ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

СОГЛАСОВАНО: Зам. руковединеля ГЦИ СИ УНИИМ-

25 января 2006г

Система информационно-измерительная коммерческого учета электроэнергии автоматизированная Богословский алюминиевый завод - филиал ОАО «Сибирско-Уральская алюминиевая компания»

Внесена в Государственный реестр средств измерений Регистрационный №3 (260-05)

Изготовлена по технической документации ООО «НПФ «Телемеханик», заводской номер 01.

НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ

Система информационно-измерительная коммерческого учета электроэнергии автоматизированная Богословского алюминиевого завода - филиала ОАО «Сибирско-Уральская алюминиевая компания», г. Краснотурьинск, (в дальнейшем АИИС) предназначена для измерения и коммерческого учета электрической энергии и усредненной электрической мощности, а также для автоматического сбора, обработки, хранения и отображения полученной информации.

Область применения: измерение, учет и контроль активной и реактивной электрической энергии и усредненной электрической мощности, получаемой Богословским алюминиевым заводом от Богословской ТЭЦ, подстанции «БАЗ-500» и подстанции «Краснотурьинская» с целью обеспечения проведения финансовых расчетов Богословского алюминиевого завода — филиала ОАО «Сибирско-Уральская алюминиевая компания» на оптовом рынке электроэнергии.

ОПИСАНИЕ

Измерительные каналы АИИС (ИК) предназначены для измерения и коммерческого учета электроэнергии и усредненной электрической мощности. ИК построены на базе телемеханической системы учета «Пчела» и следующих средств измерений, внесенных в Государственный реестр средств измерений:

- измерительные трансформаторы тока по ГОСТ 7746;
- измерительные трансформаторы напряжения по ГОСТ 1983;
- счетчики электрической энергии типа СЭТ-4ТМ.03.

Каждый счетчик АИИС может входить в состав двух измерительных каналов, обеспечивающих измерение активной (A) и реактивной (P) электроэнергии и усредненной электрической мощности, передаваемой по конкретному вводу.

Перечень ИК с указанием номера точки учета, номера ИК, наименования ввода и непосредственно измеряемой величины, типов средств измерений, входящих в состав ИК, номера регистрации измерительных трансформаторов в Государственном реестре средств измерений представлен в таблице 1.

Таблица 1

	ица 1			_	1
№	No	Наименование ввода, прием активной (А)	Тип	Типы	Номер
точки	ИК	и реактивной (Р) энергии и мощности	счетчика	измеритель-	Гос-
учета				ных транс-	реестра
				форматоров	
1	2	3	4	5	6
1	1	БТЭЦ ГРУ, ф.4, 10 кВ, А	СЭТ-	ТПОФ	518
	2	БТЭЦ ГРУ, ф.4, 10 кВ, Р	4TM.03	НОЛ.08	3345
2	3	БТЭЦ ГРУ, ф.5, 10 кВ, А	СЭТ-	ТПОЛ-10	1261
	4	БТЭЦ ГРУ, ф.5, 10 кВ, Р	4TM.03	НОЛ.08	3345
3	5	БТЭЦ ГРУ, ф.8, 10 кВ, А	СЭТ-	ТПОЛ-10	1261
	6	БТЭЦ ГРУ, ф.8, 10 кВ, Р	4TM.03	НОЛ.08	3345
4	8	БТЭЦ ГРУ, ф.9, 10 кВ, А	СЭТ-	ТПОЛ-10	1261
	9	БТЭЦ ГРУ, ф.9, 10 кВ, Р	4TM.03	НОЛ.08	3345
5	10	БТЭЦ ГРУ, ф.10, 10 кВ, А	СЭТ-	ТПОФ	518
	11	БТЭЦ ГРУ, ф.10, 10 кВ, Р	4TM.03	НОЛ.08	3345
6	12	БТЭЦ ГРУ, ф.18, 10 кВ, А	СЭТ-	ТПОЛ-10	1261
	13	БТЭЦ ГРУ, ф.18, 10 кВ, Р	4TM.03	НОЛ.08	3345
7	14	БТЭЦ ГРУ, ф.21, 10 кВ, А	СЭТ-	ТПОЛ-10	1261
	15	БТЭЦ ГРУ, ф.21, 10 кВ, Р	4TM.03	НОЛ.08	3345
8	16	БТЭЦ ГРУ, ф.22, 10 кВ, А	СЭТ-	ТПШФ	519
	17	БТЭЦ ГРУ, ф.22, 10 кВ, Р	4TM.03	НОЛ.08	3345
9	18	БТЭЦ ГРУ, ф.23, 10 кВ, А	СЭТ-	ТПШФ	519
	19	БТЭЦ ГРУ, ф.23, 10 кВ, Р	4TM.03	НОЛ.08	3345
10	20	БТЭЦ ГРУ, ф.31, 10 кВ, А	СЭТ-	ТПОФ	518
	21	БТЭЦ ГРУ, ф.31, 10 кВ, Р	4TM.03	НОЛ.08	3345
11	22	БТЭЦ ГРУ, ф.32, 10 кВ, А	СЭТ-	ТПОЛ-10	1261
	23	БТЭЦ ГРУ, ф.32, 10 кВ, Р	4TM.03	НОЛ.08	3345
12	24	БТЭЦ ГРУ, ф.33, 10 кВ, А	СЭТ-	ТПОЛ-10	1261
	25	БТЭЦ ГРУ, ф.33, 10 кВ, Р	4TM.03	НОЛ.08	3345
13	26	БТЭЦ ГРУ, ф.42, 10 кВ, А	СЭТ-	ТПОЛ-10	1261
	27	БТЭЦ ГРУ, ф.42, 10 кВ, Р	4TM.03	НОЛ.08	3345
14	28	БТЭЦ ГРУ, ф.43, 10 кВ, А	СЭТ-	ТПОЛ-10	1261
	29	БТЭЦ ГРУ, ф.43, 10 кВ, Р	4TM.03	НОЛ.08	3345
15	30	БТЭЦ ГРУ, ф.44, 10 кВ, А	СЭТ-	ТПОЛ-10	1261
	31	БТЭЦ ГРУ, ф.44, 10 кВ, Р	4TM.03	НОЛ.08	3345
16	32	БТЭЦ ГРУ, ф.46, 10, кВ А	СЭТ-	ТПОЛ-10	1261
	33	БТЭЦ ГРУ, ф.46, 10 кВ, Р	4TM.03	НОЛ.08	3345
17	34	БТЭЦ ГРУ, ф.47, 10, кВ А	СЭТ-	ТПОЛ-10	1261
	35	БТЭЦ ГРУ, ф.47, 10 кВ, Р	4TM.03	НОЛ.08	3345
18	36	БТЭЦ ГРУ, ф.52, 10, кВ А	СЭТ-	ТПШФ	519
	37	БТЭЦ ГРУ, ф.52, 10 кВ, Р	4TM.03	НОЛ.08	3345
19	38	БТЭЦ ГРУ, ф.53, 10, кВ А	СЭТ-	ТЛШ-10У3	6811
	39	БТЭЦ ГРУ, ф.53, 10 кВ, Р	4TM.03	НОЛ.08	3345
20	40	БТЭЦ ГРУ, ф.55, 10, кВ А	СЭТ-	ТПОФ	518
	41	БТЭЦ ГРУ, ф.55, 10 кВ, Р	4TM.03	НОЛ.08	3345
21	42	БТЭЦ ГРУ, ф.65, 10, кВ А	СЭТ-	ТПОФ	518
	43	БТЭЦ ГРУ, ф.65, 10 кВ, Р	4TM.03	НОЛ.08	3345
22	44	БТЭЦ ГРУ, ф.68, 10 кВ, А	СЭТ-	ТПШФ	519
	45	БТЭЦ ГРУ, ф.68, 10 кВ, Р	4TM.03	НОЛ.08	3345
23	46	БТЭЦ ГРУ, ф.69, 10 кВ, А	СЭТ-	ТПШФ	519
	47	БТЭЦ ГРУ, ф.69, 10 кВ, Р	4TM.03	НОЛ.08	3345
24	48	БТЭЦ ГРУ, ф.75, 10 кВ, А	СЭТ-	ТПШФ	519
	49	БТЭЦ ГРУ, ф.75, 10 кВ, Р	4TM.03	НОЛ.08	3345

Продолжение таблицы 1

25	2	3	4	5	6
25	5 0				O
	50	БТЭЦ ГРУ, ф.78, 10 кВ, А	СЭТ-	ТПОФ	518
	51	БТЭЦ ГРУ, ф.78, 10 кВ, Р	4TM.03	НОЛ.08	3345
26	52	ПС КПП-4, Т-1, 10 кВ, А	СЭТ-	ТПШФ	519
	53	ПС КПП-4, Т-1, 10 кВ, Р	4TM.03	3НОЛ.06	3344
27	54	ПС КПП-4, Т-2, 10 кВ, А	СЭТ-	ТПШФ	519
	55	ПС КПП-4, Т-2, 10 кВ, Р	4TM.03	3НОЛ.06	3344
28	56	ПС «Глинозем», 10 кВ, ф.15, Т-1, ввод 1, А	СЭТ-	ТПОЛ-10	1261
	57	ПС «Глинозем», 10 кВ, ф.15, Т-1, ввод 1, Р	4TM.03	НТМИ-10-66	831
				HOM-10	363
29	58	ПС «Глинозем», 10 кВ, ф.2, Т-1, ввод 2, А	СЭТ-	ТПОЛ-10	1261
	59	ПС «Глинозем», 10 кВ, ф.2, Т-1, ввод 2, Р	4TM.03	НТМИ-10-66	831
				HOM-10	363
30	60	ПС «Глинозем», 10 кВ, ф.39, Т-2, ввод 1, А	СЭТ-	ТПОЛ-10	1261
	61	ПС «Глинозем», 10 кВ, ф.39, Т-2, ввод 1, Р	4TM.03	НТМИ-10-66	831
				HOM-10	363
31	62	ПС «Глинозем», 10 кВ, ф.52, Т-2, ввод 2, А	СЭТ-	ТПОЛ-10	1261
	63	ПС «Глинозем», 10 кВ, ф.52, Т-2, ввод 2, Р	4TM.03	НТМИ-10-66	831
	6.1	HOMELA AND THE	GD.T.	HOM-10	363
32	64	ПС КПП-3, 10 кВ, Т-1, А	СЭТ-	ТШЛ-20	1837
22	65	ПС КПП-3, 10 кВ, Т-1, Р	4TM.03	HOM-10	363
33	66	ПС КПП-3, 10 кВ, Т-2, А	СЭТ-	ТШВ-15	1836
2.4	67	ПС КПП-3, 10 кВ, Т-2, Р	4TM.03	HOM-10	363
34	68	ПС ЦРП, Т-1, РУ-10 кВ, ф.15а, А	CЭT-	ТПОЛ-10	1261
2.5	69 70	ПС ЦРП, Т-1, РУ-10 кВ, ф.15а, Р	4TM.03	НТМИ-10-66	831
35	70 71	ПС ЦРП, Т-2, РУ-6 кВ, ф.31, А	CЭT-	ТПОЛ-10	1261
36	72	ПС ЦРП, Т-2, РУ-6 кВ, ф.31, Р ПС ЦРП, Т-3, РУ-10 кВ, ф.24а, А	4TM.03 CЭT-	НТМИ-6-66 ТПОЛ-10	2611 1261
30	73	ПС ЦРП, Т-3, РУ-10 кВ, ф.24а, Р	4TM.03	НТМИ-10-66	831
37	74	ПС ЦРП, РУ-6 кВ, ф.4, -А	CЭT-	ТПФМ-10	814
31	75	ПС ЦРП, РУ-6 кВ, ф.4, -Р	4TM.03	НТМИ-6-66	2611
38	76	ПС ЦРП, РУ-6 кВ, ф.5, -А	CЭT-	ТПЛ-10	1276
50	77	ПС ЦРП, РУ-6 кВ, ф.5, -Р	4TM.03	НТМИ-6-66	2611
39	78	ПС ЦРП, РУ-6 кВ, ф.7, -А	СЭТ-	ТПФМ-10	814
	79	ПС ЦРП, РУ-6 кВ, ф.7, -Р	4TM.03	НТМИ-6-66	2611
40	80	ПС ЦРП, РУ-6 кВ, ф.10, -А	СЭТ-	ТПФМ-10	814
	81	ПС ЦРП, РУ-6 кВ, ф.10, -Р	4TM.03	НТМИ-6-66	2611
41	82	ПС ЦРП, РУ-6 кВ, ф.11, -А	СЭТ-	ТПОФ	518
	83	ПС ЦРП, РУ-6 кВ, ф.11, -Р	4TM.03	НТМИ-6-66	2611
42	84	ПС ЦРП, РУ-6 кВ, ф.24, -А	СЭТ-	ТПФМ-10	814
	85	ПС ЦРП, РУ-6 кВ, ф.24, -Р	4TM.03	НТМИ-6-66	2611
43	86	ПС ЦРП, РУ-6 кВ, ф.27, -А	СЭТ-	ТПФМ-10	814
	87	ПС ЦРП, РУ-6 кВ, ф.27, -Р	4TM.03	НТМИ-6-66	2611
44	88	ПС ЦРП, РУ-6 кВ, ф.29, -А	СЭТ-	ТПФМ-10	814
	89	ПС ЦРП, РУ-6 кВ, ф.29, -Р	4TM.03	НТМИ-6-66	2611

Нижний уровень АИИС включает в себя измерительные трансформаторы тока и напряжения, типы которых указаны в таблице 1, и счетчики электрической энергии СЭТ-4ТМ.03 (зарегистрированы в Государственном реестре средств измерений под № 27524).

Измерительные трансформаторы тока и напряжения, входящие в состав ИК АИИС, осуществляют приведение измеряемых токов и напряжений к уровням, соответствующим входным токам и напряжениям счетчиков системы.

Счетчики электрической энергии, входящие в состав ИК АИИС, выполняют автоматическое измерение и преобразование в цифровой код активной и реактивной

электрической энергии и мощности в каждой точке учета, интегрирование результатов измерений на получасовых интервалах, сохранение полученных значений в памяти счетчика с привязкой к текущему времени (профили нагрузки).

Верхний уровень АИИС построен на базе телемеханической системы учета «Пчела», зарегистрированной в Государственном реестре СИ под № 18332, и включает в себя:

- промышленный компьютер стандартной комплектации, оснащенный операционной системой типа Windows и прикладным программным обеспечением (ПО) «ТСУ «Пчела»». Компьютер исполняет функции сервера АИИС и автоматизированного рабочего места (АРМ), обеспечивающего отображение и представление в заданной форме информации, накопленной в базе данных сервера АИИС;
- каналообразующую аппаратуру, обеспечивающую передачу измерительной информации от счетчиков электрической энергии к серверу АИИС;
 - приемник сигналов точного времени «Пчела-ТВ»;
- переносный компьютер с программным обеспечением «Конфигуратор СЭТ-4ТМ» для работы со счетчиками электрической энергии АИИС.

Сервер АИИС выполняет следующие функции:

- прием информации об электропотреблении от счетчиков в штатном режиме работы АИИС:
 - хранение принятой информации и предоставление ее пользователям;
- поддержание единого системного времени, корректировка системного времени по сигналам приемника сигналов точного времени «Пчела-ТВ»;
- формирование файлов экспорта данных и их передачу в ОАО «Свердловэнергосбыт» и НП «АТС».

АИИС обеспечивает измерение следующих основных параметров электропотребления: потребление активной и реактивной энергии за заданные временные интервалы, кратные получасу, по отдельным счетчикам, заданным группам счетчиков и предприятию в целом с учетом многотарифности, средние (получасовые) значения активной и реактивной мощности (нагрузки), средний (получасовой) максимум активной мощности (нагрузки) в часы утреннего и вечернего максимумов нагрузки по отдельным счетчикам, заданным группам, предприятию в целом.

Для защиты метрологических характеристик системы от несанкционированных изменений (корректировок) предусмотрен многоступенчатый доступ к текущим данным и параметрам настройки системы (электронные ключи, индивидуальные пароли и программные средства для защиты файлов и базы данных).

Номинальные функции преобразования

Вычисление средней получасовой мощности на і-м получасовом интервале производится на основании показаний профиля нагрузки счетчика в соответствии с соотношением:

$$Pi = K_T * K_H * Ni, кВт (квар),$$

где: Ni – средняя получасовая мощность на i-м получасовом интервале, рассчитываемая на основе данных, хранящихся в виде чисел полупериодов телеметрии по каждому получасовому интервалу в массиве профиля нагрузки счетчика;

Кт и Кн – номинальные значения коэффициентов трансформации измерительных трансформаторов тока и напряжения, включенных на входе счетчика ИК.

Вычисление получасового приращения измеряемой энергии ΔEi на i-м получасовом интервале производится на основании показаний профиля нагрузки счетчика в соответствии с соотношением:

$$\Delta Ei = 0.5 * K_T * K_H * Ni, \kappa B_{T} \cdot \Psi (\kappa Bap \cdot \Psi),$$

Вычисление приращения измеряемой энергии ΔE_{τ} за заданный интервал времени τ , кратный получасовому интервалу, производится в соответствии с соотношением:

$$\Delta E_{\tau} = K_{T} * K_{H} * \sum (\Delta E_{i}), \kappa B_{T} \cdot \Psi (\kappa B_{i} + \Psi),$$

где: $\Sigma(\Delta Ei)$ – сумма получасовых приращений энергии за время τ , полученных из профиля нагрузки счетчика.

Вычисление средней мощности P_{τ} на заданном интервале времени τ (ч), кратном получасовому интервалу, производится в соответствии с соотношением:

$$P_{\tau} = \Delta E_{\tau} / \tau$$
, κΒτ (квар).

Основные технические характеристики

Общее количество измерительных каналов АИИС для измерения:

- активной электрической энергии и мощности 44;
- реактивной электрической энергии и мощности 44;

Интервал задания границ тарифных зон – 30 мин.

Мощность, потребляемая отдельными компонентами АИИС – не более 50 Вт;

Показатели надежности для счетчика типа СЭТ-4ТМ.03:

- средняя наработка на отказ 90 000 час.;
- **с**рок службы 30 лет;

Условия эксплуатации АИИС:

- напряжение электропитания стандартная сеть переменного тока частотой 50 Гц и напряжением 220 В;
- температура окружающей среды для ПК АИИС от 12 до 40 °C.
- температура окружающей среды для счетчиков от минус 40 до 60° С.

Метрологические характеристики АИИС представлены в таблице 2.

Таблица 2

Наименование характеристики	Значение
	характерис
	тики
1	2
Класс точности счетчика ИК:	
- для измерения активной электрической энергии	0,2S
- для измерения реактивной электрической энергии	0,5
Класс точности измерительного трансформатора напряжения, определяющий	0,5
в соответствии с ГОСТ 1983 значения пределов допускаемой	
относительной погрешности напряжения δ_U и угловой погрешности θ_U	
трансформатора	

Продолжение таблицы 2

1	2
Класс точности измерительного трансформатора тока ИК, определяющий в	0,5
соответствии с ГОСТ 7746 значения пределов допускаемой	
относительной токовой погрешности δ_I и угловой погрешности $ heta_I$	
трансформатора	
Предел допускаемой относительной погрешности передачи и обработки данных, %	± 0,05
Предел допускаемой относительной погрешности вычисления приращения энергии, %	± 0,05
Предел допускаемой относительной погрешности вычисления средней мощности, %	± 0,05
Предел допускаемой относительной погрешности накопления информации по группам, %	± 0,05
Предел относительной погрешности*) измерительного канала при измерениях активной и реактивной электрической энергии и мощности, %,	
соответствующий доверительной вероятности 95%:	
- активной энергии и мощности	± 0,9
- реактивной энергии и мощности	± 1,1
Предел допускаемого значения абсолютной суточной погрешности отсчета	± 5
текущего времени, с	

^{*)} Представленное значение получено расчетным путем на основании значений составляющих погрешности ИК в предположениях: условия эксплуатации - нормальные, измеряемые напряжения и токи равны номинальным, фазовый угол между измеряемыми током и напряжением равен 0 или $\pi/2$ при измерении активной или реактивной энергии соответственно. В случае отклонения условий измерений от нормальных, предел относительной погрешности измерения для каждого ИК может быть рассчитан согласно соотношениям, приведенным в методике поверки МП 67-263-2005.

ЗНАК УТВЕРЖДЕНИЯ ТИПА

Знак утверждения типа наносится типографским способом на титульных листах формуляра и руководства пользователя.

КОМПЛЕКТНОСТЬ АИИС

Комплектность АИИС представлена в таблице 3.

Таблица 3

Наименование средства	Количество
1	2
Измерительные трансформаторы тока по ГОСТ 7746 (типы и	
класс точности указаны в таблице 1), шт.	105
Измерительные трансформаторы напряжения по ГОСТ 1983 (типы	
и класс точности указаны в таблице 1), шт.	43

Продолжение таблицы 3

1	2
Счетчики активной и реактивной энергии переменного тока,	
статические многофункциональные СЭТ.4ТМ.03, шт.	44
Шкаф компьютерный, содержащий:	1
- промышленный компьютер 4U/19"/7xPCI/Intel P4 2,8G/512Mb	
DDR/LAN/2x80Gb IDE RAID/CD-ROM/FDD/2x300W ATX,	
оснащенный операционной системой Windows и	
специализированным программным обеспечением «ТСУ «Пчела»,	
компл.	1
- источник бесперебойного питания Smart-UPS, шт.	1
- устройство преобразования сигналов «Пчела УПС-1М.1», шт.	1
- устройство защиты линии связи УЗЛС-1, шт	1
- приемник сигналов точного времени «Пчела-ТВ», шт	6
- GSM-модем Sony Ericsson GM 29, шт	1
- автомат резервирования питания АВР-4, шт.	2
Шкаф для защиты оборудования, включающий:	1
- устройство преобразования сигналов «ПчелаУПС-1С», шт.	5
- устройство преобразования сигналов «Пчела УПС-1М.4», шт.	5
- автомат резервирования питания АВР-4, шт.	5
- автоматический выключатель, шт.	2
Эксплуатационная документация, компл.	1
Методика поверки МП 67-263-2005, экз.	1

ПОВЕРКА

Поверка АИИС проводится по методике МП 67-263-2005 "ГСИ. Система информационно-измерительная коммерческого учета электроэнергии автоматизированная. Богословский алюминиевый завод — филиал ОАО «Сибирско-Уральская алюминиевая компания» (АИИС БАЗ). Методика поверки измерительных каналов», утвержденной ФГУП УНИИМ в январе 2006 г.

Перечень основных средств поверки:

- средства поверки измерительных трансформаторов напряжения по ГОСТ 8.216;
- средства поверки измерительных трансформаторов тока по ГОСТ 8.217;
- средства поверки счетчиков электрической энергии в соответствии с документом «Счетчик электрической энергии многофункциональный СЭТ-4ТМ.03. Руководство по эксплуатации. Методика поверки ИЛГШ.411152.124 РЭ1»;
- переносный компьютер типа "NoteBook" с ПО «Конфигуратор СЭТ4.ТМ», оптическая считывающая головка;
- радиоприемник УКВ-диапазона для приема сигналов точного времени;
- секундомер СОСпр2б-2-010 ТУ25-1894.003-90.

Межповерочный интервал - 4 года.

НОРМАТИВНЫЕ И ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

ГОСТ 22261-94 «Средства измерений электрических и магнитных величин. Общие технические условия».

ГОСТ 26035-83 «Счетчики электрической энергии переменного тока электронные. Общие технические условия».

ГОСТ 30206-94 «Статические счетчики ватт-часов активной энергии переменного тока (класс точности 0,2S и 0,5S)».

ГОСТ 1983-01 «Трансформаторы напряжения. Общие технические условия».

ГОСТ 7746-01 «Трансформаторы тока. Общие технические условия».

Автоматизированная информационно-измерительная система коммерческого учета электроэнергии. Богословский алюминиевый завод — филиал ОАО «Сибирско-Уральская алюминиевая компания» (АИИС БАЗ). Техническое задание 821.01.1-ЭТ.ТЗ.

заключение

Тип «Система информационно-измерительная коммерческого учета электроэнергии автоматизированная Богословский алюминиевый завод — филиал ОАО «Сибирско-Уральская алюминиевая компания» утвержден с техническими и метрологическими характеристиками, приведенными в настоящем описании типа, и метрологически обеспечен в эксплуатации.

Изготовитель:

ООО «НПФ «Телемеханик»

Адрес: 620146, г. Екатеринбург, ул. Шаумяна, 83, оф.403

DESMO

Телефон/факс: (343)- 243-35-98

Директор ООО «НПФ Телемеханик»

Е.П.Желобов