

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

СВИДЕТЕЛЬСТВО

об утверждении типа средств измерений

RU.E.34.004.A № 45559

Срок действия бессрочный

НАИМЕНОВАНИЕ ТИПА СРЕДСТВ ИЗМЕРЕНИЙ Система автоматизированная информационно-измерительная коммерческого учета электроэнергии Газоперерабатывающий завод ООО "Астраханьгазпром" с Изменением № 1

ЗАВОДСКОЙ НОМЕР 04032-411711-06

ИЗГОТОВИТЕЛЬ

Оренбургский филиал ООО "Газпром энерго", г. Москва

РЕГИСТРАЦИОННЫЙ № 33235-12

ДОКУМЕНТ НА ПОВЕРКУ МП 33235-12

ИНТЕРВАЛ МЕЖДУ ПОВЕРКАМИ 4 года

Тип средств измерений утвержден приказом Федерального агентства по техническому регулированию и метрологии от 24 февраля 2012 г. № 111

Описание типа средств измерений является обязательным приложением к настоящему свидетельству.

Заместитель Руководителя
Федерального агентства

Е.Р.Петросян

"...... 2012 г.

Серия СИ

№ 003631

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии Газоперерабатывающий завод ООО «Астраханьгазпром» с Изменением № 1

Назначение средства измерений

Настоящее описание типа системы автоматизированной информационнокоммерческого учета электроэнергии Газоперерабатывающий ООО «Астраханьгазпром» с Изменением № 1 является обязательным дополнением к описанию типа системы автоматизированной информационно-измерительной коммерческого учета электроэнергии Газоперерабатывающий завод ООО «Астраханьгазпром», свидетельство об утверждении типа RU.E.34.033.A № 25875, регистрационный № 33235-06 от 15.12.2006 г., и включает в себя описание дополнительных измерительных каналов, соответствующих точкам измерений № 17, № 18, № 19, № 20.

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии Газоперерабатывающий завод ООО «Астраханьгазпром» с Изменением № 1 (далее - АИИС КУЭ) предназначена для измерения активной и реактивной энергии за установленные интервалы времени отдельными технологическими объектами Газоперерабатывающего завода ООО «Астраханьгазпром», а также для автоматизированного сбора, обработки, хранения, отображения и передачи полученной информации. Выходные данные системы могут быть использованы для коммерческих расчетов.

Описание средства измерений

АИИС КУЭ Газоперерабатывающий завод ООО «Астраханьгазпром» с Изменением № 1 представляет собой многофункциональную, 3х-уровневую систему, которая состоит из измерительных каналов (далее – ИК), информационно-вычислительного комплекса электроустановки (далее – ИВКЭ) с системой обеспечения единого времени (далее – СОЕВ) и информационно-вычислительного комплекса (далее – ИВК). АИИС КУЭ установлена для коммерческого учета электрической энергии в Газоперерабатывающем заводе ООО «Астраханьгазпром».

АИИС КУЭ включает в себя следующие уровни:

Уровень ИК, включающий трансформаторы тока (далее – TT) по ГОСТ 7746-2001, трансформаторы напряжения (далее – TH) по ГОСТ 1983-2001 и счетчики активной и реактивной электроэнергии типа Альфа А1800 класса точности 0,2S и 0,5S в части активной электроэнергии по ГОСТ Р 52323-2005 и класса точности 0,5 и 1,0 в части реактивной электроэнергии; вторичные электрические цепи; технические средства каналов передачи данных. Метрологические и технические характеристики измерительных компонентов АИИС КУЭ приведены в таблицах 2-4.

Уровень ИВКЭ, включающий устройство сбора и передачи данных (далее – УСПД) типа RTU-325 (Госреестр РФ № 37288-08) и СОЕВ на базе устройства синхронизации единого времени УССВ-16HVS, принимающего сигналы точного времени от спутников глобальной системы позиционирования (GPS).

Уровень ИВК – информационно-вычислительный комплекс АИИС КУЭ, включающий в себя каналообразующую аппаратуру, технические средства для организации локальной вычислительной сети и разграничения прав доступа к информации, сервер баз данных (далее – БД) АИИС КУЭ, автоматизированные рабочие места персонала (далее – APM) и программное обеспечение (далее – Π O).

Первичные токи и напряжения трансформируются измерительными трансформаторами в аналоговые сигналы низкого уровня, которые по проводным линиям связи поступают на соответствующие входы электронного счетчика электрической энергии. В счетчике мгновенные значения аналоговых сигналов преобразуют в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются мгновенные значения активной и полной мощности, которые усредняются за период 0,02 с. Средняя за период реактивная мощность вычисляется по средним за период значениям активной и полной мощности.

Электрическая энергия, как интеграл по времени от средней за период 0,02 с мощности, вычисляется для интервалов времени 30 мин.

Средняя активная (реактивная) электрическая мощность вычисляется как среднее значение мощности на интервале времени усреднения 30 мин.

Цифровой сигнал с выходов счетчиков по проводным линиям связи (интерфейс RS-485) поступает на входы локального УСПД, где осуществляется вычисление электроэнергии и мощности с учетом коэффициентов трансформации ТТ и ТН, хранение измерительной информации, ее накопление и передача накопленных данных по ВОЛС на уровень ИВК региона. ИВК региона осуществляет передачу информации в ИВК Центра сбора данных.

На уровне ИВК выполняется обработка измерительной информации, формирование и хранение поступающей информации, оформление справочных и отчетных документов. Передача информации в заинтересованные организации осуществляется от сервера базы данных, по коммутируемым телефонным линиям, через Интернет-провайдера по оптоволоконной линии связи, по сотовому каналу передачи данных и по выделенному оптическому цифровому каналу связи.

АИИС КУЭ оснащена системой обеспечения единого времени, включающей в себя УССВ-16HVS, принимающего сигналы точного времени от спутников глобальной системы позиционирования (GPS). Часы УСПД АИИС КУЭ синхронизированы со временем УССВ-16HVS, сличение часов происходит каждые 3 минуты, корректировка часов выполняется при расхождении показаний часов УСПД и УССВ-35HVS на ± 1 с. Синхронизация часов счетчиков в ИК происходит при каждом сеансе счетчика с УСПД, который составляет 1 раз в 30 минут. Корректировка выполняется при расхождении показаний часов счетчика и УСПД ± 2 с. Погрешность часов компонентов системы не превышает ± 5 с.

Программное обеспечение

В АИИС КУЭ используется программный комплекс (ПК) «АльфаЦЕНТР» (Свидетельство об утверждении типа средств измерений RU.C.34.004.А №40071 от 08.08.2010г., действительное до 01.04.2015г.) версии 11.02.02, в состав которого входят программные модули, указанные в таблице 1. ПК «АльфаЦЕНТР» обеспечивают защиту программного обеспечения и измерительной информации паролями в соответствии с правами доступа. Средством защиты данных при передаче является кодирование данных, обеспечиваемое программными средствами ПК «АльфаЦЕНТР».

Таблица 1 — Идентификационные данные программного обеспечения (ΠO) «АльфаЦЕНТР»

Наименование программного	Наименование программного модуля (идентификационное наименование	Наименование файла	Номер версии про- граммно-	Цифровой идентификатор программного обеспечения (контрольная сумма	Алгоритм вычисления цифрового идентификатора
обеспече- ния	программного	1	го обес-	исполняемого кода)	программного
	обеспечения)		печения		обеспечения
	Программа – планировщик опро- са и передачи дан- ных	Amrserver.exe		582b756b2098a6dab be52eae57e3e239	MD5
	Драйвер ручного опроса счетчиков и УСПД	Amrc.exe		b3bf6e3e5100c068b 9647d2f9bfde8dd	MD5
ПО «Альфа- ЦЕНТР»	Драйвер автоматического опроса счетчиков и УСПД	Amra.exe	11.02.02	764bbe1ed87851a01 54dba8844f3bb6b	MD5
цепте»	Драйвер работы с БД	Cdbora2.dll		7dfc3b73d1d1f209cc 4727c965a92f3b	MD5
	Библиотека шифрования пароля счетчиков A1700,A1140	encryptdll.dll		0939ce05295fbcbbba 400eeae8d0572c	MD5
	Библиотека сооб- щений планиров- щика опросов	alphamess.dll		b8c331abb5e344441 70eee9317d635cd	MD5

Оценка влияния ΠO на метрологические характеристики C U – метрологические характеристики U K АИИС K Y Э, указанные в таблицах 3 – 4 нормированы с учетом ΠO .

Защита ΠO от непреднамеренных и преднамеренных изменений соответствует уровню «С» по M M 3286-2010.

Метрологические и технические характеристики

Состав измерительных каналов и их метрологические характеристики приведены в таблицах 2-4.

Таблица 2 – Состав измерительных каналов и их метрологические характеристики

	чки ий		Состав из				
№ п/п	о то рен	Наименование объекта	TT	ТН	Счетчик	УСП Д	Вид элек- троэнергии
1	2	3	4	5	6	7	8

1	2	3	4	5	6	7	8
1	17	ОРУ 110 кВ Ввод №1	ТАТ Госреестр № 29838-05 Кл т.0,2S 600/5 Зав. № GD7/P43102 Зав. № GD7/P43104 Зав. № GD7/P43105	TVBs123 Госреестр № 29693-05 Кл т.0,2 110000:√3/ 100:√3 Зав.№ 30027628 Зав.№ 30027630 Зав.№ 30027630	A1802RALX QV-P4GB- DW-4 Госреестр № 31857-06 Кл т.0,2S/0,5 Зав.№ 01209758		активная, реактивная
2	18	ОРУ 110 кВ Ввод №2	ТАТ Госреестр № 29838-05 Кл т.0,2S 600/5 Зав. № GD/P43103 Зав. № GD/P43101 Зав. № GD/P43106	TVBs123 Госреестр № 29693-05 Кл т.0,2 110000:√3/ 100:√3 Зав.№ 30027627 Зав.№ 30027625 Зав.№ 30027626	A1802RALX QV-P4GB- DW-4 Госреестр № 31857-06 Кл т.0,2S/0,5 Зав.№ 01209757	RTU-325-E-512-M3-B8-G, 3ab.№ 005664	активная, реактивная
3	19	ПС 110/6 кВ "ГПП-3", ТСН-1	ТСН-8 Госреестр № 26100-03 Кл т.0,5 600/5 Зав.№ б/н Зав.№ б/н Зав. № б/н	-	А1805RAL- P4GB-DW-4 Госреестр № 31857-06 Кл т.0,5S/1,0 Зав.№ 01211636	RTU-325-1	активная, реактивная
4	20	ПС 110/6 кВ "ГПП-3", ТСН-2	ТСН-8 Госреестр № 26100-03 Кл т.0,5 600/5 Зав.№ б/н Зав.№ б/н Зав. № б/н	-	А1805RAL- P4GB-DW-4 Госреестр № 31857-06 Кл т.0,5S/1,0 Зав.№ 01211664		активная, реактивная

Таблица 3 — Метрологические характеристики ИК АИИС КУЭ (активная энергия)

Доверительные границы относительной погрешности результата измерений активной элек-

доверительные границы относительной погрешности результата измерении активной элек-									
	трической энергии при доверительной вероятности Р=0,95:								
		Основная погрешность ИК, ±% Погрешность И условиях экспл						1	
Номер ИК	диапазон значений то- ка	cos φ = 1,0	$\cos \varphi = 0.87$	$\cos \varphi = 0.8$	$\cos \varphi$ = 0,5	$\cos \varphi = 1.0$	$\cos \varphi = 0.87$	cos φ = 0,8	cos φ = 0,5
1	2	3	4	5	6	7	8	9	10
17, 18	$0.02I_{H_1} \le I_1 < 0.05I_{H_1}$	0,9	1,1	1,1	1,8	1,1	1,2	1,3	2,0

1	2	3	4	5	6	7	8	9	10
17, 18	$\begin{array}{c} 0.05 I_{H_1} \leq I_1 < \\ 0.2 I_{H_1} \end{array}$	0,6	0,7	0,8	1,3	0,8	0,9	1,0	1,4
	$0.2I_{H_1} \leq I_1 < I_{H_1}$	0,5	0,5	0,6	0,9	0,8	0,8	0,9	1,2
	$I_{H_1} \leq I_1 \leq \\ 1,2I_{H_1}$	0,5	0,5	0,6	0,9	0,8	0,8	0,9	1,2
	$\begin{array}{c} 0.05 I_{H_1} \leq I_1 < \\ 0.2 I_{H_1} \end{array}$	1,7	2,4	2,8	5,4	2,2	2,8	3,1	5,6
19, 20	$0.2I_{H_1} \leq I_1 < I_{H_1}$	1,0	1,3	1,5	2,7	1,6	1,9	2,0	3,1
	$I_{H_1} \leq I_1 \leq \\ 1,2I_{H_1}$	0,8	1,0	1,1	1,9	1,5	1,6	1,7	2,4

Таблица 4 – Метрологические характеристики ИК АИИС КУЭ (реактивная энергия)

Довер	Доверительные границы относительной погрешности результата измерений реактивной элек-								
трической энергии при доверительной вероятности P=0,95:									
		Основная	погранцио	TI I/IV ±0%	Погрешнос	ть ИК в ра	бочих ус-		
Номер		Основная	погрешнос	116 PHX, ±70	ловиях з	жсплуатац	ии, ±%		
ИК		$\cos \varphi = 0.87$	$\cos \varphi = 0.8$	$\cos \varphi = 0.5$	$\cos \varphi = 0.87$	$\cos \varphi = 0.8$	$\cos \varphi = 0.5$		
HIX	тока	$(\sin \varphi = 0.5)$		$(\sin \varphi =$	$(\sin \varphi = 0.5)$	$(\sin \varphi =$	$(\sin \varphi =$		
		$(\sin \psi - 0.3)$	0,6)	0,87)		0,6)	0,87)		
	$0.02I_{\rm H_1} \le I_1 < 0.05I_{\rm H_1}$	6,0	5,9	5,7	6,2	6,0	5,8		
17, 18	$0.05I_{\rm H_1} \le I_1 < 0.2I_{\rm H_1}$	5,7	5,7	5,6	5,8	5,7	5,6		
17, 10	$0.2I_{H_1} \le I_1 < I_{H_1}$	5,6	5,6	5,6	5,7	5,6	5,6		
	$I_{H_1} \le I_1 \le 1,2I_{H_1}$	5,6	5,6	5,5	5,6	5,6	5,6		
	$0.05I_{H_1} \le I_1 < 0.2I_{H_1}$	7,9	7,1	6,2	8,1	7,3	6,4		
19, 20	$0.2I_{H_1} \le I_1 < I_{H_1}$	6,2	6,0	5,7	6,4	6,2	5,9		
	$I_{H_1} \le I_1 \le 1,2I_{H_1}$	5,9	5,8	5,7	6,0	5,9	5,8		

Примечания:

- 1. Характеристики погрешности ИК даны для измерения электроэнергии и средней мощности (получасовая);
- 2. В качестве характеристик относительной погрешности указаны границы интервала, соответствующие вероятности 0,95;
 - 3. Нормальные условия:
- параметры сети: диапазон напряжения (0.98 1.02) Uном; диапазон силы тока (1 1.2) Іном, коэффициент мощности $\cos \varphi$ ($\sin \varphi$) = 0.87 (0.5) инд.); частота (50 ± 0.15) Γ ц;
 - температура окружающей среды (20 ± 5) °C.
 - 4. Рабочие условия:

для ТТ и ТН:

- параметры сети: диапазон первичного напряжения (0.9-1.1) Uном; диапазон силы первичного тока (0.05 (0.02) 1.2) Іном₁; коэффициент мощности $\cos \varphi$ ($\sin \varphi$) 0.5-1.0 (0.5-0.87); частота (50 ± 0.4) Γ ц;
 - температура окружающего воздуха от минус 40 °C до 50 °C.

Для электросчетчиков:

- параметры сети: диапазон вторичного напряжения (0.9-1.1) UH₂; диапазон силы вторичного тока (0.05-1.2) IH₂; коэффициент мощности $\cos \phi (\sin \phi)$ 0.5-1.0 (0.5-0.87); частота (50 ± 0.4) Γ Ц;
 - температура окружающего воздуха от 5 °C до 35 °C;
 - магнитная индукция внешнего происхождения, не более 0,5 мТл.

Для аппаратуры передачи и обработки данных:

- параметры питающей сети: напряжение (220 ± 10) B; частота (50 ± 0.5) Гц;
- температура окружающего воздуха от 5 °C до 30 °C.
- относительная влажность воздуха (70 ± 5) %;
- атмосферное давление $(100 \pm 4) \ \kappa \Pi a$.
- 5. Трансформаторы тока по ГОСТ 7746-2001, трансформаторы напряжения по ГОСТ 1983-2001, счетчики электроэнергии по ГОСТ Р 52323-2005 в режиме измерения активной электроэнергии и в режиме измерения реактивной электроэнергии;
- 6. Допускается замена измерительных трансформаторов и счетчиков на аналогичные (см. п. 5 Примечаний) утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в таблице 2. Замена оформляется актом в порядке установленном на Газоперерабатывающий завод ООО «Астраханьгазпром». Акт хранится совместно с настоящим описанием типа АИИС КУЭ как его неотъемлемая часть.

Оценка надежности АИИС КУЭ в целом:

 $K_{\Gamma AVIC} = 0.89 - коэффициент готовности;$

 $T_{O\ HK}(AИИC) = 1348\ ч - среднее время наработки на отказ.$

Надежность применяемых в системе компонентов:

- в качестве показателей надежности измерительных трансформаторов тока и напряжения, в соответствии с ГОСТ 1983-2001 и ГОСТ 7746-2001, определены средний срок службы и средняя наработка на отказ;
- электросчётчик Альфа A1800 среднее время наработки на отказ не менее $T = 120\ 000\ \text{ч}$, среднее время восстановления работоспособности $t = 168\ \text{ч}$;
- УСПД RTU-325 среднее время наработки на отказ не менее T = 40 000 ч, среднее время восстановления работоспособности tв = 24 ч;
- сервер среднее время наработки на отказ не менее T=100000 ч, среднее время восстановления работоспособности t = 1 ч.

Надежность системных решений:

- защита от кратковременных сбоев питания сервера и УСПД с помощью источника бесперебойного питания;
- резервирование каналов связи: информация о результатах измерений может передаваться в организации—участники оптового рынка электроэнергии с помощью электронной почты и сотовой связи.

В журналах событий фиксируются факты:

- журнал счётчика:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в счетчике;
- журнал УСПД:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в счетчике и УСПД;
 - пропадание и восстановление связи со счетчиком;

Защищённость применяемых компонентов:

- механическая защита от несанкционированного доступа и пломбирование:
 - электросчётчика;
 - промежуточных клеммников вторичных цепей напряжения;
 - испытательной коробки;
 - УСПД;
 - сервера;
- защита на программном уровне информации при хранении, передаче, параметрировании:
 - электросчетчика;

- УСПД;
- сервера.

Возможность коррекции времени в:

- электросчетчиках (функция автоматизирована);
- УСПД (функция автоматизирована);
- ИВК (функция автоматизирована).

Возможность сбора информации:

– о результатах измерений (функция автоматизирована).

Цикличность:

- измерений 30 мин (функция автоматизирована);
- сбора 30 мин (функция автоматизирована).

Глубина хранения информации:

- электросчетчик тридцатиминутный профиль нагрузки в двух направлениях не менее 35 суток; при отключении питания не менее 10 лет;
- УСПД суточные данные о тридцатиминутных приращениях электроэнергии по каждому каналу и электроэнергии, потребленной за месяц, по каждому каналу 35 сут; сохранение информации при отключении питания 10 лет;
- Сервер АИИС хранение результатов измерений, состояний средств измерений не менее 3,5 лет (функция автоматизирована).

Знак утверждения типа

Знак утверждения типа наносится на титульные листы эксплуатационной документации на систему автоматизированную информационно-измерительную коммерческого учета электроэнергии (АИИС КУЭ) Газоперерабатывающий завод ООО «Астраханьгазпром» с Изменением N 1 типографским способом.

Комплектность средства измерений

В комплект поставки входит техническая документация на систему и на комплектующие средства измерений.

Комплектность АИИС КУЭ представлена в таблице 5.

Таблица 5 Комплектность АИИС КУЭ Газоперерабатывающий завод ООО «Астраханьгазпром» с Изменением № 1

Наименование	Количество
Измерительные трансформаторы тока ТАТ, ТСН-8	12 шт.
Измерительные трансформаторы напряжения TVBs123	6 шт.
Счетчик электрической энергии многофункциональный типа Альфа A1800	4 шт.
УСПД RTU-325	1 шт.
Устройство синхронизации единого времени УССВ-16HVS	1 шт.
Сервер базы данных АИИС КУЭ	1 шт.
Методика поверки	1 шт.
Руководство по эксплуатации	1 шт.
Формуляр	1 шт.

Поверка

осуществляется по документу МП 33235-12 «Система автоматизированная информационноизмерительная коммерческого учета электроэнергии (АИИС КУЭ) Газоперерабатывающий завод ООО «Астраханьгазпром» с Изменением № 1. Методика поверки», утвержденному ГЦИ СИ ФГУП «ВНИИМС» в январе 2012 г.

Средства поверки – по НД на измерительные компоненты:

- TT - по ГОСТ 8.217-2003 «Государственная система обеспечения единства измерений. Трансформаторы тока. Методика поверки»;

- ТН по МИ 2845-2003 «ГСИ Измерительные трансформаторы напряжения $6\sqrt{3}$...35 кВ. Методика проверки на месте эксплуатации» и/или по ГОСТ 8.216-88 «Государственная система обеспечения единства измерений. Трансформаторы напряжения. Методика поверки»; МИ 2925-2005 «Измерительные трансформаторы напряжения 35...330/ $\sqrt{3}$ кВ. Методика поверки на месте эксплуатации с помощью эталонного делителя» и/или по ГОСТ 8.216-88 «Государственная система обеспечения единства измерений. Трансформаторы напряжения. Методика поверки»;
- Средства измерений МИ 3195-2009 «Государственная система обеспечения единства измерений мощность нагрузки трансформаторов напряжения без отключения цепей. Методика выполнения измерений»;
- Средства измерений МИ 3195-2009 «Государственная система обеспечения единства измерений вторичная нагрузка трансформаторов тока без отключения цепей. Методика выполнения измерений»;
- Счетчики типа Альфа А1800— в соответствии с документом МП-2203-0042-2006 «Счетчики электрической энергии трехфазные многофункциональные Альфа А1800. Методика поверки», утвержденным ГЦИ СИ «ВНИИМ им. Д.И. Менделеева» 19 мая 2006 г.;
- УСПД RTU-325 по документу «Устройство сбора и передачи данных RTU-325 и RTU-325L. Методика поверки ДЯИМ.466.453.005МП.», утвержденному ГЦИ СИ ФГУП «ВНИИМС» в 2008 г.;
- радиочасы МИР РЧ-01, принимающие сигналы спутниковой навигационной системы Global Positioning System (GPS), номер в Государственном реестре средств измерений № 27008-04;
- переносной компьютер с ПО и оптический преобразователь для работы со счетчиками системы и с ПО для работы с радиочасами МИР РЧ-01

Сведения о методиках (методах) измерений

Методы измерений изложены в документе «Руководство по эксплуатации на систему автоматизированную информационно-измерительную коммерческого учета электроэнергии (АИИС КУЭ) Газоперерабатывающий завод ООО «Астраханьгазпром» с Изменением № 1.

Нормативные и технические документы, устанавливающие требования к системе автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) Газоперерабатывающий завод ООО «Астраханьгазпром» с Изменением № 1

ГОСТ Р 8.596-2002 «ГСИ. Метрологическое обеспечение измерительных систем. Основные положения».

ГОСТ 1983-2001 «Трансформаторы напряжения. Общие технические условия».

ГОСТ 7746-2001 «Трансформаторы тока. Общие технические условия».

ГОСТ 22261-94 «Средства измерений электрических и магнитных величин. Общие технические условия».

ГОСТ Р 52323-2005 «Аппаратура для измерения электрической энергии переменного тока. Частные требования. Часть 22. Статические счетчики активной энергии классов точности 0,2S и 0,5S».

ГОСТ 34.601-90 «Информационная технология. Комплекс стандартов на автоматизированные системы. Автоматизированные системы. Стадии создания».

Руководство по эксплуатации на систему автоматизированную информационноизмерительную коммерческого учета электроэнергии (АИИС КУЭ) Газоперерабатывающий завод ООО «Астраханьгазпром» с Изменением № 1.

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

Осуществление торговли и товарообменных операций.

Изготовитель

Оренбургский филиал ООО «Газпром энерго»

Юридический адрес: 117939, г. Москва, ул. Строителей, дом 8, корп. 1

Тел.: (495) 719-83-73

Заявитель

ООО «ЕвроМетрология»

Юридический адрес: 140000, Московская область, Люберецкий район,

г. Люберцы, ул. Красная, д. 1.

Почтовый адрес: 140000, Московская область, Люберецкий район,

г. Люберцы, ул. Красная, д. 1, оф. 888.

Тел. +7 (926) 786-90-40

Испытательный центр

Государственный центр испытаний средств измерений ФГУП «ВНИИМС» (ГЦИ СИ ФГУП «ВНИИМС»)

Юридический адрес:

119361, г. Москва

ул. Озерная, д. 46

тел./факс: 8(495)437-55-77

Регистрационный номер аттестата аккредитации государственного центра испытаний средств измерений № 30004-08 от 27.06.2008 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

			Е.Р. Петросян
М.П.	*	»	2012 г.