 0,05 - 0,2 - lh1; ±1.9 ±2.5 ±4.6 b точке диапазона тока 1; = 0,05 - 0,2 - lh1; ±1.9 ±2.5 ±4.6 b точке диапазона тока 1; = 0,05 - 0,2 - lh1; ±1.9 ±2.5 ±4.6 b точке диапазона тока 1; = 0,05 - 0,2 - lh1; ±1.9 ±2.5 ±4.6 b точке диапазона тока 1; = 0,05 - 0,2 - lh1; ±1.9 ±2.5 ±4.6 b точке диапазона тока 1; = 0,05 - 0,2 - lh1; ±1.9 ±2.5 ±4.6 b точке диапазона тока 1; = 0,05 - 0,2 - lh1; ±1.9 ±2.5 ±4.6 b точке диапазона тока 1; = 0,05 - 0,2 - lh1; ±1.9 ±2.5 ±4.6 b точке диапазона тока 1; = 0,05 - 0,2 - lh1; ±1.1 ±1.3 ±2.0 гочке диапазона тока 1; = 0,05 - 0,2 - lh1; ±1.1 ±1.3 ±2.0 гочке диапазона тока 1; = 0,05 - 0,2 - lh1; ±1.1 ±1.3 ±2.0 гочке диапазона тока 1; = 0,05 - 0,2 - lh1; ±1.1 ±1.3 ±2.0 гочке диапазона тока 1; = 0,05 - 0,2 - lh1; ±1.1 ±1.3 ±2.0 гочке диапазона тока 1; = 0,05 - 0,2 - lh1; ±1.1 ±1.3 ±2.0 гочке диапазона тока 1; = 0,05 - 0,2 - lh1; ±1.2 ±1.5 ±2.5 в точке диапазона тока 1; = 0,05 - 0,2 - lh1; ±1.1 ±1.3 ±2.0 гочке диапазона тока 1; = 0,05 - 0,2 - lh1; ±1.2 ±1.5 ±2.5 в точке диапазона тока 1; = 0,05 - 0,2 - lh1; ±1.2 ±1.5 ±2.5 в точке диапазона тока 1; = 0,05 - 0,2 - lh1; ±1.2 ±1.5 ±2.5 в точке диапазона тока 1; = 0,05 - 0,2
Номинальное напряжение (Uн ₁ /Uн ₂) В точке диапазона тока I ₁ = 0,05 - 0,2 - Iн ₁ В точке диапазона тока I ₁ = 0,05 - 0,2 - Iн ₁ В точке диапазона тока I ₁ = 0,05 - 0,2 - Iн ₁ В точке диапазона тока I ₁ = 0,05 - 0,2 - Iн ₁ В точке диапазона тока I ₁ = 0,05 - 0,2 - Iн ₁ В точке диапазона тока I ₁ = 0,05 - 0,2 - Iн ₁ В точке диапазона тока I ₁ = 0,05 - 0,2 - Iн ₁ В точке диапазона тока I ₁ = 0,05 - 0,2 - Iн ₁ В точке диапазона тока I ₁ = 0,05 - 0,2 - Iн ₁ В точке диапазона тока I ₁ = 0,05 - 0,2 - Iн ₁ В точке диапазона тока I ₁ = 0,05 - 0,2 - Iн ₁ В точке диапазона тока I ₁ = 0,05 - 0,2 - Iн ₁ В точке диапазона тока I ₁ = 0,05 - 0,2 - Iн ₁ В точке диапазона тока I ₁ = 0,05 - 0,2 - Iн ₁ В точке диапазона тока I ₁ = 0,05 - 0,2 - Iн ₁ В точке диапазона тока I ₁ = 0,05 - 0,2 - Iн ₁ Номинальнай диапазон первичного тока Номинальная нагрузка ТТ Номинальная нагрузка ТН Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95: В точке диапазона тока I ₁ = 0,05 - 0,2 - Iн ₁ В точке диапазона тока I ₁ = 0,05 - 0,2 - Iн ₁ В точке диапазона тока I ₁ = 0,05 - 0,2 - Iн ₁ В точке диапазона тока I ₁ = 0,05 - 0,2 - Iн ₁ В точке диапазона тока I ₁ = 0,05 - 0,2 - Iн ₁ В точке диапазона тока I ₁ = 0,05 - 0,2 - Iн ₁ В точке диапазона тока I ₁ = 0,05 - 0,2 - Iн ₁ В точке диапазона тока I ₁ = 0,05 - 0,2 - Iн ₁ В точке диапазона тока I ₁ = 0,05 - 0,2 - Iн ₁ Б точке диапазона тока I ₁ = 0,05 - 0,2 - Iн ₁ В точке диапазона тока I ₁ = 0,05 - 0,2 - Iн ₁ В точке диапазона тока I ₁ = 0,05 - 0,2 - Iн ₁ В точке диапазона тока I ₁ = 0,05 - 0,2 - Iн ₁ В точке диапазона тока I ₁ = 0,05 - 0,2 - Iн ₁ В точке диапазона тока I ₁ = 0,05 - 0,2 - Iн ₁ В точке диапазона тока I ₁ = 0,05 - 0,2 - Iн ₁ В точке диапазона тока I ₁ = 0,05 - 0,2 - Iн ₁ В точке диапазона тока I ₁ = 0,05 - 0,2 - Iн ₁ В точке диапазона тока I ₁ = 0,05 - 0,2 - Iн ₁ В точке диапазона тока
Номинальная нагрузка ТН Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95: В точке диапазона тока 1 ₁ = 0,05 - 0,2 ·lh ₁ ±1.9 ±2.5 ±4.6 В точке диапазона тока 11 = 1,0 · 1,2 ·lh ₁ ±1.1 ±1.3 ±2.0 Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95: В точке диапазона тока 1 ₁ = 0,05 · 0,2 ·lh ₁ ±1.7 ±1.6 В точке диапазона тока 1 ₁ = 0,05 · 0,2 ·lh ₁ ±1.7 ±1.6 В точке диапазона тока 1 ₁ = 0,0 · 0,2 ·lh ₁ ±1.7 ±1.6 В точке диапазона тока 1 ₁ = 0,0 · 0,2 ·lh ₁ ±1.6 ±1.6 Номинальный ток (lh ₁ /lh ₂) 200 / 5 A Допустимый диапазон первичного тока 10240 A Номинальная нагрузка ТТ 50 BA Номинальная нагрузка ТН 360 BA Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95: В точке диапазона тока 1 ₁ = 0,05 · 0,2 ·lh ₁ ±1.9 ±2.5 ±4.6 В точке диапазона тока 1 ₁ = 0,05 · 0,2 ·lh ₁ ±1.9 ±2.5 ±4.6 В точке диапазона тока 1 ₁ = 0,05 · 0,2 ·lh ₁ ±1.9 ±2.5 ±4.6 В точке диапазона тока 1 ₁ = 0,05 · 0,2 ·lh ₁ ±1.9 ±2.5 ±4.6 В точке диапазона тока 1 ₁ = 0,05 · 0,2 ·lh ₁ ±1.9 ±2.5 ±4.6 В точке диапазона тока 1 ₁ = 0,05 · 0,2 ·lh ₁ ±1.9 ±2.5 ±4.6 В точке диапазона тока 1 ₁ = 0,05 · 0,2 ·lh ₁ ±1.9 ±2.5 ±4.6 В точке диапазона тока 1 ₁ = 0,05 · 0,2 ·lh ₁ ±1.9 ±2.5 ±4.6 В точке диапазона тока 1 ₁ = 0,05 · 0,2 ·lh ₁ ±1.1 ±1.3 ±2.0 Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при зегоре. В точке диапазона тока 1 ₁ = 0,05 · 0,2 ·lh ₁ ±1.1 ±1.3 ±2.5 В точке диапазона тока 1 ₁ = 0,05 · 0,2 ·lh ₁ ±2.4 ±2.35
Траницы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95: В точке диапазона тока 1₁ = 0,05 - 0,2 ·lh₁
В точке диапазона тока 11 = 0,2 - 1,0 · Iн₁
В точке диапазона тока 11 = 0,2 - 1,0 · Ін₁
В точке диапазона тока 11 = 0,2 - 1,0 · Iн₁ ±1.2 ±1.5 ±2.5 ±2.5 В точке диапазона тока 11 = 1,0 - 1,2 · Iн₁ ±1.1 ±1.3 ±2.0 Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95: В точке диапазона тока 11 = 0,05 - 0,2 · Iн₁ ±1.7 ±1.6 В точке диапазона тока 11 = 0,2 - 1,0 · Iн₁ ±1.7 ±1.6 В точке диапазона тока 11 = 1,0 - 1,2 · Iн₁ ±1.6 ±1.6 Номинальный ток (Iн₁/Iн₂) 200 / 5 A Допустимый диапазон первичного тока 10240 A Номинальная нагрузка ТТ 50 ВА Номинальная нагрузка ТТ 50 ВА Номинальная нагрузка ТН 360 ВА Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95: В точке диапазона тока 11 = 0,05 - 0,2 · Iн₁ ±1.9 ±2.5 ±4.6 В точке диапазона тока 11 = 0,05 - 0,2 · Iн₁ ±1.2 ±1.5 ±2.5 Точке диапазона тока 11 = 1,0 - 1,2 · Iн₁ ±1.1 ±1.3 ±2.0 Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95: В точке диапазона тока 11 = 1,0 - 1,2 · Iн₁ ±1.1 ±1.3 ±2.0 Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95: В точке диапазона тока 11 = 0,05 - 0,2 · Iн₁ ±2.4 ±2.35
Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95: В точке диапазона тока I₁ = 0,05 - 0,2 ⋅Iн₁ ±2.4 ±2.35 В точке диапазона тока I1 = 0,2 - 1,0 ⋅Iн₁ ±1.7 ±1.6 В точке диапазона тока I1 = 1,0 - 1,2 ⋅Iн₁ ±1.6 ±1.6 ±1.6 Номинальный ток (Iн₁/Iн₂) 200 / 5 A Допустимый диапазон первичного тока 10240 A Номинальная нагрузка ТТ 50 ВА Номинальная нагрузка ТН 50 ВА Номинальная нагрузка ТН 35000 / 100 В Номинальная нагрузка ТН 360 ВА Траницы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95: В точке диапазона тока I₁ = 0,05 - 0,2 ⋅Iн₁ ±1.9 ±2.5 ±4.6 В точке диапазона тока I1 = 1,0 - 1,2 ⋅Iн₁ ±1.1 ±1.3 ±2.0 Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95: В точке диапазона тока I₁ = 0,05 - 0,2 ⋅Iн₁ ±1.1 ±1.3 ±2.0 Б точке диапазона тока I₁ = 0,05 - 0,2 ⋅Iн₁ ±1.1 ±1.3 ±2.0
Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95: В точке диапазона тока I₁ = 0,05 - 0,2 ⋅IH₁
измерений количества реактивной электрической энергии при доверительной вероятности 0,95: В точке диапазона тока 1₁ = 0,05 - 0,2 · Iн₁
В точке диапазона тока 11 = 0,2 - 1,0 · H ₁
В точке диапазона тока
В точке диапазона тока 1 = 1,0 - 1,2 ·
Номинальный ток (Iн ₁ /Iн ₂) Допустимый диапазон первичного тока Номинальная нагрузка ТТ Номинальное напряжение (Uн ₁ /Uн ₂) Номинальная нагрузка ТН Траницы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95: В точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁ В точке диапазона тока I ₁ = 0,0 - 1,2 ·Iн ₁ Траницы допускаемой относительной погрешности результата измерений количества измерений количества измерений количества реактивной относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95: В точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁ Траницы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95: В точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁ ±2.4 ±2.35
Допустимый диапазон первичного тока Номинальная нагрузка ТТ Номинальное напряжение (Uн ₁ /Uн ₂) Номинальная нагрузка ТН Траницы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95: В точке диапазона тока I ₁ = 0,05 - 0,2 · Iн ₁ В точке диапазона тока I ₁ = 1,0 - 1,2 · Iн ₁ Траницы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной погрешности результата измерений количества реактивной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95: В точке диапазона тока I ₁ = 0,05 - 0,2 · Iн ₁ Траницы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95: В точке диапазона тока I ₁ = 0,05 - 0,2 · Iн ₁ 10240 A 10250 A 10250 A 10250 A 10250 A 10250 A
Номинальная нагрузка ТТ Номинальная нагрузка ТН Номинальная нагрузка ТН Траницы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95: В точке диапазона тока I ₁ = 0,05 - 0,2 ·IH ₁ В точке диапазона тока I ₁ = 0,0 - 1,2 ·IH ₁ Траницы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при сосф=1 сосф=0,8 сосф=0,8 сосф=0,9 об ф=0,8
Номинальное напряжение (UH ₁ /UH ₂) Номинальная нагрузка TH Траницы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95: В точке диапазона тока I ₁ = 0,05 - 0,2 ·IH ₁ В точке диапазона тока I ₁ = 1,0 - 1,2 ·IH ₁ Траницы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при ±1.9 Траницы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95: В точке диапазона тока I ₁ = 0,05 - 0,2 ·IH ₁ В точке диапазона тока I ₁ = 0,05 - 0,2 ·IH ₁ В точке диапазона тока I ₁ = 0,05 - 0,2 ·IH ₁ В точке диапазона тока I ₁ = 0,05 - 0,2 ·IH ₁ В точке диапазона тока I ₁ = 0,05 - 0,2 ·IH ₁ В точке диапазона тока I ₁ = 0,05 - 0,2 ·IH ₁ В точке диапазона тока I ₁ = 0,05 - 0,2 ·IH ₁
Номинальная нагрузка ТН Траницы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95: В точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁ В точке диапазона тока I ₁ = 1,0 - 1,2 ·Iн ₁ Траницы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95: В точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁ Траницы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95: В точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁ В точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁ В точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁ В точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁ В точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁ В точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁
Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95: В точке диапазона тока $I_1 = 0,05 - 0,2 \cdot I_{H_1}$ В точке диапазона тока $I_1 = 0,05 - 1,0 \cdot I_{H_1}$ В точке диапазона тока $I_1 = 0,05 - 1,0 \cdot I_{H_1}$ В точке диапазона тока $I_1 = 1,0 - 1,2 \cdot I_{H_1}$ Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95: В точке диапазона тока $I_1 = 0,05 - 0,2 \cdot I_{H_1}$ В точке диапазона тока $I_1 = 0,05 - 0,2 \cdot I_{H_1}$ В точке диапазона тока $I_1 = 0,05 - 0,2 \cdot I_{H_1}$ В точке диапазона тока $I_1 = 0,05 - 0,2 \cdot I_{H_1}$ В точке диапазона тока $I_1 = 0,05 - 0,2 \cdot I_{H_1}$ В точке диапазона тока $I_1 = 0,05 - 0,2 \cdot I_{H_1}$ В точке диапазона тока $I_1 = 0,05 - 0,2 \cdot I_{H_1}$ В точке диапазона тока $I_1 = 0,05 - 0,2 \cdot I_{H_1}$ В точке диапазона тока $I_1 = 0,05 - 0,2 \cdot I_{H_1}$ В точке диапазона тока $I_2 = 0,05 - 0,2 \cdot I_{H_1}$ В точке диапазона тока $I_3 = 0,05 - 0,2 \cdot I_{H_1}$ В точке диапазона тока $I_3 = 0,05 - 0,2 \cdot I_{H_1}$ В точке диапазона тока $I_3 = 0,05 - 0,2 \cdot I_{H_1}$ В точке диапазона тока $I_3 = 0,05 - 0,2 \cdot I_{H_1}$
В точке диапазона тока $11 = 0,2 - 1,0 \cdot l_{H_1}$ ± 1.2 ± 1.5 ± 2.5 в точке диапазона тока $11 = 1,0 - 1,2 \cdot l_{H_1}$ ± 1.1 ± 1.3 ± 2.0 Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:
В точке диапазона тока $11 = 0.2 - 1.0 \cdot lh_1$ ± 1.2 ± 1.5 ± 2.5 в точке диапазона тока $11 = 1.0 - 1.2 \cdot lh_1$ ± 1.1
Б Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95: sinφ=0,6 sinφ=0,87 в точке диапазона тока I₁ = 0,05 - 0,2 ⋅ Iн₁ ±2.4 ±2.35
Б Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95: sinφ=0,6 sinφ=0,87 в точке диапазона тока I₁ = 0,05 - 0,2 ⋅ Iн₁ ±2.4 ±2.35
в точке диапазона тока $11 = 0.2 - 1.0 \cdot Ih_1$ ± 1.7 ± 1.6
в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁ ±1.6 ±1.6
Номинальный ток (Iн ₁ /Iн ₂) 200 / 5 A
Допустимый диапазон первичного тока 10240 А
Номинальная нагрузка TT 50 BA
Номинальное напряжение (Uн₁/Uн₂) 35000 / 100 B
Номинальная нагрузка ТН 360 ВА
томинальная такаруваа тт Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95: в точке диапазона тока I₁ = 0,05 - 0,2 ⋅Iн₁ ±1.9 ±2.5 ±4.6
4 $\frac{1}{6}$ в точке диапазона тока $I_1 = 0.05 - 0.2 \cdot IH_1$ ± 1.9 ± 2.5 ± 4.6
\mathfrak{Q} в точке диапазона тока $11 = 0.2 - 1.0 \cdot lh_1$ ± 1.2 ± 1.5 ± 2.5
10 14 40 40 10
$\frac{\sqrt{0}}{60}$ в точке диапазона тока $11 = 1,0 - 1,2 \cdot lh_1$ ± 1.1 ± 1.3 ± 2.0
в точке диапазона тока $11 = 0.2 - 1.0 \cdot lh_1$ ± 1.2 ± 1.5 ± 2.5 в точке диапазона тока $11 = 1.0 - 1.2 \cdot lh_1$ ± 1.1 ± 1.1 ± 1.2 ± 1.5 ± 2.5 Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:
Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при sinφ=0,6 sinφ=0,87 доверительной вероятности 0,95:
Б Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при sinφ=0,6 sinφ=0,87

1100	жиод	ение таблицы 2.10				
		Номинальный ток (Iн₁/Iн₂)		1500 /	5 <i>A</i>	4
		Допустимый диапазон первичного тока		7518	00	4
		Номинальная нагрузка TT		10 E	3A	
	1T	Номинальное напряжение (UH ₁ /UH ₂)		6000 /	100	В
	κB	Номинальная нагрузка ТН		75 E	3A	
	Ввод 6	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0	,8	cosφ=0,5
2	2Т	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5		±4.6
	E.H.C	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.5		±2.5
	3 K	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.2		±2.0
	ЗРУ-6кВ КНС2Т	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	,6	s	inφ=0,87
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4			±2.35
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7			±1.6
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.6			±1.5
	кВ 2T	Номинальный ток (Iн₁/Iн₂)	1500 / 5 A			4
		Допустимый диапазон первичного тока	751800 A			
		Номинальная нагрузка TT	10 BA			
		Номинальное напряжение (UH ₁ /UH ₂)	6000 / 100 B			
		Номинальная нагрузка ТН	75 BA			
	Ввод 6	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0	,8	cosφ=0,5
9	2T	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5		±4.6
	H	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.5		±2.5
	B K	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.2		±2.0
	ЗРУ-6кВ КНС2Т	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	,6	s	inφ=0,87
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Ін ₁	±2.4			±2.35
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7			±1.6
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.6			±1.5

И	ИΚ	Наименование параметра		Значени	ие
		Номинальный ток (Ін ₁ /Ін ₂)		300 / 5 A	4
		Допустимый диапазон первичного тока		15360	A
		Номинальная нагрузка TT		30 BA	
		Номинальное напряжение (Uн₁/Uн₂)		35000 / 10	0 B
		Номинальная нагрузка ТН		150 BA	
	ДНС-19-1	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0,8	cosφ=0,5
_	3Д	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5	±4.6
	5 KB	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.5	±2.5
	ВЛ-35	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.3	±2.0
	BJ	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	,6	sinφ=0,87
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4		±2.35
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7	'	±1.6
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.6	1	±1.6

Прод	цолж	ение таблицы 2.11				
		Номинальный ток (Ін₁/Ін₂)		300 / 5		
		Допустимый диапазон первичного тока		15360	Α	
		Номинальная нагрузка ТТ		\		
		Номинальное напряжение (Uн₁/Uн₂)		35000 / 100 B		
		Номинальная нагрузка ТН		150 B	A	
	кВ КНС-13-1	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0,8	3 cosφ=0,5	
7	Вĸ	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5	±4.6	
	5 S	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.5	±2.5	
	ВЛ-35	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.3	±2.0	
	BJ	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	,6	sinφ=0,87	
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4		±2.35	
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7	'	±1.6	
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.6		±1.6	
		Номинальный ток (Iн₁/Iн₂)		300 / 5		
		Допустимый диапазон первичного тока		15360		
		Номинальная нагрузка ТТ		\		
		Номинальное напряжение (Uн₁/Uн₂)		00 B		
		Номинальная нагрузка ТН				
	0.1			150 BA		
	ДНС-19-2	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0,8	3 cosφ=0,5	
က	3.4	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5	±4.6	
	10 3	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.5	±2.5	
	ВЛ-35 кВ	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.3	±2.0	
	ВЛ	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	,6	sinφ=0,87	
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4	,	±2.35	
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7		±1.6	
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.6		±1.6	
		Номинальный ток (Iн ₁ /Iн ₂)	21.0	300 / 5		
		Допустимый диапазон первичного тока	1	15360		
		Номинальная нагрузка ТТ		50 BA		
		Номинальное напряжение (Uн₁/Uн₂)		35000 / 1		
		Номинальная нагрузка ТН		150 B		
	ВЛ-35 кВ КНС-13-2	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0,8		
4	B K	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5	±4.6	
	5 K	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.5	±2.5	
	1-3!	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.3	±2.0	
	Βſ	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	,6	sinφ=0,87	
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4		±2.35	
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7		±1.6	
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.6		±1.6	

Таблица 2.12 Характеристики измерительных каналов ПС "КНС-20" 110/35/6 кВ

W	ſК	Наименование параметра		Знач	ени	ie
		Номинальный ток (Iн₁/Iн₂)		300 /	5 A	\
		Допустимый диапазон первичного тока		153	60 <i>F</i>	4
		Номинальная нагрузка ТТ	30 BA			
		Номинальное напряжение (Uн ₁ /Uн ₂)		35000 /	100) B
	<u>+</u>	Номинальная нагрузка ТН		150	ВА	
	Жаў	Границы допускаемой относительной погрешности результата				
	Ефремовская-1	измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0	8,0	cosφ=0,5
_	ф	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5	5	±4.6
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.5	5	±2.5
	.c 品	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.3	3	±2.0
	ВЛ-35 кВ	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	,6	S	inφ=0,87
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4			±2.35
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7	,		±1.6
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.6	;		±1.6
		Номинальный ток (Iн ₁ /Iн ₂)		200 /	5 A	١
		Допустимый диапазон первичного тока		10240 A		
	кВ Зимняя-1	Номинальная нагрузка ТТ	30 BA			
		Номинальное напряжение (Uн ₁ /Uн ₂)		35000 / 100 B		
		Номинальная нагрузка ТН		150	BA	
		Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0	8,0	cosφ=0,5
7		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5	5	±4.6
	죠	в точке диапазона тока	±1.2	±1.5		±2.5
	<u>-</u> 3	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.3	3	±2.0
	ВЛ-35	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	,6	S	inφ=0,87
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4			±2.35
		в точке диапазона тока	±1.7			±1.6
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.6			±1.6
		Номинальный ток (Iн ₁ /Iн ₂)		300 /		
		Допустимый диапазон первичного тока		153		١
		Номинальная нагрузка ТТ		30		
	01	Номинальное напряжение (Uн ₁ /Uн ₂)		35000 /) B
	,-R	Номинальная нагрузка ТН		150	BA	
	ВЛ-35 кВ Ефремовская-2	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0	0,8	cosφ=0,5
က	ф	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5	5	±4.6
	Ш	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.5	5	±2.5
	5 Æ	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.3	3	±2.0
	ВЛ-38	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	,6	S	inφ=0,87
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4			±2.35
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7			±1.6
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.6	,		±1.6

		Номинальный ток (Iн ₁ /Iн ₂)		200	/ 5 A	l
		Допустимый диапазон первичного тока		102	40 A	١
		Номинальная нагрузка TT		30	BA	
		Номинальное напряжение (Uн ₁ /Uн ₂)	;	35000	/ 100) B
		Номинальная нагрузка ТН		150	ВА	
	Зимняя-2	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=	8,0	cosφ=0,5
4		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.	5	±4.6
	5 KB	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.	5	±2.5
	ВЛ-3	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.3	3	±2.0
	B	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	,6	s	inφ=0,87
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4			±2.35
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7			±1.6
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.6			±1.6

		а 2.13 Характеристики измерительных каналов мпрессорная" 110/35/6 кВ					
ИИ	1K	Наименование параметра		Значени	ie		
		Номинальный ток (Iн₁/Iн₂)		400 / 5 A			
		Допустимый диапазон первичного тока		20480 /	4		
		Номинальная нагрузка ТТ		30 BA			
		Номинальное напряжение (Uн ₁ /Uн ₂)		35000 / 10	0 B		
		Номинальная нагрузка ТН		360 BA			
	ВЛ-35 кВ КНС-16-1	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0,8	cosφ=0,5		
~	∞ ≥	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5	±4.6		
	A	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.5	±2.5		
	J-3 ₄	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.2	±1.9		
	BJ	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0),6	sinφ=0,87		
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4		±2.35		
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7	,	±1.71		
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.6	;	±1.5		
		Номинальный ток (Iн ₁ /Iн ₂)		200 / 5 A			
		Допустимый диапазон первичного тока		10240 A			
		Номинальная нагрузка ТТ		50 BA			
		Номинальное напряжение (Uн ₁ /Uн ₂)		35000 / 10			
	_	Номинальная нагрузка ТН		360 BA			
	ДНС-81-1	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0,8	cosφ=0,5		
7	ВД	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5	±4.6		
	五	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.5	±2.5		
	ВЛ-35 кВ	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.2	±1.9		
	В	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0		sinφ=0,87		
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4		±2.35		
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7		±1.71		
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.6	;	±1.5		

Hpo	жпор	ение таблицы 2.13					
		Номинальный ток (Iн₁/Iн₂)		400 / 5 <i>A</i>	4		
		Допустимый диапазон первичного тока		20480	Α		
		Номинальная нагрузка TT		30 BA			
		Номинальное напряжение (Uн ₁ /Uн ₂)		35000 / 10	0 B		
		Номинальная нагрузка ТН		360 BA			
	ВЛ-35 кВ КНС-16-2	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0,8	cosφ=0,5		
3	3 K	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5	±4.6		
	5 KE	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.5	±2.5		
	1-3	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.2	±1.9		
	BJ	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0),6	sinφ=0,87		
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4	±2.4			
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7	,	±1.71		
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.6	6	±1.5		
		Номинальный ток (Iн₁/Iн₂)	200 / 5 A				
		Допустимый диапазон первичного тока	10240 A				
		Номинальная нагрузка TT		50 BA			
		Номинальное напряжение (Uн ₁ /Uн ₂)		35000 / 100 B			
		Номинальная нагрузка ТН	360 BA				
	ДНС-81-2	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0,8	cosφ=0,5		
4		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5	±4.6		
	5 KE	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.5	±2.5		
	ВЛ-35 кВ	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.2	±1.9		
	BJ	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0),6	sinφ=0,87		
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁		±2.4			
		в точке диапазона тока I1 = 0,2 - 1,0 ·lн₁	±1.7	,	±1.71		
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.6	6	±1.5		

		а 2.14 Характеристики измерительных каналов осинка" 110/35/6 кВ			
И	ИΚ	Наименование параметра		Значен	ие
		Номинальный ток (Iн₁/Iн₂)		200 / 5	A
		Допустимый диапазон первичного тока		10240	Α
		Номинальная нагрузка TT		30 BA	
	-	Номинальное напряжение (Uн ₁ /Uн ₂)		35000 / 10	00 B
	ад	Номинальная нагрузка ТН		150 B	Α
	еверо-Запад-1	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	ичества активной электрической энергии при соsφ=1	cosφ=0,8	cosφ=0,5
_	эве	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5	±4.6
	\circ	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.5	±2.5
	ĶB	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.2	±1.9
	ВЛ-35	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0),6	sinφ=0,87
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4		±2.35
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7	,	±1.71
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.6	6	±1.5

1100/	MILOJ	ение таолицы 2.14				•
		Номинальный ток (Iн₁/Iн₂)		200 /		
		Допустимый диапазон первичного тока		1024		4
		Номинальная нагрузка ТТ		30 BA		
		Номинальное напряжение (Uн ₁ /Uн ₂)		35000 /) B
		Номинальная нагрузка ТН		150	BA	
	кВ Искра-1	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=(),8	cosφ=0,5
7	<u> </u>	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5	;	±4.6
	35 1	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.5	;	±2.5
	ВЛ-35	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.2		±1.9
	Ш	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	,6	S	inφ=0,87
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4			±2.35
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7			±1.71
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.6			±1.5
		Номинальный ток (Iн ₁ /Iн ₂)		200 /	5 A	1
		Допустимый диапазон первичного тока		1024		
		Номинальная нагрузка ТТ		50 BA		
	Северо-Запад-2	Номинальное напряжение (Uн₁/Uн₂)		35000 / 100 B		
		Номинальная нагрузка ТН		150 BA		
		Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0),8	cosφ=0,5
က	еве	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5	5	±4.6
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.5	5	±2.5
	5 <u>K</u> B	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.2		±1.9
	ВЛ-35 I	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	sinφ=0,6 sin		inφ=0,87
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4	±2.4 ±2		±2.35
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7			±1.71
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.6			±1.5
		Номинальный ток (Iн ₁ /Iн ₂)		200 /	5 A	
		Допустимый диапазон первичного тока		1024		
		Номинальная нагрузка ТТ		30 E	ВА	
		Номинальное напряжение (Uн ₁ /Uн ₂)		35000 /) B
		Номинальная нагрузка ТН		150	ΒĀ	
	ВЛ-35 кВ Искра-2	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0),8	cosφ=0,5
4	δ	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5		±4.6
	35 1	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.5		±2.5
	7	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.2	<u> </u>	±1.9
	Ш	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	,6	S	inφ=0,87
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4			±2.35
		в точке диапазона тока I1 = 0,2 - 1,0 ⋅Iн₁	±1.7			±1.71
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.6			±1.5

Таблица 2.15 Характеристики измерительных каналов ПС "Малобалыкская" 110/35/6 кВ

ИИ	К	Наименование параметра		Значен	ие	
		Номинальный ток (Iн₁/Iн₂)		300 / 5	A	
		Допустимый диапазон первичного тока		15360	A	
		Номинальная нагрузка TT				
		Номинальное напряжение (Uн ₁ /Uн ₂)		35000 / 10	00 B	
		Номинальная нагрузка ТН		360 BA	\	
	кВ 1T	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0,8	cosφ=0,5	
~	35	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5	±4.6	
	Ввод	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.5	±2.5	
	Вв	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.3	±2.0	
		Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	,6	sinφ=0,87	
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4		±2.35	
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7	'	±1.6	
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.5		±1.56	
		Номинальный ток (Iн ₁ /Iн ₂)		300 / 5		
		Допустимый диапазон первичного тока		15360		
	Ввод 35 кВ 2Т	Номинальная нагрузка ТТ				
		Номинальное напряжение (Uн ₁ /Uн ₂)		35000 / 100 B		
		Номинальная нагрузка ТН		360 BA	\	
		Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0,8	cosφ=0,5	
7		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5	±4.6	
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.5	±2.5	
	BB	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.3	±2.0	
		Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	,6	sinφ=0,87	
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4	±2.4		
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7	'	±1.6	
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.5		±1.56	
		Номинальный ток (Iн₁/Iн₂)		1500 / 5	Α	
		Допустимый диапазон первичного тока		751800		
	_	Номинальная нагрузка ТТ		10 BA		
	3 1T	Номинальное напряжение (Uн₁/Uн₂)	6000 / 100 B			
	бкВ	Номинальная нагрузка ТН		75 BA		
	ввод	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0,8	cosφ=0,5	
က	7	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5	±4.6	
	ᅌ	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.5	±2.5	
	주	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.3	±2.0	
	3РУ-6кВ КНС-1 МБ	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	,6	sinφ=0,87	
	.,	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4		±2.35	
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7		±1.6	
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.5		±1.56	

Прод	MICOL	сние таолицы 2.13	ī:					
		Номинальный ток (Iн₁/Iн₂)		1500	0/5/	4		
		Допустимый диапазон первичного тока		751800 A 10 BA				
		Номинальная нагрузка ТТ						
	—	Номинальное напряжение (Uн₁/Uн₂)		В				
	3 2T	Номинальная нагрузка ТН		75	БВА			
	1 6кВ	Границы допускаемой относительной погрешности результата						
	КНС-1 МБ ввод	измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	COSφ	=0,8	cosφ=0,5		
	ПБ							
4	-	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2		±4.6		
	ڬ	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1		±2.5		
	交	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1	.3	±2.0		
	ЗРУ-6кВ	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0),6	S	inφ=0,87		
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4			±2.35		
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7	•		±1.6		
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.5	,		±1.56		
		Номинальный ток (Iн₁/Iн₂)		100	/ 5 A	١		
		Допустимый диапазон первичного тока		51	20 A			
	_	Номинальная нагрузка TT	10 BA					
	Ŧ	Номинальное напряжение (Uн₁/Uн₂)		38	30 B			
	2	Номинальная нагрузка ТН						
	ИБ ввод 6кВ ТСН-1	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	COSφ	=0,8	cosφ=0,5		
2		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.8	±2	.4	±4.4		
	<u>-</u>	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.1	±1	.3	±2.3		
	9	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±0.9	±1	.0	±1.6		
	≥	Границы допускаемой относительной погрешности результата						
	3PУ-6кВ КНС-1 МБ	измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0,6 sin		inφ=0,87			
	ന	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4			±2.3		
		в точке диапазона тока	±1.6			±1.6		
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.4			±1.4		
		Номинальный ток (Iн ₁ /Iн ₂)			/ 5 A			
		Допустимый диапазон первичного тока			20 A	1		
	4-2	Номинальная нагрузка TT			BA			
	TCH-2	Номинальное напряжение (Uн₁/Uн₂)		38	30 B			
	L E	Номинальная нагрузка ТН		Ī				
	ввод 6кВ	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ	=0,8	cosφ=0,5		
9	ME	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.8	±2		±4.4		
	7	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.1	±1		±2.3		
	의 된	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±0.9	±1	.0	±1.6		
	3PУ-6кВ КНС-1 МБ	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0),6	S	inφ=0,87		
	ζ,							
	3Р.	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4			±2.3		
	3P.	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁ в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±2.4 ±1.6			±2.3 ±1.6		

Таблица 2.16 Характеристики измерительных каналог	3
ПС "Мушкино" 110/35/6 кВ	

ı

ИИ	ГK	Наименование параметра		Значен	ие	
		Номинальный ток (Iн₁/Iн₂)		200 / 5 A		
		Допустимый диапазон первичного тока		10240	A	
		Номинальная нагрузка TT		50 BA		
		Номинальное напряжение (Uн ₁ /Uн ₂)		35000 / 10		
		Номинальная нагрузка ТН		360 BA		
	kB 1T	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0,8	cosφ=0,5	
_	35 1	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5	±4.6	
	Д.	в точке диапазона тока I1 = 0,2 - 1,0 ⋅Iн₁	±1.2	±1.5	±2.5	
	Ввод	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.3	±2.0	
	_	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0),6	sinφ=0,87	
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4		±2.35	
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7		±1.6	
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.5		±1.56	
		Номинальный ток (Iн ₁ /Iн ₂)		200 / 5	Α	
		Допустимый диапазон первичного тока		10240	A	
	д 35 кВ 2T	Номинальная нагрузка TT				
		Номинальное напряжение (Uн ₁ /Uн ₂)		35000 / 10	0 B	
		Номинальная нагрузка ТН		360 BA	1	
		Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0,8	cosφ=0,5	
7		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5	±4.6	
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.5	±2.5	
	Ввод	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.3	±2.0	
		Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0),6	sinφ=0,87	
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4	±2.4		
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7	,	±1.6	
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.5	5	±1.56	
		Номинальный ток (Iн₁/Iн₂)		150 / 5 /	Ą	
		Допустимый диапазон первичного тока		7.5180	Α	
		Номинальная нагрузка ТТ		50 BA		
	<u></u>	Номинальное напряжение (Uн₁/Uн₂)		35000 / 100 B		
	ая	Номинальная нагрузка ТН		360 BA	١	
	Промышленная-1	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0,8	cosφ=0,ξ	
က	ωO	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5	±4.6	
	П	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.5	±2.5	
	Θ	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.3	±2.0	
	ВЛ-35	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0),6	sinφ=0,87	
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4		±2.35	
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7	·	±1.6	
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.5	,	±1.56	

1100)	ЖКОД	ение таолицы 2.16					
		Номинальный ток (Iн ₁ /Iн ₂)			/ 5 A		
		Допустимый диапазон первичного тока	7.5180 A				
		Номинальная нагрузка ТТ	50 BA				
		Номинальное напряжение (Uн ₁ /Uн ₂)		35000) B	
		Номинальная нагрузка ТН		360) BA	ī	
	ВЛ-35 кВ КНС-10-1	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ:	=0,8	cosφ=0,5	
	E E						
4	B X	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2		±4.6	
	55 K	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.		±2.5	
	П-3	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.	.3	±2.0	
	B	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0),6	S	sinφ=0,87	
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4			±2.35	
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7	,		±1.6	
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.5	5		±1.56	
		Номинальный ток (Iн₁/Iн₂)			/ 5 A		
		Допустимый диапазон первичного тока		10	240 <i>A</i>	4	
		Номинальная нагрузка ТТ		50 BA			
	3Л-35 кВ ПКС-1	Номинальное напряжение (Uн ₁ /Uн ₂)		35000 / 100 B			
		Номинальная нагрузка ТН		360) BA		
		Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	COSφ=	=0,8	cosφ=0,5	
2		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2	.5	±4.6	
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.		±2.5	
	37-	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.	.3	±2.0	
	-	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	inφ=0,6 sinφ=		sinφ=0,87	
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4			±2.35	
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7	·		±1.6	
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.5	5		±1.56	
		Номинальный ток (Iн ₁ /Iн ₂)		150	/ 5 A	\	
		Допустимый диапазон первичного тока			180 /		
		Номинальная нагрузка ТТ		50	ВА		
		Номинальное напряжение (Uн₁/Uн₂)		35000	<u>/ 1</u> 00) B	
	я-2	Номинальная нагрузка ТН		360) BA		
	кВ Промышленная-2	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ:	=0,8	cosφ=0,5	
9	ω	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2	.5	±4.6	
	Д	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.	.5	±2.5	
	$\overline{\Phi}$	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.	.3	±2.0	
	ВЛ-35 I	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	sinφ=0,6		sinφ=0,87	
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4			±2.35	
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7	,		±1.6	
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.5	; T		±1.56	

11po)	долж	ение таолицы 2.16		.== :			
		Номинальный ток (Iн₁/Iн₂)		150 / 5 A			
		Допустимый диапазон первичного тока	7.5180 A				
		Номинальная нагрузка ТТ	50 BA				
		Номинальное напряжение (Uн ₁ /Uн ₂)		35000 / 10			
		Номинальная нагрузка ТН		360 BA	T		
	ВЛ-35 кВ КНС-10-2	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0,8	cosφ=0,5		
_	Υ.	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5	±4.6		
	A	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.5	±2.5		
	-35	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.3	±2.0		
	ΒJ	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	1,6	sinφ=0,87		
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4		±2.35		
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7		±1.6		
		в точке диапазона тока I1 = 1,0 - 1,2 · Iн ₁	±1.5		±1.56		
		Номинальный ток (Iн ₁ /Iн ₂)		300 / 5 A			
		Допустимый диапазон первичного тока		15360 /			
		Номинальная нагрузка ТТ					
		Номинальное напряжение (UH ₁ /UH ₂)		3A 100 B			
		Номинальное напряжение (онуюна)		BA			
	ВЛ-35 кВ ПКС-2	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0,8	cosφ=0,5		
_∞		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5	±4.6		
1		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.5	±2.5		
1		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.3	±2.0		
	ď	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0		sinφ=0,87		
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4	-	±2.35		
1		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7	-	±1.6		
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.5		±1.56		
		Номинальный ток (Iн₁/Iн₂)		1500 / 5	Α		
		Допустимый диапазон первичного тока		751800	Α		
		Номинальная нагрузка TT		10 BA			
		Номинальное напряжение (Uн ₁ /Uн ₂)		6000 / 100) B		
1	3T	Номинальная нагрузка ТН		75 BA			
	6 KB	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0,8	cosφ=0,5		
0	4 B	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5	±4.6		
1	ô	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.5	±2.5		
	.	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.3	±2.0		
	ЗРУ-6кВ КС-4 ввод	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при	sinφ=0	,6	sinφ=0,87		
	က	доверительной вероятности 0,95:					
	က		±2.4	,	±2.35		
	က	доверительной вероятности 0,95: в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁ в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±2.4 ±1.7		±2.35 ±1.6		

Прод	ЖКОЈ	ение таолицы 2.16						
		Номинальный ток (Iн₁/Iн₂)		1500				
		Допустимый диапазон первичного тока		751800 A				
		Номинальная нагрузка TT		10				
		Номинальное напряжение (Uн₁/Uн₂)		6000 / 100 B				
	4T	Номинальная нагрузка ТН		75	BA			
	КС-4 ввод 6 кВ	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=	8,0	cosφ=0,5		
10	4 B	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5	5	±4.6		
	Ŝ	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.5	5	±2.5		
	ä	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.2	2	±2.0		
	ЗРУ-6кВ	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	,6	s	inφ=0,87		
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4			±2.35		
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7	'		±1.6		
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.5			±1.56		
		Номинальный ток (Iн ₁ /Iн ₂)		150 /	/ 5 A			
		Допустимый диапазон первичного тока		7.51				
		Номинальная нагрузка TT		10 BA				
		Номинальное напряжение (Uн ₁ /Uн ₂)		380				
	звод 6 кВ ТСН-1	Номинальное наприжение (опрол ₂)		1 000 2				
		Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=	0,8	cosφ=0,5		
7		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.8	±2.4	4	±4.4		
`	4-	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.1	±1.3	3	±2.3		
	KC	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±0.9	±1.0)	±1.6		
	ЗРУ-6кВ КС-4 ввод	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	,6	s	inφ=0,87		
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4			±2.3		
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.6			±1.6		
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.4			±1.4		
		Номинальный ток (Iн ₁ /Iн ₂)		150 /	/ 5 A			
		Допустимый диапазон первичного тока		7.51				
		Номинальная нагрузка TT		10	BA			
	4-2	Номинальное напряжение (Uн ₁ /Uн ₂)		380) B			
	TCH-2	Номинальная нагрузка ТН		T				
	6 кВ	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=	0,8	cosφ=0,5		
12	H BE	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.8	±2.4		±4.4		
	7-O	в точке диапазона тока	±1.1	±1.3		±2.3		
	3 K	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±0.9	±1.0)	±1.6		
	ЗРУ-6кВ КС-4 ввод	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	,6	s	inφ=0,87		
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4			±2.3		
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.6			±1.6		
- 1		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.4		_	±1.4		

Таблица 2.17 Характеристики измерительных каналов ПС "Промысловая" 110/35/6 кВ

ИИ	<u> 1К</u>	Наименование параметра		Значен	ние		
		Номинальный ток (Iн₁/Iн₂)	150 / 5 A				
		Допустимый диапазон первичного тока		7.5180 A			
		Номинальная нагрузка ТТ		50 B	4		
		Номинальное напряжение (Uн ₁ /Uн ₂)		35000 / 1	00 B		
		Номинальная нагрузка ТН		360 B	A		
	Таёжная-1	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0,8	8 cosφ=0,5		
1	3	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5	±4.6		
	5 KB	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.5	±2.5		
	ВЛ-35 і	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.3	±2.0		
	B	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	,6	sinφ=0,87		
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4		±2.35		
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7		±1.6		
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.6	;	±1.6		
		Номинальный ток (Iн₁/Iн₂)		150 / 5	iΑ		
		Допустимый диапазон первичного тока		7.5180	O A		
	5 кВ Еловая-1	Номинальная нагрузка ТТ		50 B	4		
		Номинальное напряжение (Uн ₁ /Uн ₂)		35000 / 100 B			
		Номинальная нагрузка ТН		360 B	A		
		Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0,8	8 cosφ=0,5		
7		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5	±4.6		
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.5	±2.5		
	ВЛ-35	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.3	±2.0		
	В	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	,6	sinφ=0,87		
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4		±2.35		
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7	,	±1.6		
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.6	i	±1.6		
		Номинальный ток (Iн₁/Iн₂)		200 / 5	5 A		
		Допустимый диапазон первичного тока		10240			
		Номинальная нагрузка TT		50 B			
		Номинальное напряжение (Uн ₁ /Uн ₂)		35000 / 1	00 B		
	Ņ	Номинальная нагрузка ТН		360 B	A		
	Таёжная-2	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0,	8 cosφ=0,5		
က		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5	±4.6		
	ВЛ-35 кВ	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.5	±2.5		
	J-3 ₂	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.3	±2.0		
	BJ	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	,6	sinφ=0,87		
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Ін ₁	±2.4		±2.35		
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7	'	±1.6		
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.6	;	±1.6		

прод	ЖПО	ение таолицы 2.17			-		
		Номинальный ток (Iн₁/Iн₂)		200 / 5			
		Допустимый диапазон первичного тока	10240 A				
		Номинальная нагрузка TT		50 BA			
		Номинальное напряжение (Uн₁/Uн₂)		00 B			
		Номинальная нагрузка ТН		360 B	A		
	Еловая-2	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0,8	3 cosφ=0,5		
4	ĸB E	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5	±4.6		
	5 K	в точке диапазона тока I1 = 0,2 - 1,0 ·lн ₁	±1.2	±1.5	±2.5		
	ВЛ-35	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.3	±2.0		
	B)	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	,6	sinφ=0,87		
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4		±2.35		
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7		±1.6		
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.6		±1.6		
		Номинальный ток (Iн₁/Iн₂)		1000 / 5	5 A		
		Допустимый диапазон первичного тока		501200			
	од 6 кВ 1T	Номинальная нагрузка ТТ		10 BA			
		Номинальное напряжение (Uн₁/Uн₂)	1	6000 / 100 B			
		Номинальное наприжение (опроле	1	75 BA			
		Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0,8			
2		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5	±4.6		
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.5	±2.5		
	ввод	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.3	±2.0		
		Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	,6	sinφ=0,87		
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4		±2.35		
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7	-	±1.6		
		в точке диапазона тока 11 = 1,0 - 1,2 ·Ін ₁	±1.6		±1.6		
		Номинальный ток (Iн ₁ /Iн ₂)	1	1500 / 5			
		Допустимый диапазон первичного тока		751800			
		Номинальная нагрузка ТТ		10 BA			
		Номинальное напряжение (Uн₁/Uн₂)		6000 / 10	00 B		
		Номинальная нагрузка ТН		75 BA	١		
	3 2T	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0,8	3 cosφ=0,5		
9	6 кВ	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5	±4.6		
) ДС	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.5	±2.5		
	ввод	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.3	±2.0		
		Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	,6	sinφ=0,87		
- 1		0.05, 0.01	10.4		±2.35		
		в точке диапазона тока т₁ = 0,05 - 0,2 тн₁	±2.4	,	±2.33		
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁ в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±2.4 ±1.7		±2.35 ±1.6		

Таблица 2.18 Характеристики измерительных каналов ПС "Речная" 110/35/6 кВ

ИИ	ſК	Наименование параметра		Значен	ие		
		Номинальный ток (Iн₁/Iн₂)	300 / 5 A				
		Допустимый диапазон первичного тока		15360	Α		
		Номинальная нагрузка ТТ					
		Номинальное напряжение (Uн ₁ /Uн ₂)		35000 / 100 B			
		Номинальная нагрузка ТН		360 BA	4		
	7	Границы допускаемой относительной погрешности результата					
	35кВ Горная-1	измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0,8	cosφ=0,5		
_	3	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5	±4.6		
	5KE	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.5	±2.5		
	3	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.3	±2.0		
	ВЛ	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	,6	sinφ=0,87		
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4		±2.35		
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7		±1.6		
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.6	;	±1.6		
		Номинальный ток (Iн₁/Iн₂)		200 / 5	A		
		Допустимый диапазон первичного тока		10240 A			
	35кВ Сосновая-1	Номинальная нагрузка TT		50 BA			
		Номинальное напряжение (Uн ₁ /Uн ₂)		35000 / 100 B			
		Номинальная нагрузка ТН		360 BA	4		
		Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0,8	cosφ=0,5		
7		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5	±4.6		
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.5	±2.5		
	35	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.3	±2.0		
	ВЛ	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	,6	sinφ=0,87		
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4		±2.35		
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7	'	±1.6		
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.6	}	±1.6		
		Номинальный ток (Iн₁/Iн₂)		300 / 5	A		
		Допустимый диапазон первичного тока		15360			
		Номинальная нагрузка ТТ		50 BA			
		Номинальное напряжение (Uн ₁ /Uн ₂)		35000 / 10			
	•	Номинальная нагрузка ТН		360 BA	4		
	ВЛ 35кВ Горная-2	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0,8	cosφ=0,5		
က	Ľ œ	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5	±4.6		
	5KE	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.5	±2.5		
	П 3	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.3	±2.0		
	B	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	,6	sinφ=0,87		
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4		±2.35		
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7		±1.6		
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.6		±1.6		

	i i		I	000 / 5	Λ.	
		Номинальный ток (Iн₁/Iн₂)	200 / 5 A			
		Допустимый диапазон первичного тока		10240	240 A	
		Номинальная нагрузка ТТ		50 BA		
		Номинальное напряжение (Uн ₁ /Uн ₂)		35000 / 10	0 B	
	QI.	Номинальная нагрузка ТН		360 BA	1	
	Сосновая-2	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0,8	cosφ=0,5	
4	S	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5	±4.6	
	35кВ	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.5	±2.5	
	35	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.3	±2.0	
	ВЛ	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	,6	sinφ=0,87	
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4		±2.35	
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7		±1.6	
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.6		±1.6	

Таблица 2.19 Характеристики измерительных каналов ПС "Средний Балык" 110/35/6 кВ

ИИК	К	Наименование параметра		Значен	ие			
		Номинальный ток (Iн₁/Iн₂)		200 / 5	A			
		Допустимый диапазон первичного тока		10240 A				
		Номинальная нагрузка TT		50 BA				
		Номинальное напряжение (Uн ₁ /Uн ₂)		35000 / 10	00 B			
		Номинальная нагрузка ТН		360 BA	\			
1	ВЛ-35 кВ Летняя-1	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0,8	cosφ=0,5			
- 5	3 Л	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5	±4.6			
3	5	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.5	±2.5			
C	<u>-3</u>	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.3	±2.0			
ā	<u>B</u>	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0),6	sinφ=0,87			
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4	ļ	±2.35			
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7	,	±1.6			
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.5		±1.56			
		Номинальный ток (Iн ₁ /Iн ₂)		300 / 5 A				
		Допустимый диапазон первичного тока		15360 A				
		Номинальная нагрузка ТТ		50 BA				
		Номинальное напряжение (Uн₁/Uн₂)		35000 / 100 B				
		Номинальная нагрузка ТН		360 BA				
0	ВЛ-35 кВ КНС-2-1	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0,8	cosφ=0,5			
ام أ	ä [в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5	±4.6			
: !	χ. Σ	в точке диапазона тока	±1.2	±1.5	±2.5			
C	은	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.1 ±1.3				
٥	a	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0),6	sinφ=0,87			
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4	,	±2.35			
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7	,	±1.6			
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.5	5	±1.56			

1100/	жкод	ение таолицы 2.19			_		
		Номинальный ток (Iн₁/Iн₂)		200 / 5			
		Допустимый диапазон первичного тока		10240			
		Номинальная нагрузка ТТ		50 BA			
		Номинальное напряжение (Uн ₁ /Uн ₂)		35000 / 100 B			
	(-1	Номинальная нагрузка ТН		360 B	4		
	ВЛ-35 кВ Южный-Балык-1	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0,8	cosφ=0,5		
3	XH.	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5	±4.6		
	S 오	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.5	±2.5		
	<u>A</u>	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.3	±2.0		
	ВЛ-36	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	,6	sinφ=0,87		
		в точке диапазона тока I₁ = 0,05 - 0,2 ·Iн₁	±2.4		±2.35		
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7		±1.6		
		в точке диапазона тока I1 = 1,0 - 1,2 · lн ₁	±1.5		±1.56		
		Номинальный ток (Iн ₁ /Iн ₂)		200 / 5			
		Допустимый диапазон первичного тока		10240			
		Номинальная нагрузка ТТ		50 BA 35000 / 100 B			
		Номинальная нагрузка 11 Номинальное напряжение (Uн ₁ /Uн ₂)					
		Номинальное напряжение (онуюна)		360 BA			
	<u></u>	Поминальная нагрузка 111		1			
	Дожимная	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0,8	cosφ=0,5		
4		в точке диапазона тока I₁ = 0,05 - 0,2 ·Iн₁	±1.9	±2.5	±4.6		
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.5	±2.5		
	35	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.3	±2.0		
	ВЛ-35 кВ	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	,6	sinφ=0,87		
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4		±2.35		
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7		±1.6		
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.5		±1.56		
		Номинальный ток (Iн ₁ /Iн ₂)		200 / 5	A		
		Допустимый диапазон первичного тока		10240			
		Номинальная нагрузка ТТ		50 BA			
		Номинальное напряжение (Uн₁/Uн₂)		35000 / 10	00 B		
		Номинальная нагрузка ТН		360 B/	A		
	ВЛ-35 кВ Летняя-2	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0,8	cosφ=0,5		
5	Л	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5	±4.6		
	ž.	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.5	±2.5		
	-35	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.3	±2.0		
	ВЛ	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	,6	sinφ=0,87		
		в точке диапазона тока I₁ = 0,05 - 0,2 ·Iн₁	±2.4		±2.35		
		в точке диапазона тока I1 = 0,2 - 1,0 · lн ₁	±1.7		±1.6		
		в точке диапазона тока I1 = 1,0 - 1,2 · lн ₁	±1.5		±1.56		
			•				

11po/	ЖІСОД	ение таолицы 2.19		000 //	- ^		
		Номинальный ток (Iн ₁ /Iн ₂)		300 / 9			
		Допустимый диапазон первичного тока	15360 A				
		Номинальная нагрузка ТТ	50 BA				
		Номинальное напряжение (Uн₁/Uн₂)		35000 /			
		Номинальная нагрузка ТН		360 E	BA		
	кВ КНС-2-2	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0	8		
9	θ	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5	±4.6		
	35 1	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.5	±2.5		
	ВЛ-35	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.3	±2.0		
	В	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	,6	sinφ=0,87		
		в точке диапазона тока I₁ = 0,05 - 0,2 ·Iн₁	±2.4	,	±2.35		
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7		±1.6		
		в точке диапазона тока I1 = 1,0 - 1,2 · Iн ₁	±1.5		±1.56		
		Номинальный ток (Iн ₁ /Iн ₂)		200 / 9			
		Допустимый диапазон первичного тока		1024			
		Номинальная нагрузка TT					
		Номинальная нагрузка 11 Номинальное напряжение (Uн ₁ /Uн ₂)		50 BA 35000 / 100 B			
	α	·		360 BA			
	ВЛ-35 кВ Южный-Балык-2	Номинальная нагрузка ТН		300 BA			
		Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0	8 cosφ=0,5		
7		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5	±4.6		
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.5	±2.5		
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.3	±2.0		
		Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	,6	sinφ=0,87		
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4	±2.4			
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7		±1.6		
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.5	1	±1.56		
		Номинальный ток (Iн ₁ /Iн ₂)		200 / 9			
		Допустимый диапазон первичного тока		1024	0 A		
		Номинальная нагрузка TT		50 B			
		Номинальное напряжение (Uн₁/Uн₂)		35000 /			
		Номинальная нагрузка ТН		360 E			
	Дожимная -2	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0.			
∞	ф По	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5	±4.6		
	₽ Z	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.5	±2.5		
	35 1	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.3	±2.0		
	ВЛ-35	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0		sinφ=0,87		
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4		±2.35		
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7		±1.6		
		в точке диапазона тока I1 = 1,0 - 1,2 · Iн ₁	±1.5		±1.56		
		2 10 mg Andreadona 10 mg 1,2 mg			=		

11po ₂	МІСОД	ение таолицы 2.19	ı	4500 / 5	^			
		Номинальный ток (Iн₁/Iн₂)		1500 / 5				
		Допустимый диапазон первичного тока		751800 A				
		Номинальная нагрузка ТТ	10 BA					
	 	Номинальное напряжение (Uн ₁ /Uн ₂)		6000 / 100) B			
	δ	Номинальная нагрузка ТН		75 BA	1			
	СБ ввод 6	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0,8	cosφ=0,5			
6	2	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Ін ₁	±1.9	±2.5	±4.6			
	<u>5</u>	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.5	±2.5			
	추	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.2	±1.9			
	Ã	Границы допускаемой относительной погрешности результата		•	•			
	3PУ-6кВ КНС-2	измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	,6	sinφ=0,87			
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4	1	±2.35			
		в точке диапазона тока I1 = 0,2 - 1,0 ·lн ₁	±1.7		±1.6			
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.5		±1.56			
		Номинальный ток (Iн₁/Iн₂)		1500 / 5	A			
		Допустимый диапазон первичного тока		751800	Α			
		Номинальная нагрузка ТТ		10 BA				
	2T	Номинальное напряжение (Uн ₁ /Uн ₂)		6000 / 100 B				
	ξ	Номинальная нагрузка ТН						
	СБ ввод 6	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0,8	cosφ=0,5			
10		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5	±4.6			
	<u>'</u>	в точке диапазона тока I1 = 0,2 - 1,0 ·lн ₁	±1.2	±1.5	±2.5			
	至	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.2	±1.9			
	3PУ-6кВ КНС-2	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	,6	sinφ=0,87			
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Ін ₁	±2.4		±2.35			
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7		±1.6			
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.5		±1.56			
		Номинальный ток (Iн₁/Iн₂)		100 / 5 /				
		Допустимый диапазон первичного тока		5120 A	4			
		Номинальная нагрузка ТТ		10 BA				
	<u>-</u>	Номинальное напряжение (Uн ₁ /Uн ₂)		6000 / 100) B			
	Ė	Номинальная нагрузка ТН		75 BA				
	СБ СН КТП-1	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0,8	cosφ=0,5			
7	-2 (в точке диапазона тока I ₁ = 0,05 - 0,2 ·Ін ₁	±1.9	±2.5	±4.6			
	HC	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.5	±2.5			
	3 KI	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.2	±1.9			
	3PУ-6 _K B KHC-2	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	,6	sinφ=0,87			
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Ін ₁	±2.4		±2.35			
		в точке диапазона тока I1 = 0,2 - 1,0 ·lн ₁	±1.7		±1.6			
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.5		±1.56			

	1		1		
		Номинальный ток (Iн₁/Iн₂)		100 / 5	Α
		Допустимый диапазон первичного тока		A	
		Номинальная нагрузка ТТ		10 BA	\
	Ņ	Номинальное напряжение (Uн₁/Uн₂)		6000 / 10	00 B
	KTП-2	Номинальная нагрузка ТН		75 BA	\
	СБ СН К	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0,8	cosφ=0,5
12		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.8	±2.5	±4.6
	KHC-2	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.5	±2.5
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.2	±1.9
	ЗРУ-6кВ	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	,6	sinφ=0,87
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4		±2.35
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7		±1.6
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.5		±1.56

иик	Наименование параметра		Значени	ie	
	Номинальный ток (Iн ₁ /Iн ₂)	200 / 5 A			
	Допустимый диапазон первичного тока		10240 A	4	
	Номинальная нагрузка ТТ		50 BA		
	Номинальное напряжение (Uн₁/Uн₂)		35000 / 100) B	
7	Номинальная нагрузка ТН		360 BA		
	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0,8	cosφ=0,5	
- 2	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5	±4.6	
	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.5	±2.5	
ά	в точке диапазона тока	±1.1	±1.3	±2.0	
RI.35	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:			sinφ=0,87	
	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4		±2.35	
	в точке диапазона тока	±1.7		±1.6	
	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.5		±1.56	
	Номинальный ток (Iн₁/Iн₂)		200 / 5 A		
	Допустимый диапазон первичного тока		10240 A	4	
	Номинальная нагрузка ТТ		50 BA		
	Номинальное напряжение (Uн₁/Uн₂)		35000 / 100) / 100 B	
7	Номинальная нагрузка ТН		360 BA		
2 	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0,8	cosφ=0,5	
2 5	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5	±4.6	
ά	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.5	±2.5	
35.1	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.3	±2.0	
RП_35	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	,6 s	inφ=0,87	
	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4		±2.35	
	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7		±1.6	
	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.5		±1.56	

1100)	жиод	ение таблицы 2.20			-
		Номинальный ток (Iн₁/Iн₂)		200 / 5	
		Допустимый диапазон первичного тока		10240	A
		Номинальная нагрузка ТТ	50 BA		
		Номинальное напряжение (Uн ₁ /Uн ₂)		35000 / 100 B	
	я-2	Номинальная нагрузка ТН		360 BA	١
	Промысловая-2	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0,8	cosφ=0,5
3	lod	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5	±4.6
	∃ П	в точке диапазона тока I1 = 0,2 - 1,0 ·lн ₁	±1.2	±1.5	±2.5
	5 KE	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.3	±2.0
	ВЛ-35 кВ	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	,6	sinφ=0,87
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4		±2.35
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7		±1.6
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.5		±1.56
		Номинальный ток (Iн ₁ /Iн ₂)		200 / 5	
		Допустимый диапазон первичного тока		10240	
		Номинальная нагрузка TT		50 BA	
		Номинальное напряжение (Uн ₁ /Uн ₂)		35000 / 10	
		Номинальное напримение (опротед)		360 BA	
	Поселковая-2	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0,8	cosφ=0,5
4	oc	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5	±4.6
	кВ Г	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.5	±2.5
	5 Kl	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.3	±2.0
	ВЛ-35 і	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	,6	sinφ=0,87
		в точке диапазона тока I₁ = 0,05 - 0,2 ·Iн₁	±2.4		±2.35
		в точке диапазона тока I1 = 0,2 - 1,0 ·lh ₁	±1.7		±1.6
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.5		±1.56
		Номинальный ток (Iн ₁ /Iн ₂)		1500 / 5	
		Допустимый диапазон первичного тока		751800	
		Номинальная нагрузка TT		10 BA	
		Номинальное напряжение (Uн ₁ /Uн ₂)		6000 / 10	
	11	Номинальная нагрузка ТН		75 BA	
	6 кВ	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0,8	cosφ=0,5
2	1	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5	±4.6
	<u>ن</u>	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.5	±2.5
	주	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.2	±1.9
	ЗРУ-6кВ КНС-1У ввод	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	,6	sinφ=0,87
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4		±2.35
		в точке диапазона тока 11 = 0,2 - 1,0 ·Iн ₁	±1.7		±1.6
		в точке диапазона тока 11 = 0,2 = 1,0 чит в точке диапазона тока 11 = 1,0 - 1,2 чит	±1.5		±1.56
		ы то же дианазона тока тт = 1,0 ° 1,2 чпү	1 1.0		± 1.00

11po)	ДОЛЖ	ение таолицы 2.20				
		Номинальный ток (Iн₁/Iн₂)		1500 /		
		Допустимый диапазон первичного тока		75180		
		Номинальная нагрузка ТТ	10 BA			
	2T	Номинальное напряжение (Uн ₁ /Uн ₂)		6000 / 1	00 B	
	кВ 2	Номинальная нагрузка ТН		75 B	4	
	ввод 6	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0,	8 cosφ=0,5	
9	-1y	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5	±4.6	
	НС	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.5	±2.5	
	3 K	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.2	±1.9	
	3PУ-6кВ КНС-1У	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	,6	sinφ=0,87	
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4		±2.35	
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7		±1.6	
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.5		±1.56	
		Номинальный ток (Iн ₁ /Iн ₂)		150 / 5		
		Допустимый диапазон первичного тока		7.518		
		Номинальная нагрузка ТТ	10 BA			
	3PУ-6кВ КНС-1У ТСН-1	Номинальное напряжение (Uн ₁ /Uн ₂)		3		
		Номинальная нагрузка ТН				
		Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0,	8 cosφ=0,5	
7	HC	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Ін ₁	±1.8	±2.4	±4.4	
	3 KI	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.1	±1.3	±2.3	
	-6кЕ	в точке диапазона тока I1 = 1,0 - 1,2 · lн ₁	±0.9	±1.0	±1.6	
	3Py-	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:			sinφ=0,87	
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.3		±2.28	
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.6		±1.6	
		в точке диапазона тока I1 = 1,0 - 1,2 · lн ₁	±1.4		±1.4	
		Номинальный ток (Iн ₁ /Iн ₂)		150 / 5		
		Допустимый диапазон первичного тока		7.518	Α	
		Номинальная нагрузка TT		10 B/		
		Номинальное напряжение (UH ₁ /UH ₂)		380 E	3	
	-5	Номинальная нагрузка ТН		ı		
	ЗРУ-6кВ КНС-1У ТСН-2	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0,	8 cosφ=0,5	
∞	오	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.8	±2.4	±4.4	
	3 K	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.1	±1.3	±2.3	
	-6ĸĒ	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±0.9	±1.0	±1.6	
	3Py-	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	,6	sinφ=0,87	
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.3		±2.28	
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.6		±1.6	
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.4		±1.4	

Таблица 2.21 Характеристики измерительных каналов
ПС "Водозабор" 110/35/6 кВ

ИИ	ſК	Наименование параметра		Значен	ие			
		Номинальный ток (Iн₁/Iн₂)		A				
		Допустимый диапазон первичного тока		15360	A			
		Номинальная нагрузка TT		30 BA				
	-	Номинальное напряжение (Uн ₁ /Uн ₂)		35000 / 10				
	₹	Номинальная нагрузка ТН		150 BA				
	Западный Салым-1	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0,8				
_	휴	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5	±4.6			
	ä	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.5	±2.5			
	ξB 3	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.2	±1.9			
	ВЛ-35 к	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	,6	sinφ=0,87			
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4	1	±2.35			
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7		±1.71			
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.6		±1.5			
		Номинальный ток (Iн ₁ /Iн ₂)		150 / 5	A			
		Допустимый диапазон первичного тока		7.5180	Α			
	Рэмовская	Номинальная нагрузка TT		50 BA				
		Номинальное напряжение (UH ₁ /UH ₂)		00 B				
		Номинальная нагрузка ТН		1				
		Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0,8	cosφ=0,5			
7	ഫ	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5	±4.6			
	δ	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.5	±2.5			
	ВЛ-35	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.2	±1.9			
	ВЛ	ВЛ	ВЛ	ВЛ	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	,6	sinφ=0,87
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4		±2.35			
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7		±1.71			
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.6		±1.5			
		Номинальный ток (Iн₁/Iн₂)		200 / 5				
		Допустимый диапазон первичного тока		10240				
	2	Номинальная нагрузка ТТ		50 BA				
	` <u>-</u> ∐	Номинальное напряжение (Uн ₁ /Uн ₂)		35000 / 10				
	Ā Z	Номинальная нагрузка ТН		150 BA	1			
	Западный Салым-2	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0,8	•			
က	де	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5	±4.6			
	Заг	в точке диапазона тока 11 = 0,2 - 1,0 ·Ін1	±1.2	±1.5	±2.5			
	Ã	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.3	±2.0			
	ВЛ-35 к	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0		sinφ=0,87			
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4		±2.35			
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7		±1.71			
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.6		±1.6			

	·	• · · · · · · · · · · · · · · · · · · ·			
		Номинальный ток (Iн ₁ /Iн ₂)		200 / 5	Α
		Допустимый диапазон первичного тока		10240	Α
		Номинальная нагрузка ТТ		50 BA	
		Номинальное напряжение (Uн ₁ /Uн ₂)		35000 / 10	00 B
		Номинальная нагрузка ТН		150 BA	1
	Водозабор	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0,8	cosφ=0,5
4	ВЛ-35 кВ Во	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5	±4.6
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.5	±2.5
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.3	±2.0
		Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	,6	sinφ=0,87
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁ ±2.4		±2.35
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7		±1.71
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.6		±1.6

ИИК	Наименование параметра		Значени	re	
	Номинальный ток (Iн₁/Iн₂)	42) 200			
	Допустимый диапазон первичного тока		4		
	Номинальная нагрузка ТТ		50 BA		
7	Номинальное напряжение (Uн ₁ /Uн ₂)		35000 / 100	0 B	
Ka	Номинальная нагрузка ТН		360 BA		
1 Карамышевская-1	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0,8	cosφ=0,5	
1 2a _N	в точке диапазона тока I₁ = 0,05 - 0,2 ⋅Iн₁	±1.9	±2.5	±4.6	
Kag	в точке диапазона тока I1 = 0,2 - 1,0 ⋅Iн ₁	±1.2	±1.5	±2.5	
ā	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.3	±2.0	
ВЛ-35	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0),6 s	sinφ=0,87	
	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4 ±2		±2.35	
	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7	±1.6		
	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.6	j	±1.6	
	Номинальный ток (Ін₁/Ін₂)		200 / 5 A		
	Допустимый диапазон первичного тока	10240 A			
	Номинальная нагрузка ТТ	50 BA			
	Номинальное напряжение (Uн₁/Uн₂)		35000 / 100		
, F	Номинальная нагрузка ТН		360 BA		
2 Городская-1	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0,8	cosφ=0,	
2 5	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5	±4.6	
奇	в точке диапазона тока I1 = 0,2 - 1,0 ⋅lн ₁	±1.2	±1.5	±2.5	
35	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.3	±2.0	
ВЛ-35	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0),6 s	sinφ=0,87	
	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4		±2.35	
	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7		±1.6	
	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.6	;	±1.6	

ттрод	LOJIM	ение таолицы 2.22					
		Номинальный ток (Iн ₁ /Iн ₂)		400 / 5			
		Допустимый диапазон первичного тока		20480			
		Номинальная нагрузка ТТ	30 BA				
		Номинальное напряжение (Uн₁/Uн₂)		35000 / 100 B			
		Номинальная нагрузка ТН		360 B	4		
	Связная-1	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0,8	cosφ=0,5		
က		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5	±4.6		
	奇	в точке диапазона тока I1 = 0,2 - 1,0 ·lн ₁	±1.2	±1.5	±2.5		
	ВЛ-35	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.3	±2.0		
	ВЛ	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	,6	sinφ=0,87		
		в точке диапазона тока I₁ = 0,05 - 0,2 ·Iн₁	±2.4		±2.35		
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7		±1.6		
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.6		±1.6		
		Номинальный ток (Iн ₁ /Iн ₂)		300 / 5			
		Допустимый диапазон первичного тока		15360			
		Номинальная нагрузка ТТ					
		Номинальное напряжение (Uн ₁ /Uн ₂)					
		Номинальное наприжение (опрему)		35000 / 100 B 360 BA			
	кВ Центральная-1	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0,8			
4	Ĭ.	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5	±4.6		
	≟	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.5	±2.5		
	δ	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.3	±2.0		
	ВЛ-35	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	,6	sinφ=0,87		
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4		±2.35		
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7		±1.6		
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.6		±1.6		
		Номинальный ток (Iн ₁ /Iн ₂)		200 / 5			
		Допустимый диапазон первичного тока		10240			
		Номинальная нагрузка ТТ		50 BA			
		Номинальное напряжение (Uн ₁ /Uн ₂)		35000 / 10			
	2						
	Ņ	·		360 B	A		
	ышевская-2	Номинальная нагрузка ТН Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	360 BA			
5	амышевская-2	Номинальная нагрузка ТН Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при	cosφ=1 ±1.9				
2	(арамышевская-2	Номинальная нагрузка ТН Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	·	cosφ=0,8	cosφ=0,5		
5	В Карамышевская-2	Номинальная нагрузка ТН Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95: в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	cosφ=0,8 ±2.5	cosφ=0,5 ±4.6		
ડ	ВЛ-35 кВ Карамышевская-2	Номинальная нагрузка ТН Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95: в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁ в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.9 ±1.2	cosφ=0,8 ±2.5 ±1.5 ±1.3	cosφ=0,5 ±4.6 ±2.5		
വ	ВЛ-35 кВ Карамышевская-2	Номинальная нагрузка ТН Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95: в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁ в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁ в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁ Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	±1.9 ±1.2 ±1.1 sinφ=0	cosφ=0,8 ±2.5 ±1.5 ±1.3	cosφ=0,5 ±4.6 ±2.5 ±2.0 sinφ=0,87		
5	ВЛ-35 кВ Карамышевская-2	Номинальная нагрузка ТН Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95: в точке диапазона тока I ₁ = 0,05 - 0,2 ·IH ₁ в точке диапазона тока I1 = 0,2 - 1,0 ·IH ₁ в точке диапазона тока I1 = 1,0 - 1,2 ·IH ₁ Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при	±1.9 ±1.2 ±1.1	cosφ=0,8 ±2.5 ±1.5 ±1.3	cosφ=0,5 ±4.6 ±2.5 ±2.0		

Номинальная ток (Ну/На) Допустивый дивлазона тока 1 = 0.240 A Номинальная нагружа ТТ Раинцы допускаемой относительной погрешности результата измерений количества рактивной запектрической энергии при доверительной вероятности 0,95: в точне дивлазона тока 1 = 0.05 - 0,2 Пн₁	1100/	жкод	ение таолицы 2.22				
Номинальная нагрузка ТТ Номинальное напряжение (Онт/Онд-) Номинальное напряжение отказа (Онт/Онд-) Номинальное напряжение на насерение на насерение на насерение на насерение			Номинальный ток (Iн₁/Iн₂)				
Номинальное напряжение (Uн./Uh.) Номинальное напряжение (Uн./Uh.) Номинальное напряжение (Uн./Uh.) В точке дивлазона тока 11 = 0.05 - 0.2 - Uh. В точке дивлазона тока 11 = 0.05 - 0.2 - Uh. В точке дивлазона тока 11 = 0.05 - 0.2 - Uh. В точке дивлазона тока 11 = 0.05 - 0.2 - Uh. В точке дивлазона тока 11 = 0.05 - 0.2 - Uh. В точке дивлазона тока 11 = 0.05 - 0.2 - Uh. В точке дивлазона тока 11 = 0.05 - 0.2 - Uh. В точке дивлазона тока 11 = 0.05 - 0.2 - Uh. В точке дивлазона тока 11 = 0.05 - 0.2 - Uh. В точке дивлазона тока 11 = 0.05 - 0.2 - Uh. В точке дивлазона тока 11 = 0.05 - 0.2 - Uh. В точке дивлазона тока 11 = 0.05 - 0.2 - Uh. Номинальное напряжение (Uh./Uh.) В точке дивлазона тока 11 = 0.05 - 0.2 - Uh. Номинальное напряжение (Uh./Uh.) В точке дивлазона тока 11 = 0.05 - 0.2 - Uh. В точке дивлазона тока 11 = 0.05 - 0.2 - Uh. Номинальное напряжение (Uh./Uh.) В точке дивлазона тока 11 = 0.05 - 0.2 - Uh.			Допустимый диапазон первичного тока		102	240 A	١
Номинальная нагрузка ТН Траницы долускаемий относительной потрешности результата имерений количества активной запектрической энергии при доверительной вероятности 0.95: В точке диапазона тока I I = 0.05 - 0.2 -llн. В точке диапазона тока I I = 0.2 - 1.0 -llн. В точке диапазона тока I I = 0.2 - 1.0 -llн. В точке диапазона тока I I = 0.2 - 1.0 -llн. В точке диапазона тока I I = 0.2 - 1.0 -llн. В точке диапазона тока I I = 0.2 - 1.0 -llн. В точке диапазона тока I I = 0.2 - 1.0 -llн. В точке диапазона тока I I = 0.2 - 1.0 -llн. В точке диапазона тока I I = 0.2 - 1.0 -llн. В точке диапазона тока I I = 0.2 - 1.0 -llн. В точке диапазона тока I I = 0.2 - 1.0 -llн. В точке диапазона тока I I = 0.05 - 0.2 -llн. В точке диапазона тока I I = 0.05 - 0.2 -llн. В точке диапазона тока I I = 0.05 - 0.2 -llн. В точке диапазона тока I I = 0.05 - 0.2 -llн. В точке диапазона тока I I = 0.05 - 0.2 -llн. В точке диапазона тока I I = 0.05 - 0.2 -llн. В точке диапазона тока I I = 0.05 - 0.2 -llн. В т			Номинальная нагрузка ТТ				
Траницы допускаемой относительной погрешности разультата измерений количества активной электрической энергии при доверительной вероятности 0.95: В точке диапазона тока 11 = 0.05 - 0.2 - lbн			Номинальное напряжение (Uн₁/Uн₂)		35000 / 100 B		
В точке диапазона тока I1 = 0,2 - 1,0 -lht, ±1.2 ±1.5 ±2.5 ±2.5 точке диапазона тока I1 = 0,0 - 1,2 -lht, ±1.1 ±1.3 ±2.0 точке диапазона тока I1 = 0,0 - 1,2 -lht, ±1.1 ±1.3 ±2.0 точке диапазона тока I1 = 0,0 - 1,2 -lht, ±1.1 ±1.3 ±2.0 точке диапазона тока I1 = 0,0 - 1,2 -lht, ±1.6 ±1.6 ±1.6 ±1.6 ±1.6 ±1.6 ±1.6 ±1.6			Номинальная нагрузка ТН		360	BA	
В точке диапазона тока I1 = 0,2 - 1,0 -lht, ±1.2 ±1.5 ±2.5 ±2.5 точке диапазона тока I1 = 0,0 - 1,2 -lht, ±1.1 ±1.3 ±2.0 точке диапазона тока I1 = 0,0 - 1,2 -lht, ±1.1 ±1.3 ±2.0 точке диапазона тока I1 = 0,0 - 1,2 -lht, ±1.1 ±1.3 ±2.0 точке диапазона тока I1 = 0,0 - 1,2 -lht, ±1.6 ±1.6 ±1.6 ±1.6 ±1.6 ±1.6 ±1.6 ±1.6		одская-2	измерений количества активной электрической энергии при	cosφ=1	cosφ=	=0,8	cosφ=0,5
В точке диапазона тока I1 = 0,2 - 1,0 -lht, ±1.2 ±1.5 ±2.5 ±2.5 точке диапазона тока I1 = 0,0 - 1,2 -lht, ±1.1 ±1.3 ±2.0 точке диапазона тока I1 = 0,0 - 1,2 -lht, ±1.1 ±1.3 ±2.0 точке диапазона тока I1 = 0,0 - 1,2 -lht, ±1.1 ±1.3 ±2.0 точке диапазона тока I1 = 0,0 - 1,2 -lht, ±1.6 ±1.6 ±1.6 ±1.6 ±1.6 ±1.6 ±1.6 ±1.6	9	-lo	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.	5	±4.6
В точке диапазона тока I1 = 1,0 - 1,2 -Iн;		<u> </u>		±1.2	±1.	5	±2.5
измерений количества реактивной электрической энергии при доверительной вероятности 0,95: в точке диалазона тока 1; = 0,05 - 0,2 - 1н₁ ±2.4 ±2.35 в точке диалазона тока 11 = 1,0 - 1,2 - 1н₁ ±1.6 ±1.6 Номинальный ток (Iн-/Iн₂) 400 / 5 A Допустивый диалазон первичного тока 20. 480 A Номинальная нагрузка ТТ 30 BA Номинальная нагрузка ТТ 30 BA Номинальная нагрузка ТТ 35000 / 100 B Номинальная нагрузка ТТ 35000 / 100 B Номинальная нагрузка ТН 360 BA Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95: в точке диалазона тока 1; = 0,05 - 0,2 - 1н₁ ±1.9 ±2.5 ±4.6 в точке диалазона тока 11 = 0,2 - 1,0 - 1н₁ ±1.1 ±1.3 ±2.0 Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной количества реактивной электрической энергии при доверительной вероятности 0,95: в точке диалазона тока 11 = 1,0 - 1,2 - 1н₁ ±1.1 ±1.3 ±2.0 Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной порешности о 15.360 A Номинальная тока 11 = 0,05 - 0,2 - 1н₁ ±1.6 ±1.6 Номинальная тока (1н-/Iн₂) 300 / 5 A Допустивый диалазона тока 11 = 0,0 - 1,2 - 1н₁ ±1.6 ±1.6 Номинальная нагрузка ТТ 50 BA Поминальная нагрузка ТТ 50 BA В точке диалазона тока 11 = 0,2 - 1,0 - 1н₁ ±1.2 ±1.5 ±2.5 ±2.5 ±2.5 ±2.5 ±2.5 ±2.5 ±2.5 ±2		35 x		±1.1	±1.	3	±2.0
В точке диапазона тока 11 = 0,2 - 1,0 - liн₁		BJ-3	измерений количества реактивной электрической энергии при	sinφ=0	,6	s	inφ=0,87
В точке диапазона тока 11 = 0,2 - 1,0 -lin;			в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4			±2.35
В точке диапазона тока 11 = 1,0 - 1,2 · lн₁							
Номинальный ток (Iн/Iн₂) Допустимый диапазон первичного тока Долустимый диапазон первичного тока Долустимый диапазон первичного тока Номинальная нагрузка ТТ Зо ВА Номинальная нагрузка ТН Праницы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95: В точке диапазона тока 11 = 0,0 - 1,0 - Iн₁ ±1.2 ±1.5 ±2.5 В точке диапазона тока 11 = 0,0 - 1,0 - Iн₁ ±1.7 ±1.6 В точке диапазона тока 11 = 1,0 - 1,2 - Iн₁ ±1.6 ±1.6 В точке диапазона тока 11 = 1,0 - 1,2 - Iн₁ ±1.6 ±1.6 Номинальная нагрузка ТТ Номинальная нагрузка ТН Праницы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95: В точке диапазона тока 11 = 1,0 - 1,2 - Iн₁ ±1.7 ±1.6 В точке диапазона тока 11 = 1,0 - 1,2 - Iн₁ ±1.6 ±1.6 Номинальная нагрузка ТТ Номинальная нагрузка ТН Праницы допускаемой относительной погрешности результата измерений количества вативной электрической энергии при доверительной вероятности 0,95: В точке диапазона тока 11 = 1,0 - 1,2 - Iн₁ ±1.6 ±1.6 ±1.6 ±1.6 ±1.6 ±1.6 ±1.6 ±1.6					-		
Допустимый диапазон первичного тока Долустимый диапазон первичного тока Номинальная нагрузка ТТ Траницы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95: В точке диапазона тока 1₁ = 0,05 - 0,2 - lн₁				_		/ 5 A	
Номинальная нагрузка ТТ Номинальная нагрузка ТН Номинальная нагрузка ТН Номинальная нагрузка ТН Номинальная нагрузка ТН Траницы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95: В точке диапазона тока 1₁ = 0,05 - 0,2 ⋅ lн₁ ±1.9 ±2.5 ±4.6 В точке диапазона тока 11 = 1,0 - 1,2 ⋅ lн₁ ±1.1 ±1.3 ±2.0 Праницы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной погрешности результата измерений количества реактивной тока 11 = 1,0 - 1,2 ⋅ lн₁ ±1.6 ±1.6 Номинальнай ток (lн⋅/lн₂) Допустимый диапазона тока 11 = 1,0 - 1,2 ⋅ lн₁ ±1.6 ±1.6 Номинальная нагрузка ТТ Номинальная нагрузка ТН Праницы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95: В точке диапазона тока 11 = 1,0 ⋅ 1,2 ⋅ lн₁ ±1.6 ±1.6 Траницы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95: В точке диапазона тока 1₁ = 0,05 - 0,2 ⋅ lн₁ ±1.9 ±2.5 ±4.6 В точке диапазона тока 11 = 0,2 - 1,0 ⋅ lн₁ ±1.2 ±1.5 ±2.5 В точке диапазона тока 11 = 0,0.5 - 0,2 ⋅ lн₁ ±1.9 ±2.5 ±4.6 В точке диапазона тока 11 = 0,0.5 - 0,2 ⋅ lн₁ ±1.1 ±1.3 ±2.0 Траницы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95: В точке диапазона тока 11 = 0,0.5 - 0,2 ⋅ lн₁ ±1.9 ±2.5 ±4.6 В точке диапазона тока 11 = 0,0.5 - 0,2 ⋅ lн₁ ±1.1 ±1.3 ±2.0			` '	1			
Номинальное напряжение (Uhr/Uhr2) Номинальная нагрузка ТН Траницы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95: В точке диапазона тока 1 ₁ = 0,05 - 0,2 ·lh ₁ ±1.9 ±2.5 ±4.6 в точке диапазона тока 11 = 0,2 - 1,0 ·lh ₁ ±1.1 ±1.3 ±2.0 Траницы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95: В точке диапазона тока 1 ₁ = 0,05 - 0,2 ·lh ₁ ±1.1 ±1.3 ±2.0 Траницы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95: В точке диапазона тока 1 ₁ = 0,05 - 0,2 ·lh ₁ ±2.4 ±2.35 В точке диапазона тока 11 = 1,0 - 1,2 ·lh ₁ ±1.6 ±1.6 Номинальный ток (lhr/lh ₂) Допустимый диапазон первичного тока 15.360 A Номинальная нагрузка ТТ 50 BA Номинальная нагрузка ТН Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95: В точке диапазона тока 1 ₁ = 0,05 - 0,2 ·lh ₁ ±1.9 ±2.5 ±4.6 В точке диапазона тока 1 ₁ = 0,05 - 0,2 ·lh ₁ ±1.9 ±2.5 ±4.6 В точке диапазона тока 1 ₁ = 0,05 - 0,2 ·lh ₁ ±1.9 ±2.5 ±4.6 В точке диапазона тока 1 ₁ = 0,05 - 0,2 ·lh ₁ ±1.9 ±2.5 ±4.6 В точке диапазона тока 1 ₁ = 0,05 - 0,2 ·lh ₁ ±1.9 ±2.5 ±4.6 В точке диапазона тока 1 ₁ = 0,05 - 0,2 ·lh ₁ ±1.9 ±2.5 ±4.6 В точке диапазона тока 1 ₁ = 0,05 - 0,2 ·lh ₁ ±1.9 ±2.5 ±4.6 В точке диапазона тока 1 ₁ = 0,05 - 0,2 ·lh ₁ ±1.9 ±2.5 ±4.6 В точке диапазона тока 1 ₁ = 0,05 - 0,2 ·lh ₁ ±1.9 ±2.5 ±4.6 В точке диапазона тока 1 ₁ = 0,05 - 0,2 ·lh ₁ ±1.9 ±2.5 ±4.6 В точке диапазона тока 1 ₁ = 0,05 - 0,2 ·lh ₁ ±1.9 ±2.5 ±4.6 В точке диапазона тока 1 ₁ = 0,05 - 0,2 ·lh ₁ ±1.9 ±2.5 ±4.6 В точке диапазона тока 1 ₁ = 0,05 - 0,2 ·lh ₁ ±1.9 ±2.5 ±4.6 В точке диапазона тока 1 ₁ = 0,05 - 0,2 ·lh ₁ ±1.9 ±2.4 ±2.35 В точке диапазона тока 1 ₁ = 0,05 - 0,2 ·lh ₁ ±2.4 ±2.4 ±2.35							
Номинальная нагрузка ТН Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95: В точке диапазона тока 1₁ = 0,05 - 0,2 - lh₁) B
Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95: В точке диапазона тока 11 = 0,05 - 0,2 ⋅ lh₁ ±1.9 ±2.5 ±4.6 В точке диапазона тока 11 = 1,0 - 1,2 ⋅ lh₁ ±1.1 ±1.3 ±2.0 Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95: В точке диапазона тока 11 = 1,0 - 1,2 ⋅ lh₁ ±2.4 ±2.35 В точке диапазона тока 11 = 1,0 - 1,2 ⋅ lh₁ ±1.7 ±1.6 В точке диапазона тока 11 = 1,0 - 1,2 ⋅ lh₁ ±1.7 ±1.6 В точке диапазона тока 11 = 1,0 - 1,2 ⋅ lh₁ ±1.6 ±1.7 ±1.6 Номинальный ток (lh⋅/lh₂) 300 / 5 A Номинальнай ток (lh⋅/lh₂) 35000 / 100 B Номинальная нагрузка ТТ 50 BA Номинальная нагрузка ТТ 50 BA Номинальная нагрузка ТН 360 BA Траницы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95: В точке диапазона тока 1₁ = 0,05 - 0,2 ⋅ lh₁ ±1.9 ±2.5 ±4.6 В точке диапазона тока 1₁ = 0,05 - 0,2 ⋅ lh₁ ±1.9 ±2.5 ±4.6 В точке диапазона тока 11 = 0,2 - 1,0 ⋅ lh₁ ±1.1 ±1.3 ±2.0 Траницы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95: В точке диапазона тока 11 = 0,2 - 1,0 ⋅ lh₁ ±1.2 ±1.5 ±2.5 ±4.6 В точке диапазона тока 11 = 0,0 - 1,2 ⋅ lh₁ ±1.1 ±1.3 ±2.0 Траницы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95: В точке диапазона тока 11 = 0,0 - 0,2 ⋅ lh₁ ±1.1 ±1.3 ±2.0 В точке диапазона тока 11 = 0,0 - 0,2 ⋅ lh₁ ±1.1 ±1.3 ±2.0			·				, ,
мимерений количества активной электрической энергии при доверительной вероятности 0,95: в точке диапазона тока I₁ = 0,05 - 0,2 · Ih₁						, ,, ,	
В точке диапазона тока I1 = 0,2 - 1,0 · Iн₁		язная-2	измерений количества активной электрической энергии при	cosφ=1	cosφ=	=0,8	cosφ=0,5
В точке диапазона тока I1 = 1,0 - 1,2 ·Iн₁	7		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.	5	±4.6
траницы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95: В точке диапазона тока 1₁ = 0,05 - 0,2 · lh₁		δ	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.	5	±2.5
траницы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95: В точке диапазона тока 1₁ = 0,05 - 0,2 · lh₁		35	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.	3	±2.0
В точке диапазона тока 11 = 0,2 - 1,0 · lн ₁ ±1.7 ±1.6 В точке диапазона тока 11 = 1,0 - 1,2 · lн ₁ ±1.6 ±1.6 Номинальный ток (lн ₁ /lн ₂) 300 / 5 A Допустимый диапазон первичного тока 15360 A Номинальная нагрузка ТТ 50 BA Номинальная нагрузка ТН 35000 / 100 B Номинальная нагрузка ТН 360 BA Траницы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95: В точке диапазона тока 11 = 0,05 - 0,2 · lн ₁ ±1.9 ±2.5 ±4.6 В точке диапазона тока 11 = 1,0 - 1,2 · lн ₁ ±1.1 ±1.3 ±2.0 Траницы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95: В точке диапазона тока 11 = 1,0 - 1,2 · lн ₁ ±1.1 ±1.3 ±2.0 Траницы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95: В точке диапазона тока 1 ₁ = 0,05 - 0,2 · lн ₁ ±2.4 ±2.35 В точке диапазона тока 1 ₁ = 0,05 - 0,2 · lн ₁ ±1.7 ±1.6		ВЛ-	измерений количества реактивной электрической энергии при	sinφ=0	,6	s	inφ=0,87
В точке диапазона тока 11 = 0,2 - 1,0 · lн ₁ ±1.7 ±1.6 В точке диапазона тока 11 = 1,0 - 1,2 · lн ₁ ±1.6 ±1.6 Номинальный ток (lн ₁ /lн ₂) 300 / 5 A Допустимый диапазон первичного тока 15360 A Номинальная нагрузка ТТ 50 BA Номинальная нагрузка ТН 35000 / 100 B Номинальная нагрузка ТН 360 BA Траницы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95: В точке диапазона тока 11 = 0,05 - 0,2 · lн ₁ ±1.9 ±2.5 ±4.6 В точке диапазона тока 11 = 1,0 - 1,2 · lн ₁ ±1.1 ±1.3 ±2.0 Траницы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95: В точке диапазона тока 11 = 1,0 - 1,2 · lн ₁ ±1.1 ±1.3 ±2.0 Траницы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95: В точке диапазона тока 1 ₁ = 0,05 - 0,2 · lн ₁ ±2.4 ±2.35 В точке диапазона тока 1 ₁ = 0,05 - 0,2 · lн ₁ ±1.7 ±1.6			в точке лиапазона тока. I ₄ = 0.05 - 0.2 .Iн ₄	±2.4			±2.35
В точке диапазона тока 1 = 1,0 - 1,2 · lh1							
Номинальный ток (Iн ₁ /Iн ₂) Допустимый диапазон первичного тока Номинальная нагрузка ТТ Номинальная нагрузка ТН Траницы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95: В точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁ В точке диапазона тока I ₁ = 0,0 - 1,2 ·Iн ₁ Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95: В точке диапазона тока I ₁ = 1,0 - 1,2 ·Iн ₁ Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95: В точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁					-		
Допустимый диапазон первичного тока Номинальная нагрузка ТТ Номинальная нагрузка ТН Номинальная нагрузка ТН Праницы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95: В точке диапазона тока I1 = 0,05 - 0,2 ·Iн₁ В точке диапазона тока I1 = 1,0 - 1,2 ·Iн₁ Праницы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95: В точке диапазона тока I1 = 1,0 - 1,2 ·Iн₁ Праницы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95: В точке диапазона тока I₁ = 0,05 - 0,2 ·Iн₁ В точке диапазона тока I₁ = 0,05 - 0,2 ·Iн₁ В точке диапазона тока I₁ = 0,05 - 0,2 ·Iн₁ В точке диапазона тока I₁ = 0,05 - 0,2 ·Iн₁ В точке диапазона тока I₁ = 0,05 - 0,2 ·Iн₁ В точке диапазона тока I₁ = 0,05 - 0,2 ·Iн₁ В точке диапазона тока I₁ = 0,05 - 0,2 ·Iн₁ В точке диапазона тока I₁ = 0,05 - 0,2 ·Iн₁ В точке диапазона тока I1 = 0,05 - 0,2 ·Iн₁ В точке диапазона тока I1 = 0,05 - 0,2 ·Iн₁ В точке диапазона тока I1 = 0,05 - 0,2 ·Iн₁ В точке диапазона тока I1 = 0,05 - 0,2 ·Iн₁ В точке диапазона тока I1 = 0,05 - 0,2 ·Iн₁ В точке диапазона тока I1 = 0,05 - 0,2 ·Iн₁ В точке диапазона тока I1 = 0,05 - 0,2 ·Iн₁ В точке диапазона тока I1 = 0,05 - 0,2 ·Iн₁ В точке диапазона тока I1 = 0,05 - 0,2 ·Iн₁ В точке диапазона тока I1 = 0,05 - 0,2 ·Iн₁ В точке диапазона тока I1 = 0,05 - 0,2 ·Iн₁				<u> </u>		/ 5 A	
Номинальная нагрузка ТТ Номинальное напряжение (UH ₁ /UH ₂) Номинальное напряжение (UH ₁ /UH ₂) Номинальная нагрузка ТН Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95: В точке диапазона тока I ₁ = 0,05 - 0,2 ·IH ₁ В точке диапазона тока II = 1,0 - 1,2 ·IH ₁ Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95: В точке диапазона тока II = 1,0 - 1,2 ·IH ₁ Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95: В точке диапазона тока I ₁ = 0,05 - 0,2 ·IH ₁ В точке диапазона тока I ₁ = 0,05 - 0,2 ·IH ₁ В точке диапазона тока I ₁ = 0,05 - 0,2 ·IH ₁ В точке диапазона тока I ₁ = 0,05 - 0,2 ·IH ₁ В точке диапазона тока I ₁ = 0,05 - 0,2 ·IH ₁ В точке диапазона тока I ₁ = 0,05 - 0,2 ·IH ₁ В точке диапазона тока I ₁ = 0,05 - 0,2 ·IH ₁ В точке диапазона тока I ₁ = 0,05 - 0,2 ·IH ₁ В точке диапазона тока I ₁ = 0,05 - 0,2 ·IH ₁ В точке диапазона тока I ₁ = 0,05 - 0,2 ·IH ₁ В точке диапазона тока I ₁ = 0,05 - 0,2 ·IH ₁ В точке диапазона тока I ₁ = 0,05 - 0,2 ·IH ₁ В точке диапазона тока I ₁ = 0,05 - 0,2 ·IH ₁ В точке диапазона тока I ₁ = 0,05 - 0,2 ·IH ₁ В точке диапазона тока I ₁ = 0,05 - 0,2 ·IH ₁ В точке диапазона тока I ₁ = 0,05 - 0,2 ·IH ₁ В точке диапазона тока I ₁ = 0,05 - 0,2 ·IH ₁ В точке диапазона тока I ₁ = 0,05 - 0,2 ·IH ₁			·				
Номинальное напряжение (Uн₁/Uн₂) Номинальная нагрузка ТН Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95: В точке диапазона тока I₁ = 0,05 - 0,2 ·Iн₁ В точке диапазона тока I1 = 1,0 - 1,2 ·Iн₁ Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при в точке диапазона тока I1 = 1,0 - 1,2 ·Iн₁ Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95: В точке диапазона тока I₁ = 0,05 - 0,2 ·Iн₁ В точке диапазона тока I₁ = 0,05 - 0,2 ·Iн₁ В точке диапазона тока I₁ = 0,05 - 0,2 ·Iн₁ В точке диапазона тока I₁ = 0,05 - 0,2 ·Iн₁ В точке диапазона тока I1 = 0,05 - 0,2 ·Iн₁ В точке диапазона тока I1 = 0,05 - 0,2 ·Iн₁ В точке диапазона тока I1 = 0,05 - 0,2 ·Iн₁ В точке диапазона тока I1 = 0,05 - 0,2 ·Iн₁ В точке диапазона тока I1 = 0,05 - 0,2 ·Iн₁ В точке диапазона тока I1 = 0,05 - 0,2 ·Iн₁ В точке диапазона тока I1 = 0,05 - 0,2 ·Iн₁ В точке диапазона тока I1 = 0,05 - 0,2 ·Iн₁ В точке диапазона тока I1 = 0,05 - 0,2 ·Iн₁ В точке диапазона тока I1 = 0,05 - 0,2 ·Iн₁ В точке диапазона тока I1 = 0,05 - 0,2 ·Iн₁ В точке диапазона тока I1 = 0,05 - 0,2 ·Iн₁ В точке диапазона тока I1 = 0,05 - 0,2 ·Iн₁ В точке диапазона тока I1 = 0,05 - 0,2 ·Iн₁							
В ТОЧКЕ ДИАПАЗОНА ТОКА I1 = 0,05 - 0,2 ⋅ IH₁ Праницы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95: В ТОЧКЕ ДИАПАЗОНА ТОКА I1 = 0,05 - 0,2 ⋅ IH₁ В ТОЧКЕ ДИАПАЗОНА ТОКА I1 = 0,0 - 1,2 ⋅ IH₁ Траницы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95: В ТОЧКЕ ДИАПАЗОНА ТОКА I1 = 1,0 - 1,2 ⋅ IH₁ Траницы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95: В ТОЧКЕ ДИАПАЗОНА ТОКА I₁ = 0,05 - 0,2 ⋅ IH₁ В ТОЧКЕ ДИАПАЗОНА ТОКА I₁ = 0,05 - 0,2 ⋅ IH₁ В ТОЧКЕ ДИАПАЗОНА ТОКА I₁ = 0,05 - 0,2 ⋅ IH₁ В ТОЧКЕ ДИАПАЗОНА ТОКА I₁ = 0,05 - 0,2 ⋅ IH₁ В ТОЧКЕ ДИАПАЗОНА ТОКА I₁ = 0,05 - 0,2 ⋅ IH₁ В ТОЧКЕ ДИАПАЗОНА ТОКА I₁ = 0,05 - 0,2 ⋅ IH₁ В ТОЧКЕ ДИАПАЗОНА ТОКА I1 = 0,05 - 0,2 ⋅ IH₁ В ТОЧКЕ ДИАПАЗОНА ТОКА I1 = 0,05 - 0,2 ⋅ IH₁ В ТОЧКЕ ДИАПАЗОНА ТОКА I1 = 0,05 - 0,2 ⋅ IH₁ В ТОЧКЕ ДИАПАЗОНА ТОКА I1 = 0,05 - 0,2 ⋅ IH₁ В ТОЧКЕ ДИАПАЗОНА ТОКА I1 = 0,05 - 0,2 ⋅ IH₁ В ТОЧКЕ ДИАПАЗОНА ТОКА II = 0,05 - 0,2 ⋅ IH₁ В ТОЧКЕ ДИАПАЗОНА ТОКА II = 0,05 - 0,2 ⋅ IH₁ В ТОЧКЕ ДИАПАЗОНА ТОКА II = 0,05 - 0,2 ⋅ IH₁ В ТОЧКЕ ДИАПАЗОНА ТОКА II = 0,05 - 0,2 ⋅ IH₁ В ТОЧКЕ ДИАПАЗОНА ТОКА II = 0,05 - 0,2 ⋅ IH₁ В ТОЧКЕ ДИАПАЗОНА ТОКА II = 0,05 - 0,2 ⋅ IH₁ В ТОЧКЕ ДИАПАЗОНА ТОКА II = 0,05 - 0,2 ⋅ IH₁ В ТОЧКЕ ДИАПАЗОНА ТОКА II = 0,05 - 0,2 ⋅ IH₁ В ТОЧКЕ ДИАПАЗОНА ТОКА II = 0,05 - 0,2 ⋅ IH₁ В ТОЧКЕ ДИАПАЗОНА ТОКА II = 0,05 - 0,2 ⋅ IH₁ В ТОЧКЕ ДИАПАЗОНА ТОКА II = 0,05 - 0,2 ⋅ IH₁ В ТОЧКЕ ДИАПАЗОНА ТОКА II = 0,05 - 0,2 ⋅ IH₁ В ТОЧКЕ ДИАПАЗОНА ТОКА II = 0,05 - 0,2 ⋅ IH₁ В ТОЧКЕ ДИАПАЗОНА ТОКА II = 0,05 - 0,2 ⋅ IH₁ В ТОЧКЕ ДИАПАЗОНА ТОКА II = 0,05 - 0,2 ⋅ IH₁ В ТОЧКЕ ДИАПАЗОНА ТОКА II = 0,05 - 0,2 ⋅ IH₁ В ТОЧКЕ ДИАПАЗОНА ТОКА II = 0,05 - 0,2 ⋅ IH₁ В ТОЧКЕ ДИАПАЗОНА ТОКА II = 0,05 - 0,2 ⋅ IH₁ В ТОЧКЕ ДИАПАЗОНА ТОКА II = 0,05 - 0,0 ⋅ IH₁ В ТОЧКЕ ДИАПАЗОНА ТОКА II = 0,05 - 0,0			·) B
траницы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95: В точке диапазона тока I₁ = 0,05 - 0,2 ⋅ Iн₁ ±1.2 ±1.5 ±2.5 В точке диапазона тока I1 = 1,0 - 1,2 ⋅ Iн₁ ±1.1 ±1.3 ±2.0 Траницы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95: В точке диапазона тока I₁ = 0,05 - 0,2 ⋅ Iн₁ ±2.4 ±2.35 В точке диапазона тока I₁ = 0,05 - 0,2 ⋅ Iн₁ ±2.4 ±2.35 В точке диапазона тока I₁ = 0,05 - 0,2 ⋅ Iн₁ ±1.7 ±1.6		2			360	BA	
доверительной вероятности 0,95: в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁ ±2.4 ±2.35 в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁ ±1.7 ±1.6		альная-2	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при	cosφ=1	cosφ=	=0,8	cosφ=0,5
доверительной вероятности 0,95: в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁ ±2.4 ±2.35 в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁ ±1.7 ±1.6	œ	봈	в точке диапазона тока I₁ = 0,05 - 0,2 ·Iн₁	±1.9	±2.	5	±4.6
доверительной вероятности 0,95: в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁ ±2.4 ±2.35 в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁ ±1.7 ±1.6		Ť	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.	5	±2.5
доверительной вероятности 0,95: в точке диапазона тока $I_1 = 0,05 - 0,2 \cdot I_{H_1}$ ±2.4 ±2.35 в точке диапазона тока $I_1 = 0,2 - 1,0 \cdot I_{H_1}$ ±1.7 ±1.6		δ	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.	3	±2.0
в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁ ±1.7 ±1.6		ВЛ-35	измерений количества реактивной электрической энергии при	sinφ=0	,6	s	inφ=0,87
в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁ ±1.7 ±1.6			в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4			±2.35
				±1.7			
<u> </u>			в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.6			±1.6

Таблица 2.23 Характеристики измерительных каналов
ПС "Островная" 110/35/6 кВ

ИИ	К	Наименование параметра		Значен	ие	
		Номинальный ток (Iн₁/Iн₂)		200 / 5	Ą	
		Допустимый диапазон первичного тока		10240	A	
		Номинальная нагрузка ТТ				
		Номинальное напряжение (Uн ₁ /Uн ₂)		35000 / 10	0 B	
	$\overline{\Box}$	Номинальная нагрузка ТН		360 BA	1	
	кВ Шмыринская-1	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0,8	cosφ=0,5	
_	ΜP	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5	±4.6	
	=======================================	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн₁	±1.2	±1.5	±2.5	
	五	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.3	±2.0	
	ВЛ-35	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0),6	sinφ=0,87	
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4		±2.35	
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7	•	±1.6	
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.5	j	±1.56	
		Номинальный ток (Iн ₁ /Iн ₂)		200 / 5	А	
		Допустимый диапазон первичного тока		10240	40 A	
	5 кВ Север-1	Номинальная нагрузка TT				
		Номинальное напряжение (Uн ₁ /Uн ₂)		0 B		
		Номинальная нагрузка ТН		1		
		Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0,8	cosφ=0,5	
7		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5	±4.6	
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.5	±2.5	
	ВЛ-35।	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.3	±2.0	
	B)	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	sinφ=0,6 si		
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4	-	±2.35	
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7	,	±1.6	
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.5	5	±1.56	
		Номинальный ток (Iн₁/Iн₂)		600 / 5	Д	
		Допустимый диапазон первичного тока		30720	A	
		Номинальная нагрузка TT		50 BA		
		Номинальное напряжение (Uн ₁ /Uн ₂)	35000 / 100 B			
	<u>-</u>	Номинальная нагрузка ТН		360 BA	\ <u></u>	
	Сургутская-1	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0,8	cosφ=0,5	
က	Ç	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5	±4.6	
	Θ	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.5	±2.5	
	35 1	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.3	±2.0	
	ВЛ-35 кВ	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0),6	sinφ=0,87	
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4		±2.35	
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7	<u> </u>	±1.6	
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн₁	±1.5	,	±1.56	

Номинальный ток (Iн₁/Iн₂) 200 / 5 Допустимый диапазон первичного тока 10240 Номинальная нагрузка ТТ 50 ВА Номинальное напряжение (Uн₁/Uн₂) 35000 / 10 Номинальная нагрузка ТН 360 ВА	Α	
Номинальная нагрузка ТТ 50 ВА Номинальное напряжение (Uн₁/Uн₂) 35000 / 10 Номинальная нагрузка ТН 360 ВА		
Номинальное напряжение (Uн₁/Uн₂) 35000 / 10 Номинальная нагрузка TH 360 B/		
Номинальная нагрузка ТН 360 В/		
Номинальная нагрузка ТН 360 В		
	١	
Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95: В точке диапазона тока I ₁ = 0,05 - 0,2 ·IH ₁ 1 1.9 ±2.5	cosφ=0,5	
4 $\frac{1}{2}$ в точке диапазона тока I₁ = 0,05 - 0,2 · Iн₁ ± 1.9 ± 2.5	±4.6	
\exists в точке диапазона тока $11 = 0.2 - 1.0 \cdot IH_1$ ± 1.2 ± 1.5	±2.5	
¥ 10.40 L	±2.0	
Б точке диапазона тока 11 = 1,0 - 1,2 ·IH ₁ Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0,87	
в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁ ±2.4	±2.35	
в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁ ±1.7	±1.6	
в точке диапазона тока I1 = 1,0 - 1,2 ·Ін ₁ ±1.5	±1.56	
Номинальный ток (Iн ₁ /Iн ₂) 200 / 5		
Допустимый диапазон первичного тока 10240		
Номинальная нагрузка ТТ 50 ВА		
Номинальное напряжение (Uн₁/Uн₂) 35000 / 1		
Номинальная нагрузка ТН 360 В/		
Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:		
	±4.6	
1 2 14 2 14 5	±2.5	
В точке диапазона тока I1 = 0,2 - 1,0 ·IH ₁ ±1.2 ±1.5 В точке диапазона тока I1 = 1,0 - 1,2 ·IH ₁ ±1.1 ±1.3	±2.0	
Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при sinφ=0,6 доверительной вероятности 0,95:	sinφ=0,87	
в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁ ±2.4	±2.35	
в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁ ±1.7	±1.6	
в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁ ±1.5	±1.56	
Номинальный ток (Iн ₁ /Iн ₂) 600 / 5		
Допустимый диапазон первичного тока 30720		
Номинальная нагрузка ТТ 50 ВА		
Номинальное напряжение (Uн₁/Uн₂) 35000 / 10		
Номинальная нагрузка ТН 360 В/		
Траницы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95: В точке диапазона тока I₁ = 0,05 - 0,2 ⋅ Iн₁ ±1.9 ±2.5 В точке диапазона тока I1 = 0,2 - 1,0 ⋅ Iн₁ ±1.2 ±1.5 В точке диапазона тока I1 = 1,0 - 1,2 ⋅ Iн₁ ±1.1 ±1.3 Границы допускаемой относительной погрешности результата		
\circ В точке диапазона тока $I_1 = 0.05 - 0.2 \cdot IH_1$ ± 1.9 ± 2.5	±4.6	
\square в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁ ± 1.2 ± 1.5	±2.5	
В точке диапазона тока $I1 = 1.0 - 1.2 \cdot IH_1$ ± 1.1 ± 1.3	±2.0	
Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0,87	
в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁ ±2.4	±2.35	
в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁ ±1.7	±1.6	
	±1.56	

1100)	жкод	ение таолицы 2.23					
		Номинальный ток (Iн₁/Iн₂)		600 / 5 A			
		Допустимый диапазон первичного тока		307	20 A	١	
		Номинальная нагрузка ТТ		10	BA		
		Номинальное напряжение (Uн₁/Uн₂)		6000 /	100	В	
		Номинальная нагрузка ТН		50 BA			
		Границы допускаемой относительной погрешности результата					
	<u></u>	измерений количества активной электрической энергии при	cosφ=1	cosφ=	0.8	cosφ=0,5	
	≷	доверительной вероятности 0,95:	'		,	' '	
7	KB TXУ-1	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.8	±2.	5	±4.6	
	6 K	в точке диапазона тока 11 = 0,05 - 0,2 ·нг ₁	±1.2	±1.		±2.5	
	5	в точке диапазона тока 11 = 0,2 - 1,0 ·Iн1 в точке диапазона тока 11 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.2		±1.9	
	_		±1.1	1 - 14	-	±1.5	
		Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	,6	s	inφ=0,87	
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4			±2.35	
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7			±1.6	
		в точке диапазона тока I1 = 1,0 - 1,2 · Iн ₁	±1.5		±1.56		
		Номинальный ток (Iн ₁ /Iн ₂)		300 /	/ 5 A		
		Допустимый диапазон первичного тока		15360 A			
		Номинальная нагрузка ТТ		10		1	
		Номинальная нагрузка т т Номинальное напряжение (Uн ₁ /Uн ₂)		6000 /		B	
8		Номинальное наприжение (опутонд)		50			
					<i>-</i>		
	КЛ 6 кВ ОС-1	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=	0,8	cosφ=0,5	
		в точке диапазона тока I₁ = 0,05 - 0,2 ·Iн₁	±1.8	±2.	5	±4.6	
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.	5	±2.5	
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.2	2	±1.9	
		Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	,6	s	inφ=0,87	
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4			±2.35	
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7	+		±1.6	
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.5			±1.56	
		Номинальный ток (Iн₁/Iн₂)		400 / 5 A		L	
		Допустимый диапазон первичного тока		20480 A			
		Номинальная нагрузка TT	10 BA 6000 / 100 50 BA				
		Номинальное напряжение (Uн₁/Uн₂)				В	
		Номинальная нагрузка ТН					
	кВ Мехдобыча	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=	0,8	cosφ=0,5	
6	Ş N	в точке диапазона тока I₁ = 0,05 - 0,2 ·Iн₁	±1.8	±2.	5	±4.6	
	θ̈́	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.		±2.5	
	9	в точке диапазона тока I1 = 1,0 - 1,2 · lн ₁	±1.1	±1.2		±1.9	
	2	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0		· ·	inφ=0,87	
		в точке диапазона тока I₁ = 0,05 - 0,2 ·Iн₁	±2.4			±2.35	
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7			±1.6	
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.5			±1.56	
			-				

11po ₂	ОЛЖ		0/5/				
		Номинальный ток (Iн ₁ /Iн ₂)		400 /			
		Допустимый диапазон первичного тока		20480 A			
		Номинальная нагрузка TT		10 B			
		Номинальное напряжение (Uн₁/Uн₂)		6000 / 1		В	
		Номинальная нагрузка ТН		50 BA			
	кВ ТХУ-2	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0	,8	cosφ=0,5	
10	B	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.8	±2.5		±4.6	
	9	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.5		±2.5	
	Z	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.2		±1.9	
		Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	,6	s	inφ=0,87	
		в точке диапазона тока I₁ = 0,05 - 0,2 ·Iн₁	±2.4			±2.35	
		в точке диапазона тока I1 = 0,2 - 1,0 ·lн ₁	±1.7			±1.6	
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.5			±1.56	
		Номинальный ток (Iн ₁ /Iн ₂)		300 /	5 A		
		Допустимый диапазон первичного тока		15360 A			
		Номинальная нагрузка ТТ		10 B			
11		Номинальное напряжение (Uн ₁ /Uн ₂)		6000 / 100			
		Номинальное напримение (опреме)		50 B			
	OC-2	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0	,8	cosφ=0,5	
	ŔВ	в точке диапазона тока I₁ = 0,05 - 0,2 ·Iн₁	±1.8	±2.5		±4.6	
	9	в точке диапазона тока I1 = 0,2 - 1,0 ·lн ₁	±1.2	±1.5		±2.5	
	2	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.2		±1.9	
		Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	,6	s	inφ=0,87	
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4			±2.35	
		в точке диапазона тока I1 = 0,2 - 1,0 ·lн ₁	±1.7		±1.6		
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.5			±1.56	
		Номинальный ток (Iн ₁ /Iн ₂)		200 / 5 /			
		Допустимый диапазон первичного тока		1024			
		Номинальная нагрузка TT	10 BA				
		Номинальное напряжение (Uн ₁ /Uн ₂)		6000 / 100		В	
		Номинальная нагрузка ТН		50 BA			
	Промзона	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0	,8	cosφ=0,5	
12	٦ ا	в точке диапазона тока I₁ = 0,05 - 0,2 ·Iн₁	±1.8	±2.5		±4.6	
	æ	в точке диапазона тока I1 = 0,2 - 1,0 ·lh ₁	±1.2	±1.5		±2.5	
	КЛ 6 кВ	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.2		±1.9	
	Ŋ	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	,6	s	inφ=0,87	
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4			±2.35	
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7			±1.6	
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.5			±1.56	

Таблица 2.24 Характеристики измерительных каналов ПС "Парус" 110/35/6 кВ

ИИ	IК	Наименование параметра		ие		
		Номинальный ток (Iн₁/Iн₂)		300 / 5 /	4	
		Допустимый диапазон первичного тока		15360	A	
		Номинальная нагрузка TT				
		Номинальное напряжение (Uн ₁ /Uн ₂)		35000 / 100		
	_	Номинальная нагрузка ТН		360 BA		
	Водозабор-1	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0,8	cosφ=0,5	
_	Д	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5	±4.6	
	Æ	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.5	±2.5	
	رح ح	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.3	±2.0	
	ВЛ-35	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0		sinφ=0,87	
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4		±2.35	
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7	'	±1.6	
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.6	1	±1.6	
		Номинальный ток (Iн ₁ /Iн ₂)		300 / 5 /	4	
		Допустимый диапазон первичного тока		15360 A		
	1	Номинальная нагрузка TT		50 BA		
		Номинальное напряжение (Uн ₁ /Uн ₂)		35000 / 10	0 B	
		Номинальная нагрузка ТН		360 BA	L	
	Московская-1	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0,8	cosφ=0,	
7	Θ	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5	±4.6	
		в точке диапазона тока I1 = 0,2 - 1,0 ⋅Iн₁	±1.2	±1.5	±2.5	
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.3	±2.0	
	ВЛ-35	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	,6	sinφ=0,87	
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4		±2.35	
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7	•	±1.6	
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.6		±1.6	
		Номинальный ток (Iн₁/Iн₂)		200 / 5 /	/ 5 A	
	ВЛ-35 кВ Озерная-1	Допустимый диапазон первичного тока		10240	A	
		Номинальная нагрузка TT	30 BA 35000 / 100		1	
		Номинальное напряжение (UH ₁ /UH ₂))0 B	
		Номинальная нагрузка ТН		360 BA		
		Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0,8	cosφ=0,	
.n		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5	±4.6	
		в точке диапазона тока I1 = 0,2 - 1,0 ⋅Iн ₁	±1.2	±1.5	±2.5	
	-35	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.3	±2.0	
	В	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	,6	sinφ=0,87	
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4		±2.35	
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7		±1.6	
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.6		±1.6	

кение таолицы 2.24 Номинальный ток (Ін ₁ /Ін ₂) 200 / 5 A				
эка		4		
	;			
	360 BA			
	cosφ=1	cosφ=0,8	cosφ=0,5	
	±1.9	±2.5	±4.6	
	±1.2	±1.5	±2.5	
	±1.1	±1.3	±2.0	
	sinφ=0	,6	sinφ=0,87	
.2 ·lн₁	±2.4		±2.35	
			±1.6	
			±1.6	
<u> </u>			4	
			0 B	
	 			
		JUU BA		
	cosφ=1	cosφ=0,8	cosφ=0,5	
	±1.9	±2.5	±4.6	
	±1.2	±1.5	±2.5	
	±1.1	±1.3	±2.0	
	sinφ=0	,6	sinφ=0,87	
,2 ·lH₁	±2.4		±2.35	
	+		±1.6	
	1		±1.6	
·				
эка				
	;	35000 / 10	0 B	
	;	35000 / 10 360 BA		
ой погрешности результата эктрической энергии при	cosφ=1			
ой погрешности результата эктрической энергии при	cosφ=1	360 BA cosφ=0,8	cosφ=0,5	
ой погрешности результата ектрической энергии при ,2 ·Iн₁		360 BA	cosφ=0,5 ±4.6	
ой погрешности результата ектрической энергии при ,2 ·Ін₁ 0 ·Ін₁	cosφ=1 ±1.9	360 BA cosφ=0,8 ±2.5	cosφ=0,5	
ой погрешности результата ектрической энергии при ,2 ·Iн₁	cosφ=1 ±1.9 ±1.2	360 BA cosφ=0,8 ±2.5 ±1.5 ±1.3	cosφ=0,5 ±4.6 ±2.5	
ой погрешности результата ектрической энергии при ,2 ·Iн ₁ 0 ·Iн ₁ 2 ·Iн ₁ ой погрешности результата олектрической энергии при	cosφ=1 ±1.9 ±1.2 ±1.1	360 BA cosφ=0,8 ±2.5 ±1.5 ±1.3	cosφ=0,5 ±4.6 ±2.5 ±2.0	
ой погрешности результата ектрической энергии при ,2 ·Iн ₁ 0 ·Iн ₁ 2 ·Iн ₁	cosφ=1 ±1.9 ±1.2 ±1.1 sinφ=0	360 BA cosφ=0,8 ±2.5 ±1.5 ±1.3	cosφ=0,5 ±4.6 ±2.5 ±2.0 sinφ=0,87	
	ока ой погрешности результата ектрической энергии при одента одент	рой погрешности результата ектрической энергии при соsφ=1 2.2 ·lh₁ ±1.2 2 ·lh₁ ±1.1 ой погрешности результата електрической энергии при sinφ=0 2.2 ·lh₁ ±1.7 2. ·lh₁ ±1.6 ока ока ока ока ока ока ока ок	50 BA 35000 / 10 360 BA 35000 / 10 1.2 1.5 1.5 2 · lh₁ ±1.9 ±2.5 1.5 2 · lh₁ ±1.7 ±1.6 300 / 5 / 6 6 6 6 6 6 6 6 6 6	

Прод	ОЖПОЈ	ение таблицы 2.24					
		Номинальный ток (Iн ₁ /Iн ₂)		200 / 5 A			
		Допустимый диапазон первичного тока	10240 A				
		Номинальная нагрузка TT		30 BA			
		Номинальное напряжение (U _{H1} /U _{H2})		35000 / 10	0 B		
	٥.	Номинальная нагрузка ТН		360 BA			
	Озерная-2	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0,8	cosφ=0,5		
7	Ö	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5	±4.6		
	кВ	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.5	±2.5		
	ВЛ-35	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.3	±2.0		
	ВЛ	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0),6	sinφ=0,87		
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4		±2.35		
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7	•	±1.6		
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.6		±1.6		
		Номинальный ток (Iн₁/Iн₂)		4			
		Допустимый диапазон первичного тока		10240 A 30 BA			
		Номинальная нагрузка TT					
	-5	Номинальное напряжение (Uн ₁ /Uн ₂)	35000 / 100 B 360 BA				
8		Номинальная нагрузка ТН					
	Суперблок-2	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0,8	cosφ=0,5		
	Ω̈́	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5	±4.6		
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁			±2.5		
	35	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.3	±2.0		
	ВЛ-35	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0),6	sinφ=0,87		
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4		±2.35		
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7	'	±1.6		
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.6	;	±1.6		

ИИК	Наименование параметра		Значен	ие	
	Номинальный ток (Iн₁/Iн₂)		200 / 5	A	
	Допустимый диапазон первичного тока		10240	Α	
	Номинальная нагрузка ТТ		50 BA		
	Номинальное напряжение (Uн ₁ /Uн ₂)		35000 / 1	100 B	
_	Номинальная нагрузка ТН		360 BA		
KHC-6-	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0,8	s cosφ=0,5	
- $\frac{\tilde{\Phi}}{2}$	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5	±4.6	
ro	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн₁	±1.2	±1.5	±2.5	
ВЛ-3	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.3	±2.0	
	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0),6	sinφ=0,87	
	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4		±2.35	
	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7	'	±1.6	
	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.6	;	±1.6	

	700000	011110 Tu031111QBI 2:23				
		Номинальный ток (Iн ₁ /Iн ₂)		200 /	/ 5 A	L
		Допустимый диапазон первичного тока		102	0240 A	
		Номинальная нагрузка ТТ		50	BA	
		Номинальное напряжение (Uн₁/Uн₂)	35000 / 100 B) B
		Номинальная нагрузка ТН		360	ВА	
	KHC-6-2	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=	8,0	cosφ=0,5
7	ВЛ-35 кВ К	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.	5	±4.6
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.5		±2.5
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.3		±2.0
	B)	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:			sinφ=0,87	
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁				±2.35
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7			±1.6
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.6		•	±1.6

ИИК	Наименование параметра		Значение			
	Номинальный ток (Iн₁/Iн₂)		200 / 5 A			
	Допустимый диапазон первичного тока		10240 A	4		
	Номинальная нагрузка ТТ		50 BA			
	Номинальное напряжение (Uн₁/Uн₂)		35000 / 100	0 B		
—	Номинальная нагрузка ТН		360 BA	1		
1 кВ Межевая-1	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0,8	cosφ=0,5		
- ×	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5	±4.6		
Æ	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.5	±2.5		
ВЛ-35	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.2	±1.9		
ВЛ	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0),6 s	sinφ=0,87		
	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Ін ₁	±2.4		±2.35		
	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7	,	±1.71		
	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.5	±1.5 ±1			
	Номинальный ток (Iн₁/Iн₂)		200 / 5 A			
	Допустимый диапазон первичного тока		10240 A			
	Номинальная нагрузка TT		50 BA			
	Номинальное напряжение (Uн ₁ /Uн ₂)		35000 / 100	0 B		
	Номинальная нагрузка ТН		360 BA	T		
2 кВ Косари-1	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0,8	cosφ=0,5		
2 × ×	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5	±4.6		
5 KE	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.5	±2.5		
ВЛ-35 I	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.2	±1.9		
B)	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0),6 s	sinφ=0,87		
	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Ін ₁	±2.4		±2.35		
	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7		±1.71		
	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.5	5	±1.56		

Прод	ДОЛЖ	ение таблицы 2.26					
		Номинальный ток (Iн₁/Iн₂)	200 / 5 10240				
		Допустимый диапазон первичного тока		102	240 A	١.	
		Номинальная нагрузка ТТ		50 BA			
		Номинальное напряжение (Uн₁/Uн₂)		35000	/ 100) B	
		Номинальная нагрузка ТН		360 BA			
	Межевая-2	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=	=0,8	cosφ=0,5	
က	Ş	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.	5	±4.6	
	ā	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.	5	±2.5	
	35	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.	2	±1.9	
	ВЛ-35	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	,6	s	inφ=0,87	
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4			±2.35	
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7			±1.71	
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.5			±1.56	
		Номинальный ток (Iн₁/Iн₂)		200	/ 5 A		
		Допустимый диапазон первичного тока		102	240 A	\	
4	ВЛ-35 кВ Косари-2	Номинальная нагрузка ТТ			BA		
		Номинальное напряжение (Uн₁/Uн₂)		35000) B	
		Номинальная нагрузка ТН) BA		
		Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=	=0,8	cosφ=0,5	
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.	5	±4.6	
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.	5	±2.5	
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.	2	±1.9	
	<u>m</u>	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	,6	s	inφ=0,87	
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁			±2.35		
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7			±1.71	
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.5			±1.56	
		Номинальный ток (Iн₁/Iн₂)		1500	/ 5 A		
		Допустимый диапазон первичного тока		751			
	6kB 1T	Номинальная нагрузка TT		10 BA		·	
		Номинальное напряжение (Uн₁/Uн₂)		6000 / 100 B		В	
		Номинальная нагрузка ТН	агрузка ТН 79		75 BA		
	ое ввод (Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=	=0,8	cosφ=0,5	
2	бск	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.		±4.6	
)ОИ	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.		±2.5	
	Пр	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.	3	±2.0	
	ЗРУ-6кВ Приобское ввод	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	,6	s	inφ=0,87	
	(,)	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4			±2.35	
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7			±1.71	
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.5			±1.56	

Номинальный ток (Iнг/Iн₂) Допустимый диапазона тока 11 = 0,05 - 0,2 - Iн₁ В точке диапазона тока 11 = 0,05 - 0,2 - Iн₁ Номинальная нагрузка ТТ По ВА Номинальная нагрузка ТТ По во веротности 0,95: В точке диапазона тока 11 = 0,05 - 0,2 - Iн₁ В т	11po,	жпор	ение таолицы 2.26					
Номинальная нагрузка ТТ 10 ВА 6000 / 100 В 75 ВА 75 В			Номинальный ток (Iн₁/Iн₂)		1500			
Номинальное напряжение (Uн1/Uн2) Номинальная нагрузка ТН Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95: В точке диапазона тока I1 = 0,05 - 0,2 · Iн1 В точке диапазона тока I1 = 1,0 - 1,2 · Iн1 Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95: В точке диапазона тока I1 = 1,0 - 1,2 · Iн1 Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95: В точке диапазона тока I1 = 0,05 - 0,2 · Iн1 В точке диапазона тока I1 = 0,05 - 0,2 · Iн1 В точке диапазона тока I1 = 0,05 - 0,2 · Iн1 В точке диапазона тока I1 = 0,05 - 0,2 · Iн1 В точке диапазона тока I1 = 1,0 - 1,2 · Iн1 Номинальный ток (Iн1/Iн2) Допустимый диапазон первичного тока Номинальная нагрузка ТТ Номинальная нагрузка ТН			Допустимый диапазон первичного тока					
томинальное напряжение (онтон2) Номинальное напряжение (онтон2) Номинальное напряжение (онтон2) Номинальное напряжение (онтон2) Номинальное напряжение (онтон2) Траницы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95: В точке диапазона тока 1₁ = 0,05 - 0,2 ⋅ 1н₁		_	Номинальная нагрузка TT		10	ВА		
Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95: В точке диапазона тока I₁ = 0,05 - 0,2 ⋅ Iн₁ В точке диапазона тока I1 = 1,0 - 1,2 ⋅ Iн₁ Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95: В точке диапазона тока I₁ = 0,05 - 0,2 ⋅ Iн₁ Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95: В точке диапазона тока I₁ = 0,05 - 0,2 ⋅ Iн₁ В точке диапазона тока I₁ = 0,05 - 0,2 ⋅ Iн₁ В точке диапазона тока I1 = 0,0 - 1,0 ⋅ Iн₁ В точке диапазона тока I1 = 1,0 - 1,2 ⋅ Iн₁ В точке диапазона тока I1 = 1,0 - 1,2 ⋅ Iн₁ Номинальный ток (Iн₁/Iн₂) Допустимый диапазон первичного тока Номинальная нагрузка ТТ Номинальная нагрузка ТН Толичильная нагрузка ТН Толичильная нагрузка ТН			Номинальное напряжение (Uн₁/Uн₂)		6000 /	100	В	
Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95: В точке диапазона тока I₁ = 0,05 - 0,2 ⋅ Iн₁ В точке диапазона тока I1 = 1,0 - 1,2 ⋅ Iн₁ Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95: В точке диапазона тока I₁ = 0,05 - 0,2 ⋅ Iн₁ Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95: В точке диапазона тока I₁ = 0,05 - 0,2 ⋅ Iн₁ В точке диапазона тока I₁ = 0,05 - 0,2 ⋅ Iн₁ В точке диапазона тока I1 = 0,0 - 1,0 ⋅ Iн₁ В точке диапазона тока I1 = 1,0 - 1,2 ⋅ Iн₁ В точке диапазона тока I1 = 1,0 - 1,2 ⋅ Iн₁ Номинальный ток (Iн₁/Iн₂) Допустимый диапазон первичного тока Номинальная нагрузка ТТ Номинальная нагрузка ТН Толичильная нагрузка ТН Толичильная нагрузка ТН		6KE	Номинальная нагрузка ТН	75 BA				
В точке диапазона тока I ₁ = 0,05 - 0,2 · Iн ₁ В точке диапазона тока I ₁ = 0,05 - 0,2 · Iн ₁ В точке диапазона тока I ₁ = 0,2 - 1,0 · Iн ₁ В точке диапазона тока I ₁ = 1,0 - 1,2 · Iн ₁ Номинальный ток (Iн ₁ /Iн ₂) Допустимый диапазон первичного тока Номинальная нагрузка ТТ Номинальное напряжение (Uн ₁ /Uн ₂) Номинальная нагрузка ТН		ое ввод	измерений количества активной электрической энергии при	cosφ=1	cosφ=	0,8	cosφ=0,5	
В точке диапазона тока I ₁ = 0,05 - 0,2 · Iн ₁ В точке диапазона тока I ₁ = 0,05 - 0,2 · Iн ₁ В точке диапазона тока I ₁ = 0,2 - 1,0 · Iн ₁ В точке диапазона тока I ₁ = 1,0 - 1,2 · Iн ₁ Номинальный ток (Iн ₁ /Iн ₂) Допустимый диапазон первичного тока Номинальная нагрузка ТТ Номинальное напряжение (Uн ₁ /Uн ₂) Номинальная нагрузка ТН	9	ŠČ	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5	5	±4.6	
В точке диапазона тока I ₁ = 0,05 - 0,2 · Iн ₁ В точке диапазона тока I ₁ = 0,05 - 0,2 · Iн ₁ В точке диапазона тока I ₁ = 0,2 - 1,0 · Iн ₁ В точке диапазона тока I ₁ = 1,0 - 1,2 · Iн ₁ Номинальный ток (Iн ₁ /Iн ₂) Допустимый диапазон первичного тока Номинальная нагрузка ТТ Номинальное напряжение (Uн ₁ /Uн ₂) Номинальная нагрузка ТН	ЙОЙ		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.5	5	±2.5	
В точке диапазона тока I ₁ = 0,05 - 0,2 · Iн ₁ В точке диапазона тока I ₁ = 0,05 - 0,2 · Iн ₁ В точке диапазона тока I ₁ = 0,0 · I ₁		린	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.3	3	±2.0	
В точке диапазона тока I ₁ = 0,05 - 0,2 · Iн ₁ В точке диапазона тока I ₁ = 0,05 - 0,2 · Iн ₁ В точке диапазона тока I ₁ = 0,0 · I ₁		РУ-6кВ	измерений количества реактивной электрической энергии при	sinφ=0	,6	S	inφ=0,87	
В точке диапазона тока I1 = 1,0 - 1,2 ·Iн1		ന	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Ін ₁	±2.4			±2.35	
Номинальный ток (Iн ₁ /Iн ₂) 100 / 5 A Допустимый диапазон первичного тока 5120 A Номинальная нагрузка ТТ 10 BA Номинальное напряжение (Uн ₁ /Uн ₂) 380 B Номинальная нагрузка ТН			в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7			±1.71	
Допустимый диапазон первичного тока 5120 A Номинальная нагрузка ТТ 10 BA Номинальное напряжение (Uн₁/Uн₂) 380 B Номинальная нагрузка ТН			в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.5			±1.56	
Номинальная нагрузка ТТ 10 ВА 380 В Номинальная нагрузка ТН			Номинальный ток (Iн₁/Iн₂)		100 /	/ 5 A		
Номинальная нагрузка ТН Ф			Допустимый диапазон первичного тока		512	120 A		
血 Номинальная нагрузка ТН		+	Номинальная нагрузка TT					
血 Номинальная нагрузка ТН		힏	Номинальное напряжение (Uн₁/Uн₂)	380 B				
Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95: В точке диапазона тока I₁ = 0,05 - 0,2 ⋅ Iн₁ В точке диапазона тока I1 = 0,2 - 1,0 ⋅ Iн₁ В точке диапазона тока I1 = 0,2 - 1,0 ⋅ Iн₁ В точке диапазона тока I1 = 0,2 - 1,0 ⋅ Iн₁ В точке диапазона тока I1 = 0,2 - 1,0 ⋅ Iн₁ Том образования при доверительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95: В точке диапазона тока I1 = 0,2 - 1,0 ⋅ Iн₁ В точке диапазона тока I1 = 0,2 - 1,0 ⋅ Iн₁		ő	Номинальная нагрузка ТН					
В точке диапазона тока I ₁ = 0,05 - 0,2 · Iн ₁ ±1.8 ±2.4 ±4.4 В точке диапазона тока I1 = 0,2 - 1,0 · Iн ₁ ±1.1 ±1.3 ±2.3		ввод 6к	измерений количества активной электрической энергии при	cosφ=1	cosφ=	0,8	cosφ=0,5	
$\frac{6}{6}$ в точке диапазона тока $11 = 0.2 - 1.0 \cdot lh_1$ ± 1.1 ± 1.3 ± 2.3	7	KOE	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.8	±2.4	1	±4.4	
			в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.1	±1.3	3	±2.3	
$\frac{S}{S}$ в точке диапазона тока $11 = 1,0 - 1,2 \cdot l H_1$ ± 0.9 ± 1.0 ± 1.6		ОИС	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±0.9	±1.0)	±1.6	
Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при sinφ=0,6 sinφ=0,87 доверительной вероятности 0,95:		У-6кВ П	измерений количества реактивной электрической энергии при	sinφ=0	,6	s	inφ=0,87	
$\frac{\Omega}{\mathfrak{S}}$ в точке диапазона тока $I_1 = 0.05 - 0.2 \cdot I_{H_1}$ ± 2.4 ± 2.3		3Р	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4			±2.3	
в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁ ±1.6 ±1.6			в точке диапазона тока I1 = 0,2 - 1,0 ⋅Iн ₁	±1.6			±1.6	
			в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.4			±1.4	

ПС	Таблица 2.27 Характеристики измерительных каналов ПС "Приразломная" 110/35/6 кВ ИИК Наименование параметра Значение							
ИП	1K	Наименование параметра		Значение				
		Номинальный ток (Iн₁/Iн₂)		150 /	5 A			
		Допустимый диапазон первичного тока		7.518	30 <i>F</i>	4		
		Номинальная нагрузка ТТ		50 B	A			
		Номинальное напряжение (Uн₁/Uн₂)		35000 / 100 B				
	-1	Номинальная нагрузка ТН		360 BA				
	-35 кВ Белый Яр-1	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0	,8	cosφ=0,5		
~		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5		±4.6		
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.5		±2.5		
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.3		±2.0		
	ВЛ-3	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0),6	s	inφ=0,87		
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4	±2.4		±2.35		
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7	, <u> </u>		±1.6		
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.6	6		±1.6		

1100/	ДОЛЖ	ение таолицы 2.27				,	
		Номинальный ток (Iн₁/Iн₂)			/ 5 A		
		Допустимый диапазон первичного тока			360 A	١	
		Номинальная нагрузка ТТ			BA		
		Номинальное напряжение (Uн ₁ /Uн ₂)		35000) B	
	<u></u>	Номинальная нагрузка ТН		360 BA			
	Приразломная-1	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=	=0,8	cosφ=0,5	
7	ире	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.	5	±4.6	
	ᄅ	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.	5	±2.5	
	ā	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.	3	±2.0	
	ВЛ-35	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	,6	s	inφ=0,87	
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4		±2.35		
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7			±1.6	
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.6			±1.6	
		Номинальный ток (Iн ₁ /Iн ₂)		300	/ 5 A		
		Допустимый диапазон первичного тока			360 A		
		Номинальная нагрузка TT		50	ВА		
3		Номинальное напряжение (Uн₁/Uн₂)		35000	/ 100) B	
		Номинальная нагрузка ТН		360) BA		
	кВ Белый Яр-2	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	COSφ=	=0,8	cosφ=0,5	
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.	.5	±4.6	
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.	.5	±2.5	
	-35	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.	2	±1.9	
	ВЛ-35	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	,6	s	inφ=0,87	
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4	±2.4		±2.35	
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7	±1.7		±1.6	
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.6			±1.5	
		Номинальный ток (Iн₁/Iн₂)		300 / 5 A		Α	
	1-2	Допустимый диапазон первичного тока		153	360 A	\	
		Номинальная нагрузка TT	30 BA				
		Номинальное напряжение (Uн₁/Uн₂)		35000 / 100			
		Номинальная нагрузка ТН		360) BA		
	Приразломная-2	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	COSφ=	=0,8	cosφ=0,5	
4	диς	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.	5	±4.6	
	Ę	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.		±2.5	
	ā	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.		±1.9	
	ВЛ-35 кВ	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	•		inφ=0,87	
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4			±2.35	
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7			±1.6	
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.6			±1.5	

Прод	олж	ение таблицы 2.27					
		Номинальный ток (Iн ₁ /Iн ₂)		3000 /	5 A		
		Допустимый диапазон первичного тока		1503600 A			
	_	Номинальная нагрузка TT		20 B	Α		
	3 1T	Номинальное напряжение (Uн₁/Uн₂)		10000 /	100 I	В	
	6кВ	Номинальная нагрузка ТН		200 E	3A		
	ПГТЭС №1 ввод	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0	,8	cosφ=0,5	
2		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5		±4.6	
	13(в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.5		±2.5	
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.3		±2.0	
	ЗРУ-6кВ	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0),6	sin	φ=0,87	
	3	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4		±	2.35	
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7	,		±1.6	
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.6	;		±1.6	
		Номинальный ток (Iн ₁ /Iн ₂)		3000 / 5 A			
		Допустимый диапазон первичного тока		1503600 A			
	2Т	Номинальная нагрузка ТТ		20 BA			
		Номинальное напряжение (Uн ₁ /Uн ₂)		10000 / 100 B			
	6кВ	Номинальная нагрузка ТН		200 BA			
	е1 ввод	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0	,8	cosφ=0,5	
9	C	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5		±4.6	
	ТЭ(в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.5		±2.5	
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.3		±2.0	
	ЗРУ-6кВ ПГТЭС №1 ввод	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	,6	sin	φ=0,87	
	3	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4	±2.4		2.35	
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7	'	-	±1.6	
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.6	;	:	±1.6	

	Таблица 2.28 Характеристики измерительных каналов ПС "Северный Салым" 110/35/6 кВ										
ИІ	ИΚ	Знач	чени	ie							
		Номинальный ток (Iн ₁ /Iн ₂)		100	/ 5 A	\					
		Допустимый диапазон первичного тока		51	20 A	,					
		Номинальная нагрузка ТТ		50	BA						
	л-1	Номинальное напряжение (Uн₁/Uн₂)		35000	/ 100) B					
	NIGL	Номинальная нагрузка ТН		360 BA							
	Северный Салым-1	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ	=0,8	cosφ=0,5					
_	ері	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2	.5	±4.6					
	Эев	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1	.5	±2.5					
	кВ С	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1	.3	±2.0					
	ВЛ-35 к	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0),6	S	inφ=0,87					
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4			±2.35					
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7	,		±1.6					
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.5	5		±1.56					

35000 / 100 B				
	360) BA		
cosφ=1	COSφ=	=0,8	cosφ=0,5	
±1.9	±2.	.5	±4.6	
±1.2	±1.	.5	±2.5	
±1.1	±1.	.3	±2.0	
sinφ=0),6	s	inφ=0,87	
±2.4			±2.35	
±1.7	,		±1.6	
			±1.56	
		/ 5 A		
			, 5	
	1			
cosφ=1	COSφ=	=0,8	cosφ=0,5	
±1.9	±2.	.5	±4.6	
±1.2	±1.	.5	±2.5	
±1.1	±1.	.3	±2.0	
sinφ=0	ηφ=0,6		inφ=0,87	
±2.4			±2.35	
			±1.6	
			±1.56	
		/ 5 A		
) B	
		=0.8	cosφ=0,5	
cosφ=1	cosφ=	0,0	cosφ=0,5	
	·		•	
±1.9 ±1.2	cosφ= ±2. ±1.	.5	±4.6 ±2.5	
±1.9	±2.	.5 .5	±4.6	
±1.9 ±1.2	±2. ±1. ±1.	.5 .5 .3	±4.6 ±2.5	
±1.9 ±1.2 ±1.1	±2. ±1. ±1.	.5 .5 .3	±4.6 ±2.5 ±2.0	
±1.9 ±1.2 ±1.1 sinφ=0	±2. ±1. ±1.	.5 .5 .3	±4.6 ±2.5 ±2.0 inφ=0,87	
	osφ=1 ±1.9 ±1.2 ±1.1 sinφ=0 ±2.4 ±1.5 osφ=1 ±1.9 ±1.2 ±1.1 sinφ=0 ±2.4 ±1.7 ±1.5	51 50 35000 360 0sφ=1 cosφ= ±1.9 ±2. ±1.1 ±1. sinφ=0,6 ±2.4 ±1.7 ±1.5 100 51 50 35000 360 0sφ=1 cosφ= ±1.9 ±2. ±1.1 ±1. sinφ=0,6 ±2.4 ±1.7 ±1.5 100 51 50 35000 360 0sφ=1 cosφ=	360 BA osφ=1 cosφ=0,8 ±1.9 ±2.5 ±1.2 ±1.5 ±1.1 ±1.3 sinφ=0,6 s ±2.4 ±1.7 ±1.5 100 / 5 A 50 BA 35000 / 100 360 BA osφ=1 cosφ=0,8 ±1.9 ±2.5 ±1.2 ±1.5 ±1.1 ±1.3 sinφ=0,6 s ±2.4 ±1.7 ±1.5 100 / 5 A 50 BA 35000 / 100 360 BA	

11po)	жиод	ение таблицы 2.28					
		Номинальный ток (Iн₁/Iн₂)		2000 / 5	A		
		Допустимый диапазон первичного тока		1002400) A		
		Номинальная нагрузка ТТ		20 BA			
		Номинальное напряжение (Uн₁/Uн₂)		6000 / 100 B			
		Номинальная нагрузка ТН		75 BA			
	рд 6кВ 1Т	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0,8	cosφ=0,5		
2	ЗРУ-6кВ ввод	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5	±4.6		
	ĸВ	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.5	±2.5		
	9-/	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.2	±1.9		
	ЗР.	Границы допускаемой относительной погрешности результата					
	.,	измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	,6	sinφ=0,87		
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4	•	±2.35		
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7	,	±1.6		
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.5		±1.56		
		Номинальный ток (Iн ₁ /Iн ₂)		2000 / 5			
		Допустимый диапазон первичного тока		1002400			
		Номинальная нагрузка ТТ		,,,,			
				20 BA 6000 / 100 B			
		Номинальное напряжение (UH ₁ /UH ₂)		75 BA			
	_	Номинальная нагрузка ТН		/O DA	T		
	ЗРУ-6кВ ввод 6кВ 2Т	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0,8	cosφ=0,5		
9		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5	±4.6		
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.5	±2.5		
	I9-,	в точке диапазона тока I1 = 1,0 - 1,2 · Iн ₁	±1.1	±1.2	±2.0		
	ЗРУ	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	,6	sinφ=0,87		
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4		±2.35		
		в точке диапазона тока 11 = 0,2 - 1,0 ·Iн ₁	±1.7	-	±1.6		
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.5		±1.56		
		Номинальный ток (Iн ₁ /Iн ₂)		300 / 5 /			
		Допустимый диапазон первичного тока		15360			
		Номинальная нагрузка ТТ		10 BA			
		Номинальное напряжение (Uн ₁ /Uн ₂)		380 B			
		Номинальная нагрузка ТН					
	3РУ-6кВ ТСН-1	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0,8	cosφ=0,5		
7	Ü	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.8	±2.4	±4.4		
	-6 X	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.1	±1.3	±2.3		
	P	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±0.9	±1.0	±1.6		
	3	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	,6	sinφ=0,87		
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4		±2.3		
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.6		±1.6		
		в точке диапазона тока I1 = 1,0 - 1,2 · Iн ₁	±1.4		±1.4		
				I .			

	_						
		Номинальный ток (Iн ₁ /Iн ₂)		300 /	5 A	<u> </u>	
		Допустимый диапазон первичного тока	15360 A				
		Номинальная нагрузка ТТ		10 E	ЗА		
		Номинальное напряжение (Uн ₁ /Uн ₂)		380	В		
		Номинальная нагрузка ТН					
	TCH-2	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0	8,0	cosφ=0,5	
∞		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.8	±2.4	•	±4.4	
	19-/	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.1	±1.3	~	±2.3	
	ЗРУ-6кВ	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±0.9	±1.0)	±1.6	
		Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	,6	S	inφ=0,87	
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4			±2.3	
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.6			±1.6	
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.4			±1.4	

ИИК	Наименование параметра		Значени			
	Номинальный ток (Iн ₁ /Iн ₂)		300 / 5 A			
	Допустимый диапазон первичного тока		15360 A	4		
	Номинальная нагрузка TT		30 BA			
	Номинальное напряжение (Uн ₁ /Uн ₂)		35000 / 10	0 B		
	Номинальная нагрузка ТН		360 BA	T		
Север-1	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0,8	cosφ=0,5		
- ∯	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5	±4.6		
ις X	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.5	±2.5		
ВЛ-35	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.3	±2.0		
В	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0),6 s	sinφ=0,87		
	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4		±2.35		
	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7	±1.7 ±1.6			
	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.6	±1.6 ±1.6			
	Номинальный ток (Iн₁/Iн₂)		400 / 5 A			
	Допустимый диапазон первичного тока		20480 A			
	Номинальная нагрузка ТТ		30 BA			
	Номинальное напряжение (Uн ₁ /Uн ₂)		35000 / 100 B			
_	Номинальная нагрузка ТН		360 BA	1		
2 Связная-1	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0,8	cosφ=0,5		
2 2	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5	±4.6		
Α̈́B	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.5	±2.5		
ВЛ-35	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.3	±2.0		
ВЛ	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0),6 s	sinφ=0,87		
	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4		±2.35		
	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7	,	±1.6		
	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.6	;	±1.6		

1100	, O 0 1 3 1 C	снис таолицы 2.29	1			
		Номинальный ток (Iн₁/Iн₂)		400 / 5		
		Допустимый диапазон первичного тока		20480		
		Номинальная нагрузка ТТ	30 BA			
		Номинальное напряжение (Uн ₁ /Uн ₂)		35000 / 1		
		Номинальная нагрузка ТН		360 B	A	
	кВ Герань-1	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0,	8 cosφ=0,5	
က	B	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5	±4.6	
	75	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.5	±2.5	
	ВЛ-35	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.3	±2.0	
	B	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	,6	sinφ=0,87	
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4		±2.35	
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7		±1.6	
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.6		±1.6	
		Номинальный ток (Iн₁/Iн₂)		150 / 5	Α	
		Допустимый диапазон первичного тока		7.518	O A	
		Номинальная нагрузка TT		50 B/	A	
		Номинальное напряжение (Uн₁/Uн₂)	35000 / 100 B			
	кВ Остров-1	Номинальная нагрузка ТН	360 BA			
		Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0,	3 cosφ=0,5	
4		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5	±4.6	
	5 K	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.5	±2.5	
	ВЛ-35	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.3	±2.0	
	Ш	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	,6	sinφ=0,87	
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4		±2.35	
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7		±1.6	
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.6		±1.6	
		Номинальный ток (Iн₁/Iн₂)		150 / 5	A	
		Допустимый диапазон первичного тока		7.518) A	
		Номинальная нагрузка TT		50 B/	4	
		Номинальное напряжение (Uн₁/Uн₂)		35000 / 1	00 B	
		Номинальная нагрузка ТН		360 B	A	
	Пим-1	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0,		
2	ВЛ-35 кВ	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5	±4.6	
	-35	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.5	±2.5	
	BJ.	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.3	±2.0	
	_	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	,6	sinφ=0,87	
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4		±2.35	
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7		±1.6	
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.6		±1.6	
		, , , ,	-			

1100,	(OJIM)	ение таолицы 2.29		202 / 5	Λ		
		Номинальный ток (Iн ₁ /Iн ₂)		300 / 5 15360			
		Допустимый диапазон первичного тока					
		Номинальная нагрузка ТТ	50 BA				
		Номинальное напряжение (Uн₁/Uн₂)		35000 / 10			
		Номинальная нагрузка ТН		360 BA	\		
	Север-2	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0,8	cosφ=0,5		
9	ĸB (в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5	±4.6		
	35 k	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.5	±2.5		
	ВЛ-35	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.3	±2.0		
	В	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	,6	sinφ=0,87		
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4		±2.35		
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7		±1.6		
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.6		±1.6		
		Номинальный ток (Iн ₁ /Iн ₂)		400 / 5	A		
		Допустимый диапазон первичного тока		20480	A		
		Номинальная нагрузка TT		30 BA			
		Номинальное напряжение (Uн₁/Uн₂)		35000 / 100 B			
		Номинальная нагрузка ТН		360 BA			
	5 кВ Связная-2	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0,8	cosφ=0,5		
7		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5	±4.6		
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.5	±2.5		
	ВЛ-35	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.3	±2.0		
	BJ	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	,6	sinφ=0,87		
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4		±2.35		
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7		±1.6		
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.6		±1.6		
		Номинальный ток (Ін ₁ /Ін ₂)		400 / 5	A		
		Допустимый диапазон первичного тока		20480			
		Номинальная нагрузка ТТ		30 BA			
		Номинальное напряжение (Uн₁/Uн₂)		35000 / 10			
		Номинальная нагрузка ТН		360 BA	\		
	кВ Герань-2	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0,8	cosφ=0,5		
∞	ВГ	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5	±4.6		
	ζί Α	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.5	±2.5		
	ВЛ-35	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.3	±2.0		
	B	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	,6	sinφ=0,87		
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4		±2.35		
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7		±1.6		
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.6		±1.6		

11po)	ужпор	ение таблицы 2.29					
		Номинальный ток (Iн₁/Iн₂)		150 / 5 <i>A</i>	4		
		Допустимый диапазон первичного тока	7.5180 A				
		Номинальная нагрузка TT		50 BA			
		Номинальное напряжение (Uн ₁ /Uн ₂)		35000 / 10	0 B		
		Номинальная нагрузка ТН		360 BA			
	Остров-2	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0,8	cosφ=0,5		
6	KB C	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5	±4.6		
	5 <u>X</u>	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.5	±2.5		
	ВЛ-35 і	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.3	±2.0		
	BJ	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0),6	sinφ=0,87		
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4		±2.35		
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7	,	±1.6		
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.6		±1.6		
		Номинальный ток (Iн₁/Iн₂)	200 / 5 A				
		Допустимый диапазон первичного тока	10240 A				
		Номинальная нагрузка TT		50 BA			
		Номинальное напряжение (Uн₁/Uн₂)		35000 / 10	0 B		
		Номинальная нагрузка ТН		360 BA			
	Пим-2	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0,8	cosφ=0,5		
10	Θ	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5	±4.6		
	35	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.5	±2.5		
	ВЛ-35	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.3	±2.0		
	_	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0),6	sinφ=0,87		
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4	±2.4			
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7	'	±1.6		
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.6	}	±1.6		

	Таблица 2.30 Характеристики измерительных каналов ПС "Юганская" 110/35/6 кВ										
И	ИИК Наименование параметра Знач				ни	e					
		Номинальный ток (Iн ₁ /Iн ₂)		300 /	5 A	1					
		Допустимый диапазон первичного тока		1536	0 A	١					
		Номинальная нагрузка TT		50 B	A						
		Номинальное напряжение (Uн ₁ /Uн ₂)		35000 /	100) B					
	_	Номинальная нагрузка ТН		150 BA							
	Озерная-1	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0	,8	cosφ=0,5					
~	_	в точке диапазона тока I₁ = 0,05 - 0,2 ·Iн₁	±1.9	±2.5		±4.6					
	KB	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.5		±2.5					
	ВЛ-35	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.3		±2.0					
	ВЛ	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0),6	s	inφ=0,87					
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4			±2.35					
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7	,		±1.6					
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.5	;		±1.56					

1100/	илж	ение таолицы 2.30				
		Номинальный ток (Iн ₁ /Iн ₂)		300 / 5 A		
		Допустимый диапазон первичного тока		15360	Α	
		Номинальная нагрузка ТТ	50 BA			
		Номинальное напряжение (Uh ₁ /Uh ₂)		35000 / 10		
		Номинальная нагрузка ТН		150 BA		
	Балык-1	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0,8	cosφ=0,5	
7	кВ Е	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5	±4.6	
	5 K	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.5	±2.5	
	ВЛ-35	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.3	±2.0	
	B	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	,6	sinφ=0,87	
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4		±2.35	
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7		±1.6	
		в точке диапазона тока I1 = 1,0 - 1,2 · Iн ₁	±1.5		±1.56	
		Номинальный ток (Iн ₁ /Iн ₂)		300 / 5 /	A	
		Допустимый диапазон первичного тока		15360	A	
		Номинальная нагрузка TT		50 BA		
	35 кВ Омбинская-1	Номинальное напряжение (Uн₁/Uн₂)	35000 / 100 B			
		Номинальная нагрузка ТН				
		Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0,8	cosφ=0,5	
က		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5	±4.6	
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.5	±2.5	
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.3	±2.0	
	ВЛ-35	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	,6	sinφ=0,87	
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4		±2.35	
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7		±1.6	
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.5		±1.56	
		Номинальный ток (Iн ₁ /Iн ₂)		300 / 5 /	4	
		Допустимый диапазон первичного тока		15360	A	
		Номинальная нагрузка TT		50 BA		
		Номинальное напряжение (Uн₁/Uн₂)		35000 / 10	0 B	
		Номинальная нагрузка ТН		150 BA		
	Озерная-2	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0,8	cosφ=0,5	
4	Ö	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5	±4.6	
	ВЛ-35 кВ	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.5	±2.5	
	I-3£	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.3	±2.0	
	ВЛ	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	,6	sinφ=0,87	
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4		±2.35	
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7		±1.6	
- 1	ŀ	в точке диапазона тока I1 = 1,0 - 1,2 · Iн ₁	±1.5		±1.56	

	4001311	сние таолицы 2.30		200 / 5	۸		
		Номинальный ток (Iн₁/Iн₂)		300 / 5 /			
		Допустимый диапазон первичного тока	15360 A 50 BA				
		Номинальная нагрузка ТТ					
		Номинальное напряжение (Uн₁/Uн₂)	35000 / 100 B				
		Номинальная нагрузка ТН		150 BA	<u> </u>		
	Балык-2	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0,8	cosφ=0,5		
5	â	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5	±4.6		
	35 1	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.5	±2.5		
	ВЛ-35	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.3	±2.0		
	ш	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	,6	sinφ=0,87		
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4		±2.35		
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7		±1.6		
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.5		±1.56		
		Номинальный ток (Iн₁/Iн₂)		300 / 5	4		
		Допустимый диапазон первичного тока		15360	A		
		Номинальная нагрузка TT		50 BA			
		Номинальное напряжение (Uн₁/Uн₂)		35000 / 100 B			
	6 ′	Номинальная нагрузка ТН		l			
	Омбинская-2	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0,8	cosφ=0,5		
9		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5	±4.6		
	δ	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.5	±2.5		
	35 F	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.3	±2.0		
	ВЛ-35	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	sinφ=0,6 sind			
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4		±2.35		
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7		±1.6		
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.5		±1.56		
		Номинальный ток (Iн₁/Iн₂)		400 / 5	4		
		Допустимый диапазон первичного тока		20480	A		
		Номинальная нагрузка TT		10 BA			
		Номинальное напряжение (Uн₁/Uн₂)		6000 / 10) B		
		Номинальная нагрузка ТН		50 BA			
	КЛ 6кВ РУ-2-1	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0,8	cosφ=0,5		
7	Ü	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5	±4.6		
	Š	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.5	±2.5		
	⋝	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.2	±1.9		
		Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	,6	sinφ=0,87		
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4		±2.35		
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7		±1.6		
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.5		±1.56		
		11		1			

∞ Доверительной вероятности 0,95: в точке диапазона тока I₁ = 0,05 - 0,2 ⋅ Iн₁ ±1.9 ±2.5	cosφ=0,5
Номинальная нагрузка TT 10 BA Номинальное напряжение (Uн₁/Uн₂) 6000 / 100 B Номинальная нагрузка TH 50 BA Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при cosφ=1 cosφ=0,8 с	:osφ=0,5
Номинальное напряжение (Uн₁/Uн₂) 6000 / 100 B Номинальная нагрузка ТН 50 BA Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при соѕφ=1 соѕф=0,8 совф=0,8 со	:osφ=0,5
Номинальная нагрузка ТН 50 ВА Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при соsφ=1 соsφ=0,8 с	:osφ=0,5
С Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при $cosφ=1$ $cosφ=0,8$:osφ=0,5
Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95: В точке диапазона тока I₁ = 0,05 - 0,2 ⋅ Iн₁ ±1.9 ±2.5	cosφ=0,5
∞ Д в точке диапазона тока I₁ = 0,05 - 0,2 · Iн₁ ±1.9 ±2.5	
 	±4.6
$\frac{2}{9}$ в точке диапазона тока I1 = 0,2 - 1,0 ·Ін ₁ ± 1.2 ± 1.5	±2.5
ө в точке диапазона тока I1 = 1,0 - 1,2 ·lн₁ ±1.1 ±1.2	±1.9
Б Границы допускаемой относительной погрешности результата	o=0,87
в точке диапазона тока $I_1 = 0.05 - 0.2 \cdot IH_1$ ±2.4 ±2	2.35
	1.6
	1.56
Номинальный ток (Iн ₁ /Iн ₂) 400 / 5 A	
Допустимый диапазон первичного тока 20480 А	
Номинальная нагрузка ТТ 10 ВА	
Номинальное напряжение (Uн ₁ /Uн ₂) 6000 / 100 В	
Номинальнае напряжение (онутона) Номинальная нагрузка ТН 50 ВА	
ш I	cosφ=0,5
доверительной вероятности 0,95: в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁ ±1.9 ±2.5 1.1	±4.6
$\frac{\Box}{\Box}$ в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁ \pm 1.2 \pm 1.5	±2.5
	±1.9
Б Границы допускаемой относительной погрешности результата	o=0,87
в точке диапазона тока $I_1 = 0.05 - 0.2 \cdot IH_1$ ±2.4 ±2	2.35
	1.6
	1.56
Номинальный ток (Iн ₁ /Iн ₂) 300 / 5 A	
Допустимый диапазон первичного тока 15360 А	
Номинальная нагрузка TT 10 BA	
Номинальное напряжение (Uн₁/Uн₂) 6000 / 100 B	
Номинальная нагрузка ТН 50 ВА	
доверительной вероятности 0,95:	cosφ=0,5
$\frac{C}{C}$ В точке диапазона тока $I_1 = 0.05 - 0.2 \cdot IH_1$ ± 1.9 ± 2.5	±4.6
В точке диапазона тока I1 = 0,2 - 1,0 ·lн1 ±1.2 ±1.5	±2.5
	±1.9
В точке диапазона тока I1 = 1,0 - 1,2 ⋅ Iн₁ ±1.1 ±1.2	
Границы допускаемой относительной погрешности результата	o=0,87
Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95: в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁ ±2.4 ±2	2.35
Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	·

Таблица 2.31 Характеристики измерительных каналов ПС "Асомкинская" 110/35/6 кВ

ИИ	IК	Наименование параметра		Значен	ие	
		Номинальный ток (Iн ₁ /Iн ₂)		300 / 5 A		
		Допустимый диапазон первичного тока		15360	Α	
		Номинальная нагрузка TT		50 BA	\	
		Номинальное напряжение (Uн ₁ /Uн ₂)		35000 / 10	00 B	
	<u> </u>	Номинальная нагрузка ТН		360 BA		
	Дашковская-1	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0,8		
_	a E	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5	±4.6	
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.5	±2.5	
	꾨	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.2	±1.9	
	ВЛ-35кВ	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0		sinφ=0,87	
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4		±2.35	
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7	1	±1.71	
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.5	1	±1.56	
		Номинальный ток (Iн₁/Iн₂)		300 / 5	A	
		Допустимый диапазон первичного тока		15360	A	
	Дашковская-2	Номинальная нагрузка TT		1		
		Номинальное напряжение (Uн ₁ /Uн ₂)		35000 / 100 B		
		Номинальная нагрузка ТН		4		
		Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0,8	cosφ=0,5	
7		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5	±4.6	
	κΒ	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.5	±2.5	
	5 X	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.2	±1.9	
	ВЛ-35	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	,6	sinφ=0,87	
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4		±2.35	
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7	1	±1.71	
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.5	ſ	±1.56	
		Номинальный ток (Iн ₁ /Iн ₂)		600 / 5	A	
		Допустимый диапазон первичного тока		30720	Α	
		Номинальная нагрузка ТТ		10 BA		
		Номинальное напряжение (Uн ₁ /Uн ₂)		6000 / 10		
	_	Номинальная нагрузка ТН		75 BA	1	
	кВ КНС-1-1	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0,8	cosφ=0,5	
က	â	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5	±4.6	
	9	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.5	±2.5	
	ввод	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.2	±1.9	
	98	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0		sinφ=0,87	
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4		±2.35	
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7		±1.71	
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.5		±1.56	

		Номинальный ток (Ін ₁ /Ін ₂)		600 /	/ 5 A	L
		Допустимый диапазон первичного тока		307	20 A	A
		Номинальная нагрузка ТТ		10	ВА	
		Номинальное напряжение (Uн₁/Uн₂)		6000 /	100	В
		Номинальная нагрузка ТН		75	BA	
	KHC-1-2	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=	8,0	cosφ=0,5
4	ξB	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.	<u>.</u>	±4.6
	9	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.	5	±2.5
	ввод	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.2	2	±1.9
	BE	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	,6	s	inφ=0,87
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4			±2.35
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7			±1.71
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.5			±1.56

ИИ	ГK	Наименование параметра		Значені	ие			
		Номинальный ток (Iн ₁ /Iн ₂)		4				
		Допустимый диапазон первичного тока		7.5180 A				
		Номинальная нагрузка TT		50 BA				
		Номинальное напряжение (Uн ₁ /Uн ₂)		35000 / 10	0 B			
	Я-1	Номинальная нагрузка ТН		360 BA	1			
	ВЛ-35 кВ Широковская-1	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0,8	cosφ=0,5			
~	Іир	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5	±4.6			
	3 LL	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.5	±2.5			
	5 K	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.3	±2.0			
	ВЛ-3	ВЛ-3	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	,6	sinφ=0,87		
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4		±2.35			
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7		±1.6			
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.5		±1.56			
		Номинальный ток (Iн ₁ /Iн ₂)		150 / 5 /				
		Допустимый диапазон первичного тока		7.5180				
		Номинальная нагрузка ТТ		50 BA				
		Номинальное напряжение (Uн ₁ /Uн ₂)		35000 / 10				
	7	Номинальная нагрузка ТН		360 BA	\			
	3Л-35 кВ Уфимская-1	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0,8	cosφ=0,5			
7	Уф	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5	±4.6			
	ξB	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.5	±2.5			
	-35	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.3	±2.0			
	ВЛ-	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	,6	sinφ=0,87			
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4		±2.35			
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7	'	±1.6			
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.5		±1.56			

Продолжение таблицы 2.32	
Номинальный ток (Iн₁/Iн₂) 150 /	
Допустимый диапазон первичного тока 7.51	80 A
Номинальная нагрузка ТТ 30	3A
Номинальное напряжение (Uн ₁ /Uн ₂) 35000 /	100 B
N Номинальная нагрузка ТН 360	BA
Робот Номинальная нагрузка ТН Праницы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95: В точке диапазона тока I₁ = 0,05 - 0,2 ⋅Iн₁ ±1.9 ±2.5	0,8 cosφ=0,5
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	5 ±4.6
в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁ ±1.2 ±1.5	5 ±2.5
$\frac{2}{1.0}$ в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁ ± 1.1 ± 1.3	3 ±2.0
В точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁ ±1.3	sinφ=0,87
в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁ ±2.4	±2.35
в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁ ±1.7	±1.6
в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁ ±1.5	±1.56
Номинальный ток (Iн ₁ /Iн ₂) 150 /	
Допустимый диапазон первичного тока 7.51	80 A
Номинальная нагрузка TT 30	
Номинальное напряжение (Uн ₁ /Uн ₂) 35000 /	100 B
Номинальная нагрузка TH 360	BA
Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95: В точке диапазона тока I₁ = 0,05 - 0,2 ⋅Iн₁ ±1.9 ±2.5 в точке диапазона тока I1 = 0,2 - 1,0 ⋅Iн₁ ±1.2 ±1.5 в точке диапазона тока I1 = 1,0 - 1,2 ⋅Iн₁ ±1.1 ±1.3 Границы допускаемой относительной погрешности результата	0,8 cosφ=0,5
7 В точке диапазона тока $I_1 = 0.05 - 0.2 \cdot IH_1$ ± 1.9 ± 2.5	±4.6
\mathfrak{Q} в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁ ± 1.2 ± 1.5	±2.5
$\frac{100}{100}$ в точке диапазона тока $11 = 1,0 - 1,2 \cdot H_1$ ± 1.1 ± 1.3	3 ±2.0
Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при sinφ=0,6 доверительной вероятности 0,95:	sinφ=0,87
в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁ ±2.4	±2.35
в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁ ±1.7	±1.6
в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁ ±1.5	±1.56
Номинальный ток (Iн₁/Iн₂) 1500	/ 5 A
Допустимый диапазон первичного тока 7518	00 A
Номинальная нагрузка ТТ 10	ВА
Номинальное напряжение (Uн ₁ /Uн ₂) 6000 /	100 B
	ВА
Б Границы допускаемой относительной погрешности результата	0,8 cosφ=0,5
Ω в точке диапазона тока $I_1 = 0.05 - 0.2 \cdot I_{H_1}$ ± 1.9 ± 2.5	5 ±4.6
0 B 10 INC AMANAGENA 10 Na 11 0,00 0,2 III	
$\frac{1}{2}$ в точке диапазона тока $\frac{1}{2} = 0.2 - 1.0 \cdot lh_1$ $\frac{1}{2} = 1.2 \cdot lh_1$	±2.5
в точке диапазона тока I1 = 0,2 - 1,0 · Iн ₁ ±1.2 ±1.5 в точке диапазона тока I1 = 1,0 - 1,2 · Iн ₁ ±1.1 ±1.3	
в точке диапазона тока I1 = 0,2 - 1,0 · Iн ₁ ±1.2 ±1.5	
зinφ=0,6	3 ±2.0
измерений количества реактивной электрической энергии при sinφ=0,6 доверительной вероятности 0,95:	sinφ=0,87

Прод	ЖКОЈ	ение таблицы 2.32	<u> </u>			
		Номинальный ток (Iн₁/Iн₂)		1500 / 5		
		Допустимый диапазон первичного тока		751800		
		Номинальная нагрузка ТТ	10 BA			
		Номинальное напряжение (Uн₁/Uн₂)	6000 / 100 B			
	2T	Номинальная нагрузка ТН		75 BA	_	
	6кВ №120 ввод 6кВ	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0,8	cosφ=0,5	
9	20 6	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5	±4.6	
	12	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.5	±2.5	
	B	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.3	±2.0	
	Py 6k	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	,6	sinφ=0,87	
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4		±2.35	
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7		±1.6	
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.5		±1.56	
		Номинальный ток (Iн ₁ /Iн ₂)		200 / 5		
		Допустимый диапазон первичного тока		10240	A	
	1	Номинальная нагрузка TT		10 BA		
		Номинальное напряжение (Uн₁/Uн₂)		380 B		
	TCH-1	Номинальная нагрузка ТН				
	бкВ	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0,8	cosφ=0,5	
7		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.8	±2.4	±4.4	
	120	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.1	±1.3	±2.3	
	РУ 6кВ №120 ввод	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±0.9	±1.0	±1.6	
		Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	,6	sinφ=0,87	
		в точке диапазона тока I₁ = 0,05 - 0,2 ·Iн₁	±2.4		±2.3	
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.6		±1.6	
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.4		±1.4	
		Номинальный ток (Iн₁/Iн₂)		200 / 5	Ą	
		Допустимый диапазон первичного тока		10240	A	
		Номинальная нагрузка ТТ		10 BA		
	- -2	Номинальное напряжение (Uн₁/Uн₂)		380 B		
	Ċ	Номинальная нагрузка ТН		1	1	
	№120 ввод 6кВ ТСН-2	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0,8	cosφ=0,5	
∞	88	в точке диапазона тока I₁ = 0,05 - 0,2 ·Iн₁	±1.8	±2.4	±4.4	
	120	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.1	±1.3	±2.3	
	<u>S</u>	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±0.9	±1.0	±1.6	
	РУ 6кВ	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	,6	sinφ=0,87	
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4		±2.3	
			- -			
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.6		±1.6	

Таблица 2.33 Характеристики измерительных каналов	
ПС "Киняминская" 110/35/6кВ	

И	ИК	Наименование параметра		Значени	ıe	
		Номинальный ток (Iн₁/Iн₂)		300 / 5 A	\	
		Допустимый диапазон первичного тока		4		
		Номинальная нагрузка ТТ		30 BA		
		Номинальное напряжение (Uн ₁ /Uн ₂)	-	110000 / 10	0 B	
		Номинальная нагрузка ТН		400 BA		
	1 H	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0,8	cosφ=0,5	
~	110kB	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5	±4.6	
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.5	±2.5	
	BB	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.3	±2.0	
		Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0),6 s	inφ=0,87	
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4		±2.35	
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7	,	±1.6	
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.6	;	±1.6	
		Номинальный ток (Iн₁/Iн₂)		300 / 5 A	١	
		Допустимый диапазон первичного тока		15360 A		
		Номинальная нагрузка ТТ	30 BA			
		Номинальное напряжение (Uн ₁ /Uн ₂)	110000 / 100 B			
		Номинальная нагрузка ТН		400 BA		
	tb 2T	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0,8	cosφ=0,5	
7	110кВ	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5	±4.6	
	B 1	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.5	±2.5	
	8	в точке диапазона тока	±1.1	±1.3	±2.0	
		Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	,6 s	inφ=0,87	
		в точке диапазона тока I₁ = 0,05 - 0,2 ·Iн₁	±2.4		±2.35	
		в точке диапазона тока	±1.7		±1.6	
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.6		±1.6	

Таблица 2.34 Характеристики измерительных каналов
ПС "Муратовская" 110/35/6 кВ

110	· IVI	/ратовская 110/35/6 кв			
И	ИΚ	Наименование параметра		Значен	ие
		Номинальный ток (Iн₁/Iн₂)		300 / 5 /	A
		Допустимый диапазон первичного тока		A	
		Номинальная нагрузка ТТ		30 BA	
		Номинальное напряжение (Uн ₁ /Uн ₂)	1	10000 / 1	00 B
		Номинальная нагрузка ТН		400 BA	١
	1 J	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0,8	cosφ=0,5
_	В 110кВ	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5	±4.6
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.5	±2.5
	B	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.3	±2.0
		Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	,6	sinφ=0,87
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4		±2.35
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7		±1.6
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.6		±1.6

		Номинальный ток (Iн ₁ /Iн ₂)		300 / 5 /	4						
		Допустимый диапазон первичного тока		15360	A						
		Номинальная нагрузка ТТ		30 BA							
		Номинальное напряжение (Uн ₁ /Uн ₂)	1	10000 / 10	00 B						
		Номинальная нагрузка ТН		400 BA							
	B 2T	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0,8	cosφ=0,5						
7	10kB	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5	±4.6						
	3.1					B 1		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.2	±1.5	±2.5
	B	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.1	±1.3	±2.0						
		Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	,6	sinφ=0,87						
		в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.4		±2.35						
		в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.7		±1.6						
		в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.6		±1.6						

иик	Наименование параметра		Значение			
	Номинальный ток (Iн₁/Iн₂)		300 / 5 A	1		
	Допустимый диапазон первичного тока		4			
	Номинальная нагрузка TT		30 BA			
	Номинальное напряжение (Uн₁/Uн₂)	1	110000 / 10	10 B		
	Номинальная нагрузка ТН		400 BA	1		
B 1T	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0,8	cosφ=0,5		
1 110kB	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5	±4.6		
B 1	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.3	±1.6	±2.6		
H	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.2	±1.4	±2.0		
	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0,6 sind		sinφ=0,87		
	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.7		±2.6		
	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±2.1		±2.13		
	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.9		±2.01		
	Номинальный ток (Iн₁/Iн₂)		300 / 5 A	١		
	Допустимый диапазон первичного тока		15360 A	4		
	Номинальная нагрузка ТТ	30 BA				
	Номинальное напряжение (Uн₁/Uн₂)	1	110000 / 100 B			
	Номинальная нагрузка ТН		400 BA	ı		
B 2T	Границы допускаемой относительной погрешности результата измерений количества активной электрической энергии при доверительной вероятности 0,95:	cosφ=1	cosφ=0,8	cosφ=0,		
2 110кВ	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±1.9	±2.5	±4.6		
1	в точке диапазона тока I1 = 0,2 - 1,0 ·Iн ₁	±1.3	±1.6	±2.6		
88	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.2	±1.4	±2.0		
	Границы допускаемой относительной погрешности результата измерений количества реактивной электрической энергии при доверительной вероятности 0,95:	sinφ=0	,6 s	sinφ=0,87		
	в точке диапазона тока I ₁ = 0,05 - 0,2 ·Iн ₁	±2.7		±2.6		
	в точке диапазона тока I1 = 0,2 - 1,0 ⋅Iн ₁	±2.1		±2.13		
	в точке диапазона тока I1 = 1,0 - 1,2 ·Iн ₁	±1.9		±2.01		

Перечень функций выполняемых АИИС

Общее число измерительных каналов в АИИС	220
Возможность проведения измерений величин приращений активно	
Возможность проведения измерений величин приращений активне	
Возможность проведения измерений времени и интервалов времен	
Возможность проведения измерений напряжения в ИИК	
Возможность проведения измерений тока в ИИК	
Функция проведения измерений активной электрической энергии	
• • • • • • • • • • • • • • • • • • • •	÷
Функция проведения измерений реактивной электрической энерги	
Функция проведения измерений времени и интервалов времени	
Функция проведения измерений напряжения в ИИК	
Функция проведения измерений тока в ИИК	=
Цикличность проведения измерений, интервал	
Возможность коррекции текущего времени в ИИК, ИВКЭ и ИВК	
Функция коррекции текущего времени в ИИК,ИВКЭ и ИВК	
Цикличность коррекции текущего времени в ИИК,ИВКЭ и ИВК, и	
Возможность сбора состояний средств измерений	
Возможность сбора результатов измерений	
Функция проведения сбора состояний средств измерения	
Функция проведения сбора результатов измерения	
Цикличность сбора результатов измерений и состояний СИ, интер-	
Возможность предоставления результатов измерений в ИАСУ КУ.	имеется
Функция предоставления результатов измерений в ИАСУ КУ	автоматизирована
Цикличность предоставления результатов измерений в ИАСУ КУ,	интервал1раз в сутки
Возможность предоставления результатов измерений в РДУ «СО-I	ЦДУ ЕЭС»имеется
Функция предоставления результатов измерений в РДУ «СО-ЦДУ	ЕЭС»автоматизирована
Цикличность предоставления результатов	
измерений в РДУ «СО-ЦДУ ЕЭС», интервал	1раз в сутки
Возможность хранения информации (профиля) в ИИК(счетчик)	имеется
Функция хранение информации (профиля) в ИИК(счетчик)	автоматизирована
Глубина хранения информации (профиля) в ИИК(счетчик)	
	-
Глубина хранения информации при отключении питания	не менее 5 лет
Возможность хранения информации (профиля) в ИВКЭ(УСПД)	
Функция хранение информации (профиля) в ИВКЭ(УСПД)	
Глубина хранения информации (профиля) в ИВКЭ(УСПД)	
Возможность хранения информации (профиля) в ИВК(сервер)	
Функция хранения информации (профиля) в ИВК (сервер)	
Глубина хранения информации (профиля) в ИВК	
Функция синхронизации времени в АИИС	
Защита информации при параметрировании счетчика	_
Защита информации при параметрировании УСПД	_
Защита информации при параметрировании сервера	
Защита информации при конфигурировании и настройке АИИС	_
Защита передачи информации от ИВКЭ в сервер ИВК	
	преализована с помощью пароля
Защита информации при хранении в соответствии с	
требованиями к классу 2Б РД Гостехкомиссии в сервере БД ИВК	предусмотрена
Защита от несанкционированного доступа при передаче	
результатов измерений (использование электронной цифровой под	
Резервное электрическое питание счетчиков электрической энерги	ивыполнено

Резервирование каналов связи ИВКЭ – ИВК	выполнено
Резервирование каналов связи ИВК – ИАСУ КУ НП «АТС»	выполнено
Резервирование каналов связи ИВК – ОАО «СО-ЦДУ ЕЭС» РДУ	выполнено
Средства для резервного копирования и восстановления	
(довосстановления пропусков данных) базы данных АИИС	предусмотрены
Возможность контроля достоверности и восстановления данных в АИИС	имеется
Возможность считывания информации со счетчика автономным способом	
Возможность считывания информации со счетчика удаленным способом	
Возможность визуального контроля информации на счетчике	имеется
Наличие фиксации в журнале событий счетчика следующих событий:	
– фактов параметрирования счетчика	
– фактов пропадания напряжения	
– фактов коррекции времени	Имеется
Нормальные условия эксплуатации:	
– напряжение питающей сети переменного тока	(220±4,4) B
– частота питающей сети	(50 \pm 0,4) Гц
– температура:от -40°C до +	-40°C (для ТН и ТТ)
от +15°C до +2	25°C (для счетчиков)
от +15°C д	o +25°C (для ИВКЭ)
ot +15°C	до +25°C (для ИВК)
– относительная влажность воздуха	(70±5) %
– атмосферное давление	(750±30) мм рт.ст.
Рабочие условия эксплуатации:	
напряжение питающей сети переменного тока	(220±10) B
– частота питающей сети	(50 \pm 0,4) Гц
– температура:от -30°C до +	-40°C (для ТН и ТТ)
от 0°С до +4	0°С (для счетчиков)
от +5°С до	о +40°C (для ИВКЭ)
ot +15°C	до +35°C (для ИВК)
– относительная влажность воздуха	(70±10) %
– атмосферное давление	(750±30) мм рт.ст.
Средняя наработка на отказ	не менее 35000 ч
Средний срок службы АИИС	20 лет

ЗНАК УТВЕРЖДЕНИЯ ТИПА

Знак утверждения типа наносится на титульные листы эксплуатационной документации АИИС.

комплектность

Комплектность АИИС представлена в таблице 3.

Таблица 3 – Комплектность АИИС

Наименование	Количество
Измерительный трансформатор тока ВСТПМР-242	9
Измерительный трансформатор тока TG-145	39
Измерительный трансформатор тока Т-0,66 У3	6
Измерительный трансформатор тока ТВЛМ-10	6
Измерительный трансформатор тока ТК-20	27
Измерительный трансформатор тока ТЛК-10	4
Измерительный трансформатор тока ТЛМ-10	21
Измерительный трансформатор тока ТЛМ-6	12
Измерительный трансформатор тока ТЛШ-10	4
Измерительный трансформатор тока ТЛШ-10-1	6
Измерительный трансформатор тока ТОЛ-10	46
Измерительный трансформатор тока ТОЛ-35Б	4
Измерительный трансформатор тока ТПШЛ-10	5
Измерительный трансформатор тока ТФЗМ-35А-У1	99
Измерительный трансформатор тока ТФЗМ-35А-ХЛ1	77
Измерительный трансформатор тока ТФЗМ-35Б-ІУ1	7
Измерительный трансформатор тока ТФЗМ-35-У1	12
Измерительный трансформатор тока ТФМ-35-IIУ1	13
Измерительный трансформатор тока ТФМ-35-II-XЛ1	23
Измерительный трансформатор тока ТФН-35М	72
Измерительный трансформатор тока ТФНД-35М	5
Измерительный трансформатор напряжения СРВ-123	13
Измерительный трансформатор напряжения СРВ-245	3
Измерительный трансформатор напряжения ЗНОМ-35-65У1	32
Измерительный трансформатор напряжения ЗНОМ-35-65ХЛ1	2
Измерительный трансформатор напряжения НАМИ-10	2
Измерительный трансформатор напряжения НАМИ-10У3	6
Измерительный трансформатор напряжения НАМИ-35-УХЛ1	120
Измерительный трансформатор напряжения НАМИ-6	11
Измерительный трансформатор напряжения НАМИТ-10	2
Измерительный трансформатор напряжения НАМИТ-10-2УХЛ2	1
Измерительный трансформатор напряжения НОМ-35-65У1	2
Измерительный трансформатор напряжения НТМИ-6	2
Измерительный трансформатор напряжения НТМИ-6-66	2
Измерительный трансформатор напряжения НТМИ-6-66У3	17
Счетчик электроэнергии многофункциональный типа A1R-3-AL-C29-T+	60
Счетчик электроэнергии многофункциональный типа A1R-3-AL-C8-T	136

продолжение таблицы 5	
Счетчик электроэнергии многофункциональный типа A1R-4-AL-C28-T+	12
Счетчик электроэнергии многофункциональный типа A1R-4-AL-C8-T	5
Счетчик электроэнергии многофункциональный типа A1R-4-OL-C4-T	3
Счетчик электроэнергии многофункциональный типа A1R-4-OL-C8-T+	1
Счетчик электроэнергии многофункциональный типа A2R-4-AL-C28-T+	7
Счетчик электроэнергии многофункциональный типа A2R-4-AL-C8-T+	3
Счетчик электроэнергии многофункциональный типа EA05RALX-P4BN-3	2
Устройство сбора и передачи данных УСПД "ТК 16 L"	41
Радиостанция Motorola GM-340 с АФУ	46
Модем SHDSL типа ZyXEL Prestige 791R EE (Annex A) с кабельными линиями связи	16
Сервер сбора данных "АВ-60"	5
Сервер БД "HP Proliant DL380"	6
Рабочая станция оператора Compaq d310	8
Устройство синхронизации единого времени Acutime 2000	5
Специализированное программное обеспечение установленное на сервере	6
(ПО) «Телескоп »	U
Специализированное программное обеспечение установленное на рабочей	8
станции оператора (ПО) «Телескоп 4+»	U
Руководство по эксплуатации	1
Методика поверки	1

ПОВЕРКА

Поверка АИИС проводится по документу "ГСИ. Система автоматизированная информационно-измерительная - АИИС КУЭ ЗАО «ЭСКОМ». Методика поверки», утвержденному ФГУП "ВНИИМС" 10.10.2005 г.

Перечень основных средств поверки:

- средства поверки измерительных трансформаторов напряжения по МИ 2845-2003, МИ 2925-2005 и/или по ГОСТ 8.216-88;
 - средства поверки измерительных трансформаторов тока по ГОСТ 8.217-2003;
- средства поверки счетчиков электрической энергии в соответствии с утвержденным документом «Многофункциональные счетчики электрической энергии типа АЛЬФА. Методика поверки», согласованной ВНИИМ им. Д.И.Менделеева;
- средства измерений вторичной нагрузки TT в соответствии с утвержденным документом «Методика выполнения измерений мощности нагрузки трансформаторов тока в условиях эксплуатации»;
- средства измерений вторичной нагрузки TH в соответствии с утвержденным документом «Методика выполнения измерений мощности нагрузки трансформаторов тока в условиях эксплуатации»;
- средства измерений падения напряжения в линии соединении счетчика с ТН в соответствии с утвержденным документом «Методика выполнения измерений падения напряжения в линии соединения счетчика с трансформатором напряжения в условиях эксплуатации»;
- средства измерений в соответствии с утвержденным документом «Методика выполнения измерений профилей электроэнергии, передачи информации и вычисления приращений электрической энергии за 30-ти минутные интервалы времени в условиях эксплуатации»;
- переносной компьютер с ПО и оптический преобразователь для работы со счетчиками системы;
 - радиоприемник УКВ диапазона, принимающий сигналы службы точного времени;

- GPS приемник сигналов точного времени - GPS MAP 76S фирмы GARMIN. Межповерочный интервал - 4 года.

НОРМАТИВНЫЕ И ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

ГОСТ 1983-2001 «Трансформаторы напряжения. Общие технические условия».

ГОСТ 7746-2001 «Трансформаторы тока. Общие технические условия».

ГОСТ 22261-94 «Средства измерений электрических и магнитных величин. Общие технические условия».

ГОСТ 26035-83 «Счетчики электрической энергии переменного тока электронные. Общие технические условия».

ГОСТ Р 52323-2005 (МЭК 62053-22: 2003) «Аппаратура для измерения электрической энергии переменного тока. Частные требования. Часть 22. Статические счетчики активной энергии классов точности 0,2S и 0,5S)».

ГОСТ Р 8.596-2002 "ГСИ. Метрологическое обеспечение измерительных систем. Основные положения"

Техническая документация на систему информационно-измерительную автоматизированную - АИИС КУЭ ЗАО «ЭСКОМ».

ЗАКЛЮЧЕНИЕ

Тип системы информационно-измерительной автоматизированной - АИИС КУЭ ЗАО «ЭСКОМ» для электроснабжения ОАО "Юганскнефтегаз" утвержден с техническими и метрологическими характеристиками, приведенными в настоящем описании типа, и метрологически обеспечен в эксплуатации.

Изготовитель: ЗАО «Прорыв-комплект»,

Адрес: 142103, Московская область,

г. Жуковский, ул. Комсомольская,

д. 4, кв. 26

Генеральный директор

Заявитель: ЗАО «ЭСКОМ»

Адрес: 115054, г. Москва, у. Дубининская, ба.

Генеральный директор ЗАО «ЭСКОМ»

