ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

ОГЛАСОВАНО
Руководитель ЦИ СИ

Вм. генерального пректора
ФГУ Ростест Москва»

А.С. Евдокимов

2009 г.

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (мощности) (АИИС КУЭ) ОАО «Пластик»

Внесена в Государственный реестр средств измерений

Регистрационный номер № 33089-06

Изготовлена ОАО «Пластик», г. Узловая, по проектной документации ООО «НПФ «СКЭЛД», г. Москва, с заводским номером 006.

НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (мощности) (АИИС КУЭ) ОАО «Пластик» (далее по тексту - АИИС КУЭ ОАО «Пластик») предназначена для измерения активной и реактивной электроэнергии, потребленной за установленные интервалы времени, сбора, обработки, хранения и передачи полученной информации.

Полученные данные и результаты измерений могут использоваться для коммерческих расчетов и оперативного управления энергопотреблением.

ОПИСАНИЕ

АИИС КУЭ ОАО «Пластик» представляет собой многоуровневую автоматизированную систему с централизованным управлением и распределённой функцией измерения.

АИИС КУЭ ОАО «Пластик» решает следующие задачи:

- измерение 30-минутных приращений активной и реактивной электроэнергии;
- измерение фазных и межфазных напряжений, тока;
- периодический (1 раз в сутки) и /или по запросу автоматический сбор привязанных к единому календарному времени результатов измерений приращений электроэнергии с заданной дискретностью учета (30 мин, 1 час, 1 сутки, 1 месяц);
- хранение результатов измерений в специализированной базе данных, отвечающей требованию повышенной защищенности от потери информации (резервирование баз данных) и от несанкционированного доступа;
- передача в организации—участники оптового рынка электроэнергии результатов измерений;
- предоставление по запросу контрольного доступа к результатам измерений, данных о состоянии объектов и средств измерений со стороны сервера организаций участников оптового рынка электроэнергии;
- обеспечение защиты оборудования, программного обеспечения и данных от несанкционированного доступа на физическом и программном уровне (установка паролей и т.п.);
- диагностика и мониторинг функционирования технических и программных средств АИИС КУЭ;
- конфигурирование и настройка параметров АИИС КУЭ;
- ведение системы единого времени в АИИС КУЭ (коррекция времени);
- передача журналов событий счетчика и УСПД с дискретностью 30 мин, 1 час, 1 сутки, 1 месяц.

АИИС КУЭ ОАО «Пластик» включает в себя следующие уровни:

1-ый уровень включает в себя измерительные трансформаторы тока и напряжения и счетчики активной и реактивной электроэнергии (далее по тексту - счетчики), вторичные измерительные цепи и технические средства приема-передачи данных, образующие 15 измерительных каналов (далее по тексту – «ИК») системы по количеству точек учета электроэнергии;

2-ой уровень представляет собой измерительно-вычислительные комплексы электроустановки (ИВКЭ), состоящие из устройства сбора и передачи данных (УСПД типа «ЭКОМ-3000»), выполняющего функции сбора и хранения результатов измерений, технических средств приёма-передачи данных;

3-ий уровень представляет собой информационно-вычис лительный комплекс (ИВК), состоящий из сервера баз данных АИИС КУЭ (SQL-сервера), каналообразующей аппаратуры, а также автоматизированных рабочих мест (АРМ) пользователей системы.

Принцип действия:

Первичные токи и напряжения преобразуются измерительными трансформаторами в аналоговые унифицированные сигналы, которые по проводным линиям связи поступают на измерительные входы счетчика. В счетчике мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются соответствующие мгновенные значения активной, реактивной и полной мощности без учета коэффициентов трансформации. Электрическая энергия, как интеграл по времени от мощности, вычисляется для интервалов времени 30 мин, 1 час, 1 сутки, 1 месяц.

Средняя активная (реактивная) электрическая мощность вычисляется как среднее значение вычисленных мгновенных значений мощности на интервале времени усреднения 30 мин, 1 час, 1 сутки, 1 месяц.

Цифровой сигнал с выходов счетчиков при помощи технических средств приемапередачи данных поступает на входы УСПД (где производится обработка измерительной информации (умножение на коэффициенты трансформации), сбор и хранение результатов измерений.

АИИС КУЭ ОАО «Пластик» оснащена системой обеспечения единого времени СОЕВ. В СОЕВ входят средства измерений, обеспечивающие измерение времени, также учитываются временные характеристики (задержки) линий связи, которые используются при синхронизации времени.

Предел допускаемой абсолютной погрешности хода часов ± 5 с/сутки.

ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Состав измерительных каналов ОАО «Пластик» приведен в таблице 1. Таблица 1

	Таолица 1	Состав измерительного канала						
№ ИК	Диспетчерское наименование точки учета	Трансформатор тока	Трансформатор напряжения	Счетчик статический трехфазный переменного тока активной/реактивной энергии	Устройства сбора и передачи данных (УСПД)	Вид элек- троэнер- гии		
1	2	3	44	5	6	7		
ļ	ОАО «Пластик» ТПОЛ 10 НАМИ-10-95 УХЛ2 СЭТ-4ТМ.03							
1	точка измерения № 1 Ввод №1, Т-1 ГПП-1 п/с 167 яч.24	Кл.т. 0,2S К _{тт} =1500/5 Зав.№ 9346 Зав.№ 9476 Госреестр №1261-02	Кл.т. 0,5 К _{тн} =6000/100 Зав.№ 365 Госреестр №20186-00	СЭТ-4ТМ.03 Кл.т. 0,2S/0,5 Зав.№ 0103061245 Госреестр № 27524-04	УСПД ЭКОМ-3000 Зав.№ 01061194 Госреестр №17049-04	Активная Реактивная		
2	точка измерения № 2 Ввод №2, Т-2 ГПП-1 п/с 167 яч.2	ТПОЛ 10 Кл.т. 0,2S К _{тт} =1500/5 Зав.№ 6345 Зав.№ 9471 Госреестр №1261-02	НАМИ-10-95 УХЛ2 Кл.т. 0,5 К _{тн} =6000/100 Зав.№ 589 Госреестр №20186-00	СЭТ-4ТМ.03 Кл.т. 0,2S/0,5 Зав.№ 0103061224 Госреестр № 27524-04		Активная Реактивная		
3	точка измерения № 3 Ввод №1, Т-1 ГПП-2 п/с 214 яч.3	ТЛП-10-1 Кл.т. 0,2S К _{тт} =3000/5 Зав.№ 9061 Зав.№ 9059 Госреестр №30709-05	НАМИ-10-95 УХЛ2 Кл.т. 0,5 К _{тн} =6000/100 Зав.№ 213 Госреестр №20186-00	СЭТ-4ТМ.03 Кл.т. 0,2S/0,5 Зав.№ 0103062007 Госреестр № 27524-04		Активная Реактивная		
4	точка измерения № 4 Ввод №2, Т-1 ГПП-2 п/с 214 яч.4	ТЛП-10-1 Кл.т. 0,2S К _{тт} =3000/5 Зав.№ 9070 Зав.№ 9067 Госреестр №30709-05	НАМИ-10-95 УХЛ2 Кл.т. 0,5 К _{тн} =6000/100 Зав.№ 643 Госреестр №20186-00	СЭТ-4ТМ.03 Кл.т. 0,2S/0,5 Зав.№ 0103062039 Госреестр № 27524-04		Активная Реактивная		
5	точка измерения № 5 Ввод №1, Т-2 ГПП-2 п/с 214 яч.36	ТЛП-10-1 Кл.т. 0,2S К _{тт} =3000/5 Зав.№ 9066 Зав.№ 9063 Госреестр №30709-05	НАМИ-10-95 УХЛ2 Кл.т. 0,5 К _{тн} =6000/100 Зав.№ 588 Госреестр №20186-00	СЭТ-4ТМ.03 Кл.т. 0,2S/0,5 Зав.№ 0102061040 Госреестр № 27524-04		Активная Реактивная		
6	точка измерения № 6 Ввод №2, Т-2 ГПП-2 п/с 214 яч.37	ТЛП-10-1 Кл.т. 0,28 К _{тт} =3000/5 Зав.№ 9058 Зав.№ 9065 Госреестр №30709-05	НАМИ-10-95 УХЛ2 Кл.т. 0,5 К _{тн} =6000/100 Зав.№ 625 Госреестр №20186-00	СЭТ-4ТМ.03 Кл.т. 0,2S/0,5 Зав.№ 0103061231 Госреестр № 27524-04		Активная Реактивная		
7	точка измерения № 7 Воейково-1 ГПП-1 п/с 167 яч.27	ТПОЛ 10 Кл.т. 0,2S К _{тт} =1000/5 Зав.№ 1152 Зав.№ 1154 Госреестр №1261-02	НАМИ-10-95 УХЛ2 Кл.т. 0,5 К _{тн} =6000/100 Зав.№ 365 Госреестр №20186-00	СЭТ-4ТМ.03 Кл.т. 0,2S/0,5 Зав.№ 0103061210 Госреестр № 27524-04		Активная Реактивная		

8	точка измерения № 8 Воейково-2 ГПП-1 п/с 167 яч.30	ТЛО-10 Кл.т. 0,2S К _{тт} =1000/5 Зав.№ 1808 Зав.№ 1814 Госреестр №25433-03	НАМИ-10-95 УХЛ2 Кл.т. 0,5 К _{тн} =6000/100 Зав.№ 589 Госреестр №20186	СЭТ-4ТМ.03 Кл.т. 0,2S/0,5 Зав.№ 0103062001 Госреестр № 27524-04		Активная Реактивная
9	точка измерения № 9 Воейково-3 ГПП-2 п/с 214 яч.10	ТЛО-10 Кл.т. 0,2S К _{тт} =600/5 Зав.№ 2039 Зав.№ 2038 Госреестр №25433-03	НАМИ-10-95 УХЛ2 Кл.т. 0,5 К _{тн} =6000/100 Зав.№ 643 Госреестр №20186-00	СЭТ-4ТМ.03 Кл.т. 0,2S/0,5 Зав.№ 0103061226 Госреестр № 27524-04	УСПД ЭКОМ-3000 Зав.№ 01061194 Госреестр №17049-04	Активная Реактивная
10	точка измерения № 10 Узловая-2 ГПП-2 п/с 214 яч.16	ТЛО-10 Кл.т. 0,2S К _{тт} =300/5 Зав.№ 9844 Зав.№ 9845 Госреестр №25433-03	НАМИ-10-95 УХЛ2 Кл.т. 0,5 К _{тн} =6000/100 Зав.№ 643 Госреестр №20186-00	СЭТ-4ТМ.03 Кл.т. 0,2S/0,5 Зав.№ 0103061217 Госреестр № 27524-04		Активная Реактивная
11	точка измерения № 11 Дедилово ГПП-2 п/с 214 яч.14	ТЛО-10 Кл.т. 0,2S К _{тт} =200/5 Зав.№ 9418 Зав.№ 9424 Госреестр №25433-03	НАМИ-10-95 УХЛ2 Кл.т. 0,5 К _{тн} =6000/100 Зав.№ 643 Госреестр №20186-00	СЭТ-4ТМ.03 Кл.т. 0,2S/0,5 Зав.№ 0103061203 Госреестр № 27524-04		Активная Реактивная
12	точка измерения № 12 ГПП-1 ТСН-1 п/ст 167	ТОП-0,66 Кл.т. 0,5S К _{тт} =100/5 Зав.№ 36155 Зав.№ 41814 Госреестр №15174-01		СЭТ-4ТМ.03.08 Кл.т. 0,2S/0,5 Зав.№ 02059965 Госреестр № 27524-04		Активная Реактивная
13	точка измерения № 13 ГПП-1 ТСН-2 п/ст 167	ТОП-0,66 Кл.т. 0,5S К _{тт} =100/5 Зав.№ 36170 Зав.№ 36168 Госреестр №15174-01		СЭТ-4ТМ.03.08 Кл.т. 0,2S/0,5 Зав.№ 016067208 Госреестр № 27524-04		Активная Реактивная
14	точка измерения № 14 ГПП-2 ТСН-1 п/ст 214	ТОП-0,66 Кл.т. 0,5S К _{тт} =100/5 Зав.№ 36172 Зав.№ 41827 Госреестр №15174-01		СЭТ-4ТМ.03.08 Кл.т. 0,2S/0,5 Зав.№ 0108059131 Госреестр № 27524-04		
15	точка измерения № 15 ГПП-2 ТСН-2 п/ст 214	ТОП-0,66 Кл.т. 0,5S К _т =100/5 Зав.№ 36188 Зав.№ 41819 Госреестр №15174-01		СЭТ-4ТМ.03.08 Кл.т. 0,2S/0,5 Зав.№ 0106064044 Госреестр № 27524-04		Активная Реактивная

Таблица 2-Метрологические характеристики ИК

Пределы допускаемых погрешностей измерения активной электрической энергии						
в рабочих условиях эксплуатации АИИС ОАО «Пластик»						
Номер канала	cos φ	$\delta_{1(2)}$ %P,	δ _{5 %P} ,	δ _{20 %P} ,	δ _{100 %P} ,	
		$I_{1(2)} \% < I_{\text{изм}} \le I_{5\%}$	$I_{5\%} < I_{\mu3M} \le I_{20\%}$	$I_{20\%} < I_{\text{M3M}} \le I_{100\%}$	$I_{100} \% \le I_{\text{H3M}} \le I_{120} \%$	
	1	±1,26	±0,96	±0,90	±0,90	
1-11	0,9	±1,39	±1,05	±0,98	±0,98	
TT 0,2S; TH 0,5; Сч 0,2S	0,8	±1,55	±1,17	±1,07	±1,07	
	0,5	±2,40	±1,77	±1,57	±1,57	
	1	±1,80	±1,03	±0,83	±0,83	
12-15	0,9	±2,28	±1,26	±0,96	±0,96	
TT 0,5S; Сч 0,2S	0,8	±2,82	±1,53	±1,12	±1,12	
	0,5	±5,31	±2,75	±1,89	±1,89	
Пределы допускаемых погрешностей измерения реактивной электрической энергии						
в рабочих условиях эксплуатации АИИС ОАО «Пластик»						
Номер канала	cos φ	δ ₁₍₂₎ % Q,	δ ₅ % Q,	δ _{20 %} Q,	δ _{100 %} Q,	
ттомор канала	ι τος ψ	1	1 < 1 < 1	1 /1 /1	1 /1 /1	

Примечания:

1-11

TT 0,2S; TH 0,5; Сч 0,5

12-15

TT 0,5S; C4 0,5

0.9

0,8

0,5

0,9

0,8

0,5

1. Погрешность измерений для $\cos \varphi = 1$ нормируется от $I_{1\%}$, а погрешность измерений для $\cos \varphi = 0.9$, $\cos \varphi = 0.8$ и $\cos \varphi = 0.5$ нормируется только от $I_{2\%}$.

 $I_{5\%} < I_{M3M} \le I_{20\%}$

 $\pm 2,44$

 ± 1.87

 $\pm 1,46$

 ± 3.49

 $\pm 2,49$

 $\pm 1,60$

 $I_{20} \% < I_{M3M} \le I_{100} \%$

 $\pm 1,90$

 $\pm 1,48$

 $\pm 1,18$

 ± 2.29

 $\pm 1,67$

 $\pm 1,14$

 $I_{100} \% < I_{\text{изм}} \le I_{120} \%$

 ± 1.83

 $\pm 1,44$

 $\pm 1,16$

 $\pm 2,23$

 $\pm 1,64$

 $\pm 1,13$

- 2. Нормальные условия эксплуатации компонентов АИИС КУЭ ОАО «Пластик»:
 - напряжение питающей сети: напряжение $(0,98...1,02)*U_{\text{ном}}$, ток $(1\div 1,2)$ Іном, $\cos \varphi = 0,9_{\text{инд}}$;
 - температура окружающей среды (20±5) °C.

 $I_{1(2)} \% < I_{\text{изм}} \le I_{5\%}$

 $\pm 3,93$

 $\pm 2,89$

 $\pm 2,13$

 ± 6.83

 $\pm 4,73$

 $\pm 2,77$

- 3. Рабочие условия эксплуатации компонентов АИИС КУЭ ОАО «Пластик»:
 - напряжение питающей сети $(0,9...1,1)*U_{\text{ном}}$, ток $(0,05...1,2)*I_{\text{ном}}$, температура окружающей среды:
 - для счетчиков электроэнергии СЭТ-4ТМ.03 от минус 40 °C до плюс 60 °C;
 - для контроллера ЭКОМ-3000 от минус 40 °C до плюс 50 °C;
 - трансформаторы тока по ГОСТ 7746;
 - трансформаторы напряжения по ГОСТ 1983.
- 4. Трансформаторы тока по ГОСТ 7746, трансформаторы напряжения по ГОСТ 1983, счетчики электроэнергии по ГОСТ 30206 в режиме измерения активной электроэнергии и ГОСТ 26035 в режиме измерения реактивной электроэнергии;
- 5. Допускается замена измерительных трансформаторов и счетчиков электроэнергии на аналогичные утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в Таблице 1. Допускается замена УСПД на однотипный утвержденного типа. Замена оформляется актом в установленном на ОАО «Пластик» порядке. Акт хранится совместно с настоящим описанием типа АИИС КУЭ ОАО «Пластик» как его неотъемлемая часть.

Параметры надежности применяемых АИИС КУЭ ОАО «Пластик» измерительных компонентов:

- счетчик среднее время наработки на отказ не менее 90000 часов, среднее время восстановления работоспособности 2 часа;
- УСПД среднее время наработки на отказ не менее 75000 часов, среднее время восстановления работоспособности 1 ч;

Надежность системных решений:

- резервирование питания УСПД с помощью источника бесперебойного питания и устройства ABP;
- резервирование каналов связи: информация о результатах измерений может передаваться с помощью электронной почты и сотовой связи;
 - в журналах событий счетчика и УСПД фиксируются факты:
 - 1) параметрирования;
 - 2) пропадания напряжения;
 - 3) коррекция времени

Защищенность применяемых компонентов:

- наличие механической защиты от несанкционированного доступа и пломбирование:
 - счетчика;
 - 2) промежуточных клеммников вторичных цепей напряжения;
 - 3) испытательной коробки;
 - 4) УСПД;
- наличие защиты на программном уровне:
 - 1) пароль на счетчике;
 - 2) пароль на УСПД;

Возможность коррекции времени в:

- счетчиках (функция автоматизирована);
- УСПД (функция автоматизирована);

ЗНАК УТВЕРЖДЕНИЯ ТИПА

Знак утверждения типа наносится на титульные листы эксплуатационной документации АИИС КУЭ ОАО «Пластик» типографским способом.

КОМПЛЕКТНОСТЬ

Таблица 4

Наименование	Обозначение (Тип)	Кол-во
Трансформатор тока	ТПОЛ 10	6
	ТЛО-10	8
	ТЛП-10-1	8
	ТОП 0,66	8
Трансформатор напряжения	НАМИ-10-95 УХЛ2	6
Устройство сбора и передачи данных (УСПД)	УСПД ЭКОМ-3000	1
Счетчик электрической энергии	CЭT-4TM.03	15

Таблица 5

таолица 3			
Наименование программного обеспечения, вспомогатель-	Необходимое количество для		
ного оборудования и документации.	АИИС КУЭ ОАО «Пластик»		
Сервер баз данных HP ML370	1		
Источник бесперебойного питания APC Black Smart-UPS	1		
1000VA RackMount 2U			
Модем ZyXel U-336E Plus	6		
Источник бесперебойного питания APC Back-UPS CS 350	3		
Преобразователь интерфейса ADAM 4520	2		
GSM-модем Siemens TC35i	1		
Руководство по эксплуатации	1		
Методика поверки МП 217/447-2006	1		
Специализированное программное обеспечение «Энерго-	1		
сфера»			

В комплект поставки также входит техническая и эксплуатационная документация на систему и на комплектующие средства измерений.

ПОВЕРКА

Поверка проводится в соответствии с документом «ГСИ. Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (мощности) (АИИС КУЭ) ОАО «Пластик». Методика поверки» МП-217/447-2006, утвержденная Φ ГУ «Ростест-Москва» в сентябре 2006 г.

Средства поверки – по НД на измерительные компоненты:

- TT πο ΓΟCT 8.217-2003;
- TH по МИ 2845-2003, МИ 2925-2005 и/или по ГОСТ 8.216-88;
- СЭТ-4ТМ.03 по методике поверки ИЛГШ.411152.124 РЭ1;
- УСПД ЭКОМ-300 по документу «ГСИ. Программно-технический измерительный комплекс ЭКОМ. Методика поверки. МП 26-262-99».

Радиоприемник УКВ диапазона, принимающий сигналы службы точного времени.

Межповерочный интервал - 4 года.

НОРМАТИВНЫЕ И ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

- 1 ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия.
- 2 ГОСТ 34.601-90 Информационная технология. Комплекс стандартов на автоматизированные системы. Автоматизированные системы. Стадии создания.
- $3\ \Gamma OCT\ P\ 8.596-2002\ \Gamma CИ.$ Метрологическое обеспечение измерительных систем. Основные положения.
 - 4 ГОСТ 7746-2001. Трансформаторы тока. Общие технические условия
 - 5 ГОСТ 1983-2001. Трансформаторы напряжения. Общие технические условия.
- 6 ГОСТ 30206–94. Статические счетчики ватт-часов активной энергии переменного тока (классы точности 0,2S и 0,5S).
- 7 МИ 2999-2006 Рекомендация.ГСИ.Системы автоматизированные информационноизмерительные коммерческого учёта электроэнергии.Рекомендации по составлению описания типа.

ЗАКЛЮЧЕНИЕ

Тип системы автоматизированной информационно-измерительной коммерческого учета электроэнергии (мощности) (АИИС КУЭ) ОАО «Пластик», зав. № 006 утвержден с техническими и метрологическими характеристиками, приведенными в настоящем описании типа, метрологически обеспечен при выпуске из производства и в эксплуатации согласно государственным поверочным схемам.

ИЗГОТОВИТЕЛЬ

ОАО «Пластик»

Адрес 301600, Тульская область, г. Узловая, ул. Тульская, д.1

Тел. (08731) 2-47-31 Факс. (08731) 2-45-45 e-mail: plastic@tula.net

ОАО «Пластик»

Генеральный директор

М.А.Ярмак