

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

СВИДЕТЕЛЬСТВО

об утверждении типа средств измерений

RU.C.34.046.A № 48151

Срок действия до 13 сентября 2017 г.

НАИМЕНОВАНИЕ ТИПА СРЕДСТВ ИЗМЕРЕНИЙ Комплексы измерительно-вычислительные управляющие КУРС-НГ ИЦФР.421451.020

ИЗГОТОВИТЕЛЬ

ООО "НПО ВНИИЭФ-ВОЛГОГАЗ", г. Саров, Нижегородская обл.

РЕГИСТРАЦИОННЫЙ № 33327-12

ДОКУМЕНТ НА ПОВЕРКУ ИЦФР.421451.020РЭ1

ИНТЕРВАЛ МЕЖДУ ПОВЕРКАМИ 1 год

Тип средств измерений утвержден приказом Федерального агентства по техническому регулированию и метрологии от 13 сентября 2012 г. № 751

Описание типа средств измерений является обязательным приложением к настоящему свидетельству.

Заместитель Руководителя	Ф.В.Булыгин
Федерального агентства	
	" 2012 г.

№ 006599

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Комплексы измерительно-вычислительные управляющие КУРС-НГ ИЦФР.421451.020

Назначение средства измерений

Комплексы измерительно-вычислительные управляющие КУРС-НГ ИЦФР.421451.020 (далее по тексту – комплексы) предназначены для:

- автоматического измерения аналоговых сигналов от датчиков с унифицированными выходными сигналами постоянного тока;
 - воспроизведения аналоговых сигналов постоянного тока;
- накопления, обработки, хранения результатов измерения и их отображения на экране локального пульта контроля и управления (ЛПКУ).

Область применения комплексов – в составе систем автоматизированного управления технологическим оборудованием станций распределения энергоносителей (газа, нефти, пара и др.).

Описание средства измерений

Принцип действия комплекса основан на преобразовании входных унифицированных аналоговых сигналов постоянного тока от датчиков в цифровой код, а также формировании по заданному алгоритму цифровых кодов, преобразовании их в унифицированные аналоговые сигналы для управления исполнительными механизмами объектов управления.

Конструктивно комплекс представляет собой металлический шкаф с размещенным в нем оборудованием. В состав комплекса входят: программируемый логический контроллер (ПЛК), контроллер ввода-вывода (КВВ), пульт автономного управления кранами (ПАУК), клеммные модули, устройства обеспечения работы комплекса (модули питания, локальный пульт контроля и управления). Внешний вид комплекса в соответствии с рисунком 1.

Программное обеспечение

Программное обеспечение (ПО) позволяет устанавливать режим работы комплекса (автоматический или по команде оператора), измерять и воспроизводить аналоговые сигналы, проводить накопление, обработку и хранение полученной информации и отображать ее на экране ЛПКУ.

Класс защиты ΠO относится к категории «С» по МИ 3286-2010.

Идентификационные данные ПО:

	пдентиримационные данные по-				
Наименование программного обеспечения	Идентификационное наименование про- граммного обеспечения	Номер версии	Цифровой идентификатор программного обеспечения	Алгоритм вычисления цифрового идентификатора программного обеспечения	
Библиотека цифровых фильтров контроллера ввода	filter_9600.zip	1.3.1	4c2e38233b9d661d3 8271f6c9a305269	md5	
Программа информационно- управляющего обмена с контроллером ввода-вывода	soi_wago	6.8	5c332bb0d6b4b0bf9 ff6127e48b0ef87	md5	
Программа математической обработки данных	soi_MathProc	1.0	33a0b4725091b0d0f 53d39ad5dd8caf9	md5	
Программа тестирования каналов	svi_TestWago	3.05	8e7862f6a80cb376b ef43c8107778130	md5	
Программа калибровки каналов	svi_CalibrateWagoChan	1.1	86363d5ab9c7978ec 77d335e5ff36ac0	md5	
Программа поверки каналов	svi_Verify	1.3	32bd907e4e114e12e 08712aaf6e11409	md5	

Рисунок 1- Внешний вид комплекса

Метрологические и технические характеристики

метрологические и технические характеристики	
Диапазон измерения аналоговых сигналов постоянного тока	от 4 до 20 мА
Пределы допускаемой погрешности измерения аналоговых сигналов по-	
стоянного тока, приведенной к диапазону измерения	± 0,2 %
Диапазон воспроизведения аналоговых сигналов постоянного тока	от 4 до 20 мА
Пределы допускаемой погрешности воспроизведения аналоговых сигна-	
лов постоянного тока, приведенной к диапазону воспроизведения (при	
сопротивлении нагрузки не более 500 Ом)	± 1 %
Электрическое сопротивление изоляции между цепями питания и корпу-	
сом комплекса	
- в нормальных условиях применения	не менее 20 МОм
- при верхнем значении температуры окружающей среды 35 °C	не менее 5 МОм
Испытательное напряжение при испытаниях на электрическую прочность	
изоляции (действующее значение)	1500 B
Габаритные размеры комплекса:	
- высота	не более 1900 мм
- ширина	не более 800 мм
- глубина	не более 600 мм
Масса комплекса	не более 300 кг
Напряжение питающей сети переменного тока частотой (50 ± 1) Γ ц	$(220 \pm 22) \text{ B}$
Потребляемая мощность от сети 220 В переменного тока	не более 300 В А
Гарантийный срок эксплуатации со дня ввода в эксплуатацию в пределах	18 месяцев
гарантийного срока хранения, равного 24 месяцам	
Средняя наработка на отказ	не менее 30000 ч
Полный средний срок службы, лет, не менее	не менее 12 лет
Среднее время восстановления работоспособности	не более 1 ч

Условия эксплуатации:

- температура окружающей среды от плюс 5 до плюс 35 °C;
- относительная влажность воздуха при 35 °C не более 80 %;
- атмосферное давление от 84,0 до 106,7 кПа.

Знак утверждения типа

Знак утверждения типа наносят на корпус шкафа комплекса путем наклейки соответствующей таблички, а также на титульный лист технических условий ИЦФР.421451.020ТУ, формуляра ИЦФР.421451.020ФО, руководства по эксплуатации ИЦФР.421451.020РЭ и методики поверки ИЦФР.421451.020РЭ1 типографским способом по центру над наименованием средства измерений.

Комплектность средства измерений

Наименование	Обозначение	Количество
Комплекс измерительно-вычислительный		
управляющий КУРС-НГ	ИЦФР.421451.020	1 шт.
Комплект монтажных частей	ИЦФР.421941.009	1 шт.
Комплект запасных частей	ИЦФР.421943.003	1 шт.
Комплект эксплуатационной документации в		
соответствии с ведомостью	ИЦФР.421451.020ВЭ	1 шт.

Поверка

осуществляется по документу ИЦФР.421451.020РЭ1 «Комплекс измерительновычислительный управляющий КУРС-НГ. Руководство по эксплуатации. Приложение Γ . Методика поверки», утвержденному Γ СИ СИ ФГУП «РФЯЦ-ВНИИЭФ» 17.02.2012 Γ .

Основные средства поверки: мегаомметр $\Phi4102/1$ ТУ25-04.13.0071-83 (погрешность измерения \pm 1,5 %); универсальная пробойная установка УПУ-21/1 ТУ РБ 100039847.009-2004 (диапазон до 10000 В, погрешность измерения \pm 10 %); прибор для поверки вольтметров В1-13 Хв.2.085.008ТУ (диапазон установки значений постоянного тока от 0 до 20 мА, погрешность 0,02 %); вольтметр универсальный цифровой В7-40/3 Тг2.710.016ТУ (диапазон измерения силы постоянного тока от 0 до 20 мА, погрешность \pm [0,2+0,02(\pm 0,02(\pm 0,11)] %).

Сведения о методиках измерений

Методика измерений представлена в ИЦФР.421451.020РЭ «Комплекс измерительновычислительный управляющий КУРС-НГ. Руководство по эксплуатации».

Нормативные и технические документы, устанавливающие требования к комплексам измерительно-вычислительным управляющим КУРС-НГ ИЦФР.421451.020

- 1 ГОСТ Р 52931-2008 «Приборы контроля и регулирования технологических процессов. Общие технические условия».
- $2 \ \Gamma OCT \ 8.022-91$ «Государственная система обеспечения единства измерений. Государственный первичный эталон и государственная поверочная схема для средств измерений силы постоянного электрического тока в диапазоне от $1 \cdot 10^{-16}$ до $30 \ A$ »
- $3~\rm ИЦ\Phi P.421451.020 TУ$ «Комплекс измерительно-вычислительный управляющий КУРС-НГ. Технические условия».

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

При выполнении работ по оценке соответствия промышленной продукции и продукции других видов, а также иных объектов установленным законодательством Российской Федерации обязательным требованиям.

Изготовитель

ООО «НПО ВНИИЭФ-ВОЛГОГАЗ»

Юридический адрес: 607190, Нижегородская обл., г. Саров, ул. Железнодорожная, 4/1.

Телефон (83130) 2-57-99 Факс (83130) 2-47-36

E-mail: ivi@gatenpo.sarov.ru

Испытательный центр

Государственный центр испытаний средств измерений ФГУП «РФЯЦ-ВНИИЭФ», 607188, Нижегородская обл., г. Саров, пр. Мира, д. 37.

Телефон: (83130) 22224, 22302, 20694

Факс (83130) 22232. E-mail: shvn@olit.vniief.ru

Аттестат аккредитации № 30046-11 от 04.05.2011.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

			Ф.В.Булыгин	
М.П.	«	»	2012	2 г