всего листов 13

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) тяговых подстанций ОАО "Российские Железные Дороги" в границах ОАО "Удмуртэнерго"

Внесена в Государственный реестр средств измерений

Регистрационный номер № 35353-06

Изготовлена ОАО "Российские Железные Дороги", г. Москва для коммерческого учёта электроэнергии на объектах ОАО "Российские Железные Дороги" по проектной документации ООО "Инженерный центр "ЭНЕРГОАУДИТКОНТРОЛЬ", г. Москва заводской номер 212.

НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) тяговых подстанций ОАО "Российские Железные Дороги" в границах ОАО "Удмуртэнерго" (далее по тексту - АИИС КУЭ) предназначена для измерения активной и реактивной электроэнергии, потребленной за установленные интервалы времени, сбора, обработки, хранения и передачи полученной информации.

Полученные данные и результаты измерений могут использоваться для коммерческих расчетов и оперативного управления энергопотреблением.

ОПИСАНИЕ

АИИС КУЭ представляет собой многофункциональную двухуровневую автоматизированную систему с централизованным управлением и распределённой функцией измерения.

АИИС КУЭ решает следующие задачи:

- измерение 30-минутных приращений активной и реактивной электроэнергии;
- периодический (1 раз в сутки) и /или по запросу автоматический сбор привязанных к единому календарному времени результатов измерений приращений электроэнергии с заданной дискретностью учета (30 мин);
- хранение результатов измерений в специализированной базе данных, отвечающей требованию повышенной защищенности от потери информации (резервирование баз данных) и от несанкционированного доступа;
- передача в организации—участники оптового рынка электроэнергии результатов измерений;
- предоставление по запросу контрольного доступа к результатам измерений, данных о состоянии объектов и средств измерений со стороны сервера организаций участников оптового рынка электроэнергии;
- обеспечение защиты оборудования, программного обеспечения и данных от несанкционированного доступа на физическом и программном уровне (установка паролей и т.п.);
- диагностика и мониторинг функционирования технических и программных средств АИИС КУЭ;
- конфигурирование и настройка параметров АИИС КУЭ;
- ведение системы единого времени в АИИС КУЭ (коррекция времени).

АИИС КУЭ включает в себя следующие уровни:

1-ый уровень — измерительные каналы (ИК), включающие в себя измерительные трансформаторы тока (ТТ) классов точности 0,2S, 0,5S и 0,5, измерительные трансформаторы напряжения (ТН) классов точности 0,2 и 0,5 и счетчики активной и реактивной ЕвроАЛЬФА класса точности 0,5S по ГОСТ 30206-94 (в части активной электроэнергии) и 1,0 по ГОСТ 26035-83 (в части реактивной электроэнергии), Альфа А1800 класса точности 0,2S по ГОСТ Р 52323-05 (в части активной электроэнергии) и 0,5 по ГОСТ 26035-83 (в части реактивной электроэнергии) и 0,5 по ГОСТ 26035-83 (в части реактивной электроэнергии), шлюзы коммуникационные ШК-1, вторичные измерительные цепи и технические средства приема-передачи данных, образующие 74 измерительных канала системы по количеству точек учета электроэнергии;

представляет собой информационно-вычислительный уровень состоящий из двух подуровней: информационно-вычислительного комплекса регионального Центра энергоучёта, реализованного на базе устройства сбора и передачи данных (УСПД функции сбора и хранения результатов выполняющего информационно-вычислительного комплекса Центра сбора данных АИИС куэ, реализованного на базе серверного оборудования (серверов сбора данных-основного и резервного, сервера управления), автоматизированного рабочего места администратора (АРМ), технических средств для организации локальной вычислительной сети (ЛВС) и разграничения доступа к информации.

Первичные токи и напряжения преобразуются измерительными трансформаторами в аналоговые унифицированные сигналы, которые по проводным линиям связи поступают на измерительные входы счетчика электроэнергии. В счетчике мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются соответствующие мгновенные значения активной, реактивной и полной мощности без учета коэффициентов трансформации, которые усредняются за 0,02 с. Средняя за период реактивная мощность вычисляется по средним за период значениям активной и полной мощности.

Средняя активная (реактивная) электрическая мощность вычисляется как среднее значение вычисленных мгновенных значений мощности на интервале времени усреднения 30 мин.

Цифровой сигнал с выходов счетчиков при помощи технических средств приемапередачи данных поступает на входы УСПД уровня ИВК регионального Центра энергоучета, где производится обработка измерительной информации (умножение на коэффициенты трансформации), сбор и хранение результатов измерений. Далее информация поступает на ИВК Центра сбора данных АИИС КУЭ.

В системе автоматически поддерживается единое время во всех ее компонентах, в частности в счётчиках, где происходит датирование измерений, с точностью не хуже ±5 секунд/сутки. Синхронизация времени производится с помощью GPS-приемника, принимающего сигналы глобальной системы позиционирования. В качестве приёмника сигналов GPS о точном астрономическом времени используются устройства синхронизации системного времени (УССВ), подключаемые к УСПД. От УССВ синхронизируются внутренние часы УСПД, а от них – внутренние часы счетчиков, подключенных к УСПД. Уставка, при достижении которой происходит коррекция часов УСПД, Альфа-Центра в составе ИВК верхнего уровня и счетчиков, составляет 1 с. Синхронизация внутренних часов счетчика с верхним уровнем АИИС КУЭ происходит при каждом обращении (каждый сеанс связи). ПО позволяет назначить время суток, в которое можно производить коррекцию времени. Рекомендуется для этой операции назначить время с 00:00 до 03:00 часов. Погрешность системного времени не превышает ± 5 с.

Журналы событий счетчика электроэнергии и УСПД отражают время (дата, часы, минуты) коррекции часов указанных устройств и расхождение времени в секундах, корректируемого и корректирующего устройств в момент непосредственно предшествующий корректировке.

ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Состав измерительных каналов АИИС КУЭ приведен в таблице 1. Уровень ИВК АИИС КУЭ реализован на базе устройства сбора и передачи данных УСПД RTU-327 (Госреестр № 19495-03, зав. № № 000430; 000901) и Комплекса измерительновычислительного для учета электрической энергии Альфа-Центр (Госреестр № 20481-00).

Таблица 1 – Основные технические характеристики

1 аоли	ца 1 – Основные	технические харак	стеристики			
		C				
№ п/п	Диспетчерское наименование точки учёта	Трансформатор тока	Трансформатор напряжения	Счётчик статический трёхфазный переменного тока активной/реактивной энергии	Вид электроэнергии	
1	2	3	4	5	6	
			ТП "Кожиль"			
1	ВЛ- 220 кВ Звездная-Фаленки 1 цепь точка измерения №1	ТГФМ-220 II* класс точности 0,2S Ктт=200/1 Зав. № 662; 663; 667	НАМИ-220 класс точности 0,2 Ктн=220000:√3/100:√3 Зав. № 1167; 1197; 1218	A1802RALXQ-P4GB- DW-4 класс точности 0,2S/0,5 Зав. № 01191324	активная реактивная	
2	ВЛ- 220 кВ Звездная-Фаленки 2 цепь точка измерения №2	ТГФМ-220 II* класс точности 0,2S Ктт=200/1 Зав. № 665; 666; 664	НАМИ-220 класс точности 0,2 Ктн=220000:√3/100:√3 Зав. № 1198; 1214; 1220	A1802RALXQ-P4GB- DW-4 класс точности 0,2S/0,5 Зав. № 1191325	активная реактивная	
3	Ф - 35 кВ точка измерения №5	ТФНД-35М класс точности 0,5 Ктт=200/5 Зав. № 2893; 4680; 2895	3НОМ-35-65 класс точности 0,5 Ктн=35000:√3/100:√3 Зав. № 1212969; 1379265; 1382143	EA05RL-B-3 класс точности 0,5S/1,0 Зав. № 01115537	активная реактивная	
4	ВВ1 - 27,5 кВ точка измерения №6	ТФНД-35М класс точности 0,5 Ктт=1000/5 Зав. № 3830; 28221; 3544	3НОМ-35-65 класс точности 0,5 Ктн=27500/100 Зав. № 824038; 830690	EA05RAL-B-3 класс точности 0,5S/1,0 Зав. № 01115321	активная реактивная	
5	ВВ2 - 27,5 кВ точка измерения №7	ТФНД-35М класс точности 0,5 Ктт=1000/5 Зав. № 4237; 2404; 2308	3НОМ-35-65 класс точности 0,5 Ктн=27500/100 Зав. № 831026; 83154	EA05RAL-B-3 класс точности 0,5S/1,0 Зав. № 01115353	активная реактивная	
6	Ф-4 - 10 кВ точка измерения №14	ТПЛ-10 класс точности 0,5 Ктт=150/5 Зав. № 62861; 88132	НАМИ-10-95 класс точности 0,5 Ктн=10000/100 Зав. № 778	EA05RL-B-3 класс точности 0,5S/1,0 Зав. № 01115552	активная реактивная	
			ТП "Балезино"			
7	Ввод Т1 - 35 кВ точка измерения №28	STSM-38 класс точности 0,2S Ктт=200/1 Зав. № 09/48824; 09/48801; 09/48828	НАМИ-35 УХЛ1 класс точности 0,2 Ктн=35000/100 Зав. № 23	A1802RALQ-P4GB-DW- 4 класс точности 0,2S/0,5 Зав. № 01196892	активная реактивная	
8	Ввод ТЗ - 35 кВ точка измерения №29	STSM-38 класс точности 0,2S Ктт=200/1 Зав. № 09/48832; 09/48820; 09/48814	НАМИ-35 УХЛ1 класс точности 0,2 Ктн=35000/100 Зав. № 23	A1802RALQ-P4GB-DW- 4 класс точности 0,2S/0,5 Зав. № 01196897	активная реактивная	
9	ВЛ Юнда - 35 кВ точка измерения №30	STSM-38 класс точности 0,2S Ктт=100/1 Зав. № 09/47486; 09/45688; 09/49265	НАМИ-35 УХЛ1 класс точности 0,2 Ктн=35000/100 Зав. № 23	A1802RALQ-P4GB-DW- 4 класс точности 0,2S/0,5 Зав. № 1196860	активная реактивная	
10	Ввод Т2 - 27,5 кВ точка измерения №31	ТВД-35 класс точности 0,5 Ктт=1000/5 Зав. № 6381-1; 6381-2	3НОМ-35 класс точности 0,5 Ктн=27500/100 Зав. № 804108; 804143	EA05RAL-B-3 класс точности 0,5S/1,0 Зав. № 2128	активная реактивная	

Продолжение таблицы 1 5 6 2 3HOM-35 ТВД-35 EA05RAL-B-3 класс точности 0,5 класс точности 0,5 Ввод ТЗ - 27,5 кВ класс точности 0,5S/1,0 активная Ктт=1000/5 Ктн=27500/100 11 точка измерения Зав. № 2129 реактивная Зав. № 830804; 830862 Зав. № 6382-1; 6382-2 No32 ТЛП-10 НАМИ-10-95 УХЛ 2 EA05RAL-B-4 класс точности 0,2S Ввол Т1 - 10 кВ класс точности 0,5 класс точности 0,5S/1,0 Ктт=1000/5 активная Ктн=10000/100 12. точка измерения Зав. № 48742; 48743; Зав. № 2130 реактивная №34 Зав. № 51294 48744 ТЛП-10 НАМИ-10-95 УХЛ 2 класс точности 0,2S EA05RAL-B-4 Ввод Т2 - 10 кВ класс точности 0,5 Ктт=1000/5 класс точности 0,5S/1,0 активная Ктн=10000/100 13 точка измерения Зав. № 48751; 48752; Зав. № 2134 реактивная Зав. № 51295 №35 48753 ТЛП-10 НАМИ-10-95 УХЛ 2 EA05RL-B-3 Фид.1 - 10 кВ класс точности 0,2S класс точности 0.5 класс точности 0,5\$/1,0 активная Ктн=10000/100 14 точка измерения Ктт=150/5 Зав. № 2131 реактивная Зав. № 48745; 48746 Зав. № 51294 Nº36 НАМИ-10-95 УХЛ 2 ТЛП-10 EA05RAL-B-3 Фид.2 - 10 кВ класс точности 0,2S класс точности 0.5 класс точности 0.5S/1.0 активная 15 Ктт=75/5 Ктн=10000/100 точка измерения Зав. № 2132 реактивная Зав. № 48747; 48748 Зав. № 51294 №37 НАМИ-10-95 УХЛ 2 ТЛП-10 EA05RL-B-3 Фид.4 - 10 кВ класс точности 0,2S класс точности 0,5 класс точности 0.5S/1.0 активная Ктн=10000/100 16 точка измерения KTT=200/5 Зав. № 2133 реактивная №40 Зав. № 48749; 48750 Зав. № 51295 ТЛП-10 НАМИ-10-95 УХЛ 2 EA05RL-B-3 Фид.7 - 10 кВ класс точности 0,2S класс точности 0,5 класс точности 0,5\$/1,0 активная 17 точка измерения KTT=200/5 Ктн=10000/100 Зав. № 2135 реактивная №44 Зав. № 48754; 48755 Зав. № 51295 ТЛП-10 НАМИ-10-95 УХЛ 2 EA05RL-R-3 Фид.9 - 10 кВ класс точности 0,2S класс точности 0,5 класс точности 0,5S/1,0 активная Ктт=200/5 18 Ктн=10000/100 точка измерения Зав. № 2136 пеактивная №46 Зав. № 48756; 48757 Зав. № 51295 ТП "Пибаньшур" ТЛП-10 НАМИ-10-95 УХЛ 2 класс точности 0,2S EA05RAL-B-4 Ввод Т1 - 10кВ класс точности 0,5 Ктт=1000/5 класс точности 0,5S/1,0 активная 19 Ктн=10000/100 точка измерения Зав. № 48761; 48762; Зав. № 2153 реактивная №52 Зав. № 31796 48763 ТЛП-10 НАМИ-10-95 УХЛ 2 класс точности 0,2S EA05RAL-B-4 Ввод Т2 - 10кВ класс точности 0,5 KTT=1000/5 класс точности 0,5\$/1,0 активная 20 Ктн=10000/100 точка измерения Зав. № 48764; 48765; Зав. № 2154 реактивная №55 Зав. № 31797 8766 ТП "Закамская (Камбарка)" 3HOM-35-65 ТФ3М-35Б класс точности 0,5 EA05RAL-B-3 Ввод Т1 - 27,5 кВ класс точности 0,5 Ктн=27500/100 класс точности 0,5\$/1,0 активная 21 Ктт=1000/5 точка измерения Зав. № 1499829; Зав. № 2139 реактивная №75 Зав. № 20629; 20637 1499146 3HOM-35-65 ТФ3М-35Б EA05RAL-B-3 класс точности 0.5 Ввод Т2 - 27,5 кВ класс точности 0,5 Ктн=27500/100 класс точности 0,5S/1,0 активная 22 точка измерения Ктт=1000/5 Зав. № 1217442; Зав. № 2140 реактивная №76 Зав. № 20249; 19365 1214605 ТЛО-10 НАМИ-10-95 УХЛ2 класс точности 0,2S EA05RAL-B-4 Ввод Т1 - 10 кВ класс точности 0,5 KTT=1500/5 класс точности 0.5S/1.0 активная 23 точка измерения Ктн=10000/100 Зав. № 28990; 28991; Зав. № 2141 реактивная №79 Зав. № 31793 28992

Продолжение таблицы 1 6 4 ТЛО-10 НАМИ-10-95 УХЛ2 EA05RAL-B-4 класс точности 0,2S класс точности 0,5 Ввод Т2 - 10 кВ класс точности 0,55/1.0 Ктт=1500/5 активная KTH=10000/100 24 точка измерения Зав. № 2142 Зав. № 28993; 28994; реактивная Зав. № 31794 №80 28995 НАМИ-10-95 УХЛ2 ТПЛ-10 EA05RL-P1-B3 класс точности 0,5 класс точности 0,5 Фид.2 - 10 кВ класс точности 0,5\$/1,0 активная Ктн=10000/100 25 точка измерения Ктт=150/5 зав.№ 1063089 реактивная Зав. № 9587; 9185 Зав. № 15758 №81 НАМИ-10-95 УХЛ2 ТЛО-10 EA05RL-B-3 класс точности 0,2S Фид.3 - 10 кВ класс точности 0,5 класс точности 0,5S/1,0 активная Ктн=10000/100 26 точка измерения KTT=150/5 Зав. № 2143 реактивная Зав. № 28996; 28997 Зав. № 31793 №82 ТПФМ-10 НАМИ-10-95 УХЛ2 EA05RL-P1-B3 класс точности 0,5 Фид.4 - 10 кВ класс точности 0,5 класс точности 0,5S/1,0 активная 27 Ктт=100/5 Ктн=10000/100 точка измерения Зав. № 1063131 реактивная №83 Зав. № 490270; 59227 Зав. № 15737 ТПОЛ-10 НАМИ-10-95 УХЛ2 EA05RL-P1-B3 Фид.5 - 10 кВ класс точности 0,5 класс точности 0,5 класс точности 0,5S/1,0 активная 28 точка измерения Ктт=600/5 Ктн=10000/100 Зав. № 1063137 реактивная №84 Зав. № 19443; 32968 Зав. № 15737 НАМИ-10-95 УХЛ2 тпол 10 EA05RL-P1-B3 Фид.6 - 10 кВ класс точности 0,5 класс точности 0,5 класс точности 0,5S/1,0 активная Ктт=600/5 Ктн=10000/100 29 точка измерения Зав. № 1063038 реактивная Зав. № 19432; 21181 №85 Зав. № 15758 ТПЛ-10 НАМИ-10-95 УХЛ2 EA05RL-P1-B3 Фид.7 - 10 кВ класс точности 0,5 класс точности 0.5 класс точности 0,5S/1,0 активная точка измерения 30 KTT = 200/5Ктн=10000/100 Зав. № 1063116 реактивная №86 Зав. № 2553; 28136 Зав. № 15737 ТПОЛ 10 НАМИ-10-95 УХЛ2 EA05RL-P1-B3 Фид.8 - 10 кВ класс точности 0,5 класс точности 0,5 класс точности 0,5S/1,0 активная 31 точка измерения Ктт=600/5 Ктн=10000/100 Зав. № 1063182 реактивная №87 Зав. № 40429; 40623 Зав. № 15737 ТПФМ-10 НАМИ-10-95 УХЛ2 EA05RL-P1-B3 Фид.9 - 10 кВ класс точности 0,5 класс точности 0.5 класс точности 0,5S/1,0 активная 32 Ктт=100/5 Ктн≈10000/100 точка измерения Зав. № 1063230 реактивная №88 Зав. № 30151; 30094 Зав. № 15737 НАМИ-10-95 УХЛ2 ТПЛ-10 EA05RL-P1-B3 Фид.10 - 10 кВ класс точности 0,5 класс точности 0,5 класс точности 0,5\$/1,0 активная 33 точка измерения KTT=200/5 Ктн=10000/100 Зав. № 1063203 реактивная №89 Зав. № 8990; 2341 Зав. № 15737 ТПЛ-10 НАМИ-10-95 УХЛ2 EA05RL-P1-B3 Фид.11 - 10 кВ класс точности 0,5 класс точности 0,5 класс точности 0,5S/1,0 активная точка измерения . 34 K77≈200/5 Ктн=10000/100 Зав. № 1063260 пеактивная №90 Зав. № 320; 378 Зав. № 15737 ТП "Агрыз" 3HOM-35-65 ТФ3М-35Б EA05RAL-B-3 класс точности 0.5 Ввод Т1 – 27,5 кВ класс точности 0.5 Ктн=27500/100 класс точности 0,5S/1,0 активная 35 Ктт=1000/5 точка измерения Зав. № 1217409; Зав. № 2121 реактивная №94 Зав. № 21303; 20246 1214600 3HOM-35-65 ТФ3М-35Б EA05RAL-B-3 класс точности 0,5 Ввод Т2 – 27,5 кВ класс точности 0,5 Ктн=27500/100 класс точности 0,5S/1,0 активная 36 точка измерения KTT=1000/5 Зав. № 1219703; Зав. № 2122 реактивная №95 Зав. № 22002; 22006 1219695 3НОМ-35-65 У1 ТФ3М-35Б класс точности 0,5 EA05RAL-B-3 Ввод Т3 - 27,5 кВ класс точности 0,5 Ктн=27500/100 класс точности 0,5S/1,0 активная 37 Ктт=1000/5 точка измерения Зав. № 1332659; Зав. № 2123 реактивная №96 Зав. № 32616; 32590 1343002

Продолжение таблицы 1 4 2 ТЛО-10 НАМИ-10-95 УХЛ 2 EA05RAL-B-4 класс точности 0,2S Ввод Т1,3 - 10 кВ класс точности 0,5 класс точности 0,5S/1,0 Ктт=1500/5 активная Ктн=10000/100 38 точка измерения Зав. № 48732; 48733; Зав. № 2124 реактивная Зав. № 51292 №100 48734 ТЛО-10 НАМИ-10-95 УХЛ 2 EA05RAL-B-4 класс точности 0,2S Ввод Т2 – 10 кВ класс точности 0.5 Ктт=1500/5 класс точности 0,5S/1,0 активная Ктн=10000/100 39 точка измерения Зав. № 2125 Зав. № 48735; 48736; реактивная №101 Зав. № 51293 48737 НАМИ-10-95 УХЛ 2 ТЛО-10 EA05RL-B-3 Фид.6 - 10 кВ класс точности 0,2S класс точности 0,5 класс точности 0,5\$/1,0 активная Ктт=400/5 Ктн=10000/100 40 точка измерения Зав. № 2126 реактивная №106 Зав. № 48738; 48739 Зав. № 51293 НАМИ-10-95 УХЛ 2 ТЛО-10 EA05RL-B-3 Фид.9 - 10 кВ класс точности 0,2S класс точности 0.5 класс точности 0,5S/1,0 активная Ктн=10000/100 41 точка измерения $K\tau\tau = 400/5$ Зав. № 2127 реактивная Зав. № 51292 №107 Зав. № 48740; 48741 ТП "Пычас" 3HOM-35-65 ТФ3М-35Б EA05RAL-B-3 класс точности 0,5 Ввод Т1 - 27,5 кВ класс точности 0.5 Ктн=27500/100 класс точности 0,5S/1,0 активная 42 точка измерения $K_{TT}=1000/5$ Зав. № 1252268; Зав. №2155 реактивная Зав. № 23415; 23514 №124 1252235 3HOM-35-65 ТФ3М-35Б класс точности 0,5 EA05RAL-B-3 Ввод Т2 - 27,5 кВ класс точности 0.5 Ктн=27500/100 класс точности 0,5\$/1,0 активная Ктт=1000/5 43 точка измерения Зав. № 1252219; Зав. № 2156 реактивная №125 Зав. № 23634; 23922 1252191 ТП "Саркуз" 3HOM-35-65 ТФ3М-35Б класс точности 0,5 EA05RAL-B-3 Ввод Т1 - 27,5 кВ класс точности 0.5 Ктн=27500/100 класс точности 0,5S/1,0 активная 44 точка измерения Ктт=1000/5 Зав. № 1238723; Зав. № 2161 реактивная Зав. № 23635; 23628 №131 1238685 3HOM-35-65 ТФ3М-35Б EA05RAL-B-3 класс точности 0,5 Ввод Т2 - 27,5 кВ класс точности 0,5 Ктн=27500/100 класс точности 0,5S/1,0 активная 45 точка измерения KTT=1000/5 Зав. № 1238767; Зав. № 2162 реактивная Зав. № 23669; 23630 №132 1238753 ТЛО-10 НАМИ-10-95 УХЛ 2 класс точности 0,2S EA05RAL-B-4 Ввод Т1 - 10 кВ класс точности 0,5 Ктт=1500/5 класс точности 0,5S/1,0 активная Ктн=10000/100 46 точка измерения Зав. № 28303; 28304; Зав. № 2163 реактивная №135 Зав. № 31302 28305 ТЛО-10 НАМИ-10-95 УХЛ 2 класс точности 0,2S EA05RAL-B-4 Ввод Т2 - 10 кВ класс точности 0,5 Ктт=1500/5 класс точности 0,5S/1.0 активная 47 точка измерения Ктн=10000/100 Зав. № 28306; 28307; Зав. № 2164 реактивная №136 Зав. № 31303 28308 ТЛО-10 НАМИ-10-95 УХЛ 2 EA05RL-B-3 Фид.1 - 10 кВ класс точности 0,5 класс точности 0.2S класс точности 0,5S/1,0 активная 48 точка измерения KTT=150/5 Ктн=10000/100 Зав. № 2165 реактивная №137 Зав. № 12154; 12155 Зав. № 31302 ТЛО-10 НАМИ-10-95 УХЛ 2 EA05RL-B-3 Фил.2 - 10 кВ класс точности 0,2S класс точности 0,5 класс точности 0,5\$/1,0 активная 49 точка измерения Ктт≈150/5 Ктн=10000/100 Зав. № 2166 реактивная №138 Зав. № 31303 Зав. № 12156; 12157 ТЛО-10 НАМИ-10-95 УХЛ 2 EA05RL-B-3 Фид.3 - 10 кВ класс точности 0,5 класс точности 0.2S класс точности 0,5\$/1,0 активная 50 точка измерения KTT=150/5 Ктн=10000/100 Зав. № 2167 реактивная №139 Зав. № 12158; 12159 Зав. № 31302

Продол	тжение таблицы 1				
1	2	3	4	5	66
51	Фид.4 - 10 кВ точка измерения №140	ТЛО-10 класс точности 0,2S Ктт=150/5 Зав. № 12160; 12161	НАМИ-10-95 УХЛ 2 класс точности 0,5 Ктн=10000/100 Зав. № 31303	EA05RL-B-3 класс точности 0,5S/1,0 Зав. № 2168	активная реактивная
•			ТП "Ижевск"	<u> </u>	
52	Ввод Т1 - 27,5 кВ точка измерения №147	ТФЗМ-35Б класс точности 0,5 Ктт=1000/5 Зав. № 23795; 23803	3НОМ-35-65 класс точности 0,5 Ктн=27500/100 Зав. № 1377107; 1377108	EA05RAL-B-3 класс точности 0,5S/1,0 Зав. № 2137	активная реактивная
53	ТСН 0,4 кВ точка измерения №150	Т-0,66 класс точности 0,5S Ктт=1000/5 Зав. № 5014; 5015		EA05RL-B-4 класс точности 0,5S/1,0 Зав. № 2138	активная реактивная
	1	L	ТП "Сарапул"		
54	Ввод Т1 - 27,5 кВ точка измерения №151	ТФЗМ-35Б класс точности 0,5 Ктт=1000/5 Зав. № 20864; 21187	3HOM-35-65 класс точности 0,5 Ктн=27500/100 Зав. № 1214383; 1217630	EA05RAL-B-3 класс точности 0,5S/1,0 Зав. № 2157	активная реактивная
55	Ввод Т2 - 27,5 кВ точка измерения №152	ТФЗМ-35Б класс точности 0,5 Ктт=1000/5 Зав. № 21996; 21304	ЗНОМ-35-65 класс точности 0,5 Ктн=27500/100 Зав. № 1217431; 1165578	EA05RAL-B-3 класс точности 0,5S/1,0 Зав. № 2158	активная реактивная
56	Ввод Т1 - 10 кВ точка измерения №155	ТЛО-10 класс точности 0,2S Ктт=1000/5 Зав. № 28303; 28304; 28305	НАМИ-10-95 УХЛ2 класс точности 0,5 Ктн=10000/100 Зав. № 31300	EA05RAL-B-4 класс точности 0,5S/1,0 Зав. № 2159	активная реактивная
57	Ввод Т2 - 10 кВ точка измерения №156	ТЛО-10 класс точности 0,2S Ктт=1000/5 Зав. № 28300; 28301; 28302	НАМИ-10-95 УХЛ2 класс точности 0,5 Ктн=10000/100 Зав. № 31301	EA05RAL-B-4 класс точности 0,5S/1,0 Зав. № 2160	активная реактивная
		<u>L</u>	ТП "Кез"	<u> </u>	
,.		m	3HOM-35-65		
58	Ф-35 кВ точка измерения №171	ТФН-35М класс точности 0,5 Ктт=150/5 Зав. № 0351; 0352	класс точности 0,5 Ктн=35000:√3/100:√3 Зав. № 1409205; 1409351; 1409395	EA05RL-B-3 класс точности 0,5S/1,0 Зав. № 2171	активная реактивная
59	ВВ1-10 кВ точка измерения №172	ТПОЛ-10 класс точности 0,2S Ктт=1500/5 Зав. № 28773; 28774; 28775	ЗНОЛ.06-10 класс точности 0,5 Ктн=10000:√3/100:√3 Зав. № 52888; 52889; 52890	EA05RAL-B-4 класс точности 0,5S/1,0 Зав. № 2172	активная реактивная
60	ВВ2-10 кВ точка измерения №173	ТПОЛ-10 класс точности 0,2S Ктт=1500/5 Зав. № 28776; 28777; 28778	3НОЛ.06-10 класс точности 0,5 Ктн=10000:√3/100:√3 Зав. № 52891; 52892; 52893	EA05RL-B-4 класс точности 0,5S/1,0 Зав. № 2174	активная реактивная
61	Ф.1-10 кВ точка измерения №174	ТПЛ-10 класс точности 0,5 Ктт=75/5 Зав. № 3596; 3644	3НОЛ.06-10 класс точности 0,5 Ктн=10000:√3/100:√3 Зав. № 52888; 52889; 52890	EA05RL-B-3 класс точности 0,5S/1,0 Зав. № 2173	активная реактивная
62	Ф-5 10 кВ точка измерения №180	ТПЛМ-10 класс точности 0,5 Ктт≈200/5 Зав. № 21987; 21957	3НОЛ.06-10 класс точности 0,5 Ктн=10000:√3/100:√3 3ав. № 52891; 52892; 52893	EA05RL-B-3 класс точности 0,5S/1,0 Зав. № 2175	активная реактивная

Продолжение таблицы 1 3 6 2 ЗНОЛ.06-10 ТПЛ-10 EA05RL-B-3 класс точности 0,5 Ф-6 10 кВ класс точности 0,5 класс точности 0,5S/1,0 $Kth=10000:\sqrt{3}/100:\sqrt{3}$ активная Ктт=200/5 63 точка измерения Зав. № 52891; 52892; Зав. № 2176 реактивная №181 Зав. № 21960; 14756 52893 ТП "Кузьма" ТПОЛ-10 ЗНОЛ.06-10 EA05RAL-B-4 класс точности 0,5 класс точности 0,2S BB1-10xB Ктн=10000:√3/100:√3 класс точности 0,5S/1,0 Ктт=1500/5 активная 64 точка измерения Зав. № 52895; 52896; Зав. № 2177 Зав. № 28780; 28781; реактивная №187 28782 52897 ТПОЛ-10 ЗНОЛ.06-10 класс точности 0,5 EA05RAL-B-4 класс точности 0,2S BB2-10кВ Ктт=1500/5 $KTH=10000: \sqrt{3}/100: \sqrt{3}$ класс точности 0.5S/1.0 активная 65 точка измерения Зав. № 28783; 28784; Зав. № 52898; 52899; Зав. № 2179 реактивная №188 28785 52900 ТПЛМ-10 ЗНОЛ.06-10 класс точности 0,5 EA05RL-B-3 ТПЛ-10 Ф.3-10 кВ класс точности 0,5 $Kth=10000:\sqrt{3}/100:\sqrt{3}$ класс точности 0,5\$/1,0 активная 66 точка измерения Зав. № 52895; 52896; KTT=50/5 Зав. № 2178 реактивная №189 Зав. № 52166; 98137 52897 ЗНОЛ.06-10 ТПФМУ-10 класс точности 0,5 EA05RL-B-3 Ф.4-10 кВ класс точности 0,5 KTH=10000:√3/100:√3 класс точности 0,5\$/1,0 активная 67 точка измерения KTT=75/5 Зав. № 52898; 52899; Зав. № 2180 реактивная **№**195 Зав. № 17788; 17888 52900 ТП "Чепца" 3HOM-35 ТФНД-35М класс точности 0,5 EA05RL-B-3 Ф1-35 кВ Пибаньшур класс точности 0,5 $KTH=35000:\sqrt{3}/100:\sqrt{3}$ класс точности 0,5S/1,0 активная 68 KTT=100/5 точка измерения Зав. № 772949; 756900; Зав. № 2181 реактивная №204 Зав. № 3072; 2856 772965 3HOM-35 ТФ3М-35А EA05RL-B-4 класс точности 0,5 Ф2-35 кВ Полом класс точности 0,5 Ктн=35000:√3/100:√3 класс точности 0,5S/1,0 активная 69 Ктт=75/5 точка измерения Зав. № 772981; 772963; Зав. № 2182 реактивная №205 Зав. № 36262; 36392 880930 ТПОЛ-10 3НОЛ.06-10 класс точности 0,2S EA05RAL-B-4 класс точности 0,5 ВВ1-10 кВ KTT=1500/5 $K_{TH}=10000:\sqrt{3}/100:\sqrt{3}$ класс точности 0.5S/1.0 активная 70 точка измерения Зав. № 28780; 28781; Зав. № 52895; 52896; Зав. № 2183 реактивная №206 28782 52897 ТПОЛ-10 ЗНОЛ.06-10 класс точности 0,2S класс точности 0,5 EA05RAL-B-4 BB2-10 κB Ктн=10000:√3/100:√3 Ктт=1500/5 класс точности 0,5\$/1,0 активная 71 точка измерения Зав. № 28783; 28784; Зав. № 52898; 52899; Зав. № 2185 реактивная №207 52900 28785 3НОЛ.06 ТПФМ-10 EA05RL-P1B-3 класс точности 0,5 Ф-6 10 кВ класс точности 0,5 Ктн=10000:√3/100:√3 класс точности 0,5\$/1,0 активная Ктт=75/5 72 точка измерения Зав. № 908А; 908В; Зав. № 01111579 реактивная №208 Зав. № 11111; 11839 908C 3НОЛ.06 ТПФМ-10 EA05RL-P1B-3 класс точности 0,5 Ф-5 10 кВ класс точности 0,5 $KTH=10000: \sqrt{3}/100: \sqrt{3}$ класс точности 0.5S/1.0 активная 73 точка измерения Krt = 75/5Зав. № 908А; 908В; Зав. № 01111568 реактивная №209 Зав. № 2665; 2667 908C ЗНОЛ.06-10 ТПФМУ-10 EA05RL-B-3 класс точности 0,5 Ф-1 10 кВ класс точности 0,5 $KTH=10000:\sqrt{3}/100:\sqrt{3}$ класс точности 0,5S/1,0 активная 74 точка измерения $K_{TT}=75/5$ Зав. № 52898; 52899; Зав. № 2184 реактивная №215 Зав. № 17841; 17818 52900

Таблица 2 - Метрологические характеристики ИК (активная энергия)

Метрологические характеристики ИК							
Дозерительные границы отн	носительной погрешности резул доверите	льтата измере льной вероят	ний количест ности Р=0,95:	ва учтённой а	активной элек	трической эн	ергии при
Помен точки изменения	THATTASON TOKA	Основная погрешность ИК, ±%			Погрешность ИК в рабочих условиях эксплуатации, ±%		
Номер точки измерения	диапазон тока	cos φ = 1,0	$\cos \varphi = 0.87$	cos φ = 0,8	cos φ = 1,0	$\cos \varphi = 0.87$	$\cos \varphi = 0.8$
1	2	3	4	5	6	7	8
	$0.01(0.02)$ IH ₁ $\leq I_1 < 0.05$ IH ₁	1,0	1,1	1,1	1,2	1,2	1,3
1, 2, 28-30	$0.05IH_1 \le I_1 < 0.2IH_1$	0,6	0,7	0,8	0,8	0,9	1,0
(TT 0,2S; TH 0,2; C4 0,2S)	$0.2I_{H_1} \leq I_1 < I_{H_1}$	0,5	0,6	0,6	0,7	0,8	0,8
(== 1, =, , , , , ,	$I_{H_1} \leq I_1 \leq 1,2I_{H_1}$	0,5	0,6	0,6	0,7	0,8	0,8
5-7, 14, 31, 32, 75, 76, 81, 83-90, 94-96, 124, 125, 131,	0.05 IH $_1 \le I_1 < 0.2$ IH $_1$	1,8	2,5	2,9	2,2	2,8	3,2
132, 147, 151, 152, 171, 174, 180, 181, 189, 195, 204, 205, 208, 209, 215	$0.2I_{H_1} \leq I_1 < I_{H_1}$	1,2	1,5	1,7	1,7	1,9	2,1
(TT 0,5; TH 0,5; C4 0,5S)	$IH_1 \leq I_1 \leq 1,2IH_1$	1,0	1,2	1,3	1,5	1,7	1,8
	$0.01(0.02)$ IH ₁ $\leq I_1 < 0.05$ IH ₁	1,5	1,6	1,7	1,9	2,0	2,1
34-37, 40, 44, 46, 52, 55, 79, 80, 82, 100, 101, 106, 107,	$0.05 IH_1 \le I_1 < 0.2 IH_1$	0,9	1,1	1,2	1,5	1,6	1,7
135-140, 155, 156, 172, 173,	0,2IH ₁ ≤ I ₁ < IH ₁	0,9	1,0	1,0	1,5	1,6	1,6
187, 188, 206, 207	$I_{H_1} \leq I_1 \leq 1,2I_{H_1}$	0,9	1,0	1,0	1,5	1,6	1,6
(ТТ 0,2S; ТН 0,5; Сч 0,5S)	0,2IH ₁ ≤ I ₁ < IH ₁	1,0	1,3	1,5	1,5	1,8	1,9
(*** -,,,-,,,	$I_{H_1} \leq I_1 \leq 1,2I_{H_1}$	0,8	1,0	1,1	1,4	1,6	1,6
	$0.01(0.02)$ IH ₁ $\leq I_1 < 0.05$ IH ₁	2,0	2,3	2,6	2,3	2,6	2,9
150	$0.05IH_1 \le I_1 < 0.2IH_1$	1,0	1,4	1,6	1,5	1,8	2,0
(TT 0,5S; C4 0,5S)	$0.2I_{H_1} \le I_1 < I_{H_1}$	0,8	1,0	1,1	1,4	1,6	1,6
. , , , ,	$l_{H_1} \leq l_1 \leq 1,2l_{H_1}$	0,8	1,0	1,1	1,4	1,6	1,6

Таблица 3 - Метрологические характеристики ИК (реактивная энергия)

Номер точки измерения	Доверительные границы относительной погрешности результата измерений количества учтённой реактивной энергии в рабочих условиях эксплуатации при доверительной вероятности P=0,95, ± %				
	диапазон тока	$\cos \varphi = 0.87(\sin \varphi = 0.5)$	$\cos \varphi = 0.8 \ (\sin \varphi = 0.6)$		
1	2	3	4		
	$0.02IH_1 \le I_1 < 0.05IH_1$	2,8	2,4		
1, 2, 28-30	$0.05IH_1 \le I_1 < 0.2IH_1$	1,7	1,5		
(TT 0,2S; TH 0,2; C4 0,5)	$0.2I_{H_l} \le I_l < I_{H_l}$	1,3	1,1		
	$IH_1 \le I_1 \le 1,2IH_1$	1,2	1,1		
5-7, 14, 31, 32, 75, 76, 81, 83- 90, 94-96, 124, 125, 131, 132,	0.05 IH ₁ \leq I ₁ $<$ 0.2 IH ₁	6,0	5,0		
147, 151, 152, 171, 174, 180, 181, 189, 195, 204, 205, 208, 209, 215	$0.2I_{H_1} \leq I_1 < I_{H_1}$	3,4	2,9		
(TT 0,5; TH 0,5; C4 1,0)	In ₁ ≤ I ₁ ≤ 1,2In ₁	2,7	2,4		
34-37, 40, 44, 46, 52, 55, 79,	$0.02IH_1 \le I_1 < 0.05IH_1$	4,9	4,3		
80, 82, 100, 101, 106, 107, 135-140, 155, 156, 172, 173,	$0.05IH_1 \le I_1 < 0.2IH_1$	3,1	2,8		
187, 188, 206, 207	$0.2I_{H_1} \le I_1 < I_{H_1}$	2,3	2,1		
(TT 0,2S; TH 0,5; C4 1,0)	$IH_1 \leq I_1 \leq 1,2IH_1$	2,2	2,0		
	$0.02IH_1 \le I_1 < 0.05IH_1$	6,4	5,4		
150	$0.051H_1 \le I_1 < 0.21H_1$	3,7	3,2		
(ТТ 0,5S; Сч 1,0)	$0.2I_{H_1} \leq I_1 < I_{H_1}$	2,5	2,2		
,,,,-,	$IH_1 \leq I_1 \leq 1,2IH_1$	2,4	2,2		

Примечания:

- 1. Характеристики погрешности ИК даны для измерения электроэнергии и средней мощности (получасовой);
- 2. В качестве характеристик относительной погрешности указаны гарницы интервала, соответствующие вероятности 0,95;
- 3. . Нормальные условия эксплуатации:
 - Параметры сети: диапазон напряжения $(0.98 \div 1.02)$ U_н; диапазон силы тока $(1.0 \div 1.2)$ I_н; коэффициент мощности соѕ ϕ (sin ϕ) 0.87(0.5); частота (50 ± 0.15) Γ ц;
 - температура окружающего воздуха: ТТ и ТН от 40°C до + 50°C; счетчиков от + 18°C до + 25°C; ИВКЭ от + 10°C до + 30°C; ИВК от + 10°C до + 30°C;
 - магнитная индукция внешнего происхождения, не более 0,05 мТл.
- 4. Рабочие условия эксплуатации:

Для ТТ и TH:

- параметры сети: диапазон первичного напряжения $(0.9 \div 1.1)U_{R1}$; диапазон силы первичного тока $(0.01 \div 1.2)I_{R1}$; коэффициент мощности $\cos\varphi(\sin\varphi)$ $0.8 \div 1.0(0.6 \div 0.87)$; частота (50 ± 0.4) Γ ц;
- температура окружающего воздуха от 30°C до + 35°C.

Для электросчетчиков:

- для счётчиков электроэнергии "ЕвроАльфа" от минус 40°С до плюс 70 °С;
- для счётчиков электроэнергии Альфа A1800 от минус 40°C до плюс 65 °C;
- параметры сети: диапазон вторичного напряжения $(0.9 \div 1.1)$ U_{н2}; диапазон силы вторичного тока $(0.01(0.05) \div 1.2)$ I_{н2}; коэффициент мощности $\cos \phi(\sin \phi)$ $0.8 \div 1.0(0.5 \div 0.6)$; частота (50 ± 0.4) Γ Ц;
- температура окружающего воздуха от + 10°С до + 30°С;
- магнитная индукция внешнего происхождения, не более 0,5 мТл.
- 5. Трансформаторы тока по ГОСТ 7746, трансформаторы напряжения по ГОСТ 1983, счетчики электроэнергии по ГОСТ 30206, ГОСТ Р 52323 в режиме измерения активной электроэнергии и ГОСТ 26035 в режиме измерения реактивной электроэнергии;
- 6. Допускается замена измерительных трансформаторов и счетчиков электроэнергии на аналогичные (см. п. 5 Примечания) утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в Таблице 1. Допускается замена УСПД на однотипный утвержденного типа. Замена оформляется актом в установленном на ТП ОАО "РЖД" в границах ОАО "Удмуртэнерго" порядке. Акт хранится совместно с настоящим описанием типа АИИС КУЭ как его неотъемлемая часть. Порядок оформления замены измерительных компонентов, а также других изменений, вносимых в АИИС КУЭ в процессе их эксплуатации после утверждения типа в качестве единичного экземпляра, осуществляется согласно Приложению Б МИ 2999-2006.

Параметры надежности применяемых АИИС КУЭ измерительных компонентов:

- счетчик среднее время наработки на отказ: для счетчиков типа ЕвроАЛЬФА не менее 50000 часов; для счетчиков типа Альфа A1800 не менее 120000 часов; среднее время восстановления работоспособности 48 часов;
- УСПД среднее время наработки на отказ не менее 40000 часов, среднее время восстановления работоспособности 1 час;

Надежность системных решений:

- резервирование питания УСПД с помощью источника бесперебойного питания и устройства АВР;
- резервирование каналов связи: информация о результатах измерений может передаваться с помощью электронной почты и сотовой связи;
 - в журналах событий счетчика и УСПД фиксируются факты:
 - 1) параметрирования;
 - 2) пропадания напряжения;
 - 3) коррекция времени

Защищенность применяемых компонентов:

- наличие механической защиты от несанкционированного доступа и пломбирование:
 - 1) счетчика;
 - 2) промежуточных клеммников вторичных цепей напряжения;
 - 3) испытательной коробки;
 - 4) УСПД;

- наличие защиты на программном уровне:
 - 1) пароль на счетчике;
 - 2) пароль на УСПД;
 - 3) пароли на сервере, предусматривающие разграничение прав доступа к измерительным данным для различных групп пользователей.

Возможность коррекции времени в:

- счетчиках (функция автоматизирована);
- УСПД (функция автоматизирована).

Глубина хранения информации:

- электросчетчик тридцатиминутный профиль нагрузки в двух направлениях при отключении питания: для счетчиков типа ЕвроАЛЬФА не менее 5 лет при 25 °C, не менее 2 лет при 60 °C; для счетчиков типа Альфа А1800 не менее 30 лет;
- ИВК суточные данные о тридцатиминутных приращениях электропотребления по каждому каналу и электропотребление за месяц по каждому каналу не менее 35 суток; при отключении питания не менее 3 лет.

ЗНАК УТВЕРЖДЕНИЯ ТИПА

Знак утверждения типа наносится на титульные листы эксплуатационной документации на систему автоматизированную информационно-измерительную коммерческого учета электроэнергии (АИИС КУЭ) тяговых подстанций ОАО "Российские Железные Дороги" в границах ОАО "Удмуртэнерго" типографским способом.

КОМПЛЕКТНОСТЬ

Комплектность АИИС КУЭ определяется проектной документацие на систему. В комплект поставки входит техническая документация на систему и на комплектующие средства измерений.

Комплектность АИИС КУЭ представлена в таблице 4.

Таблица 4 — Комплектность АИИС КУЭ тяговых подстанций ОАО "Российские Железные Дороги" в границах ОАО "Удмуртэнерго"

Наименование	Кол-во, шт.		
Трансформатор тока	175		
Трансформатор напряжения	87		
Устройство сбора и передачи данных (УСПД)	2		
Счётчик электрической энергии	74		
Методика поверки	1		

ПОВЕРКА

Поверка проводится в соответствии с документом "ГСИ. Система автоматизированная информационно-измерительная коммерческого учета электроэнергии тяговых подстанций ОАО "Российские железные дороги" в границах ОАО "Удмуртэнерго". Измерительные каналы. Методика поверки" МП-343/447-2006, утвержденная ФГУ "Ростест-Москва" в ноябре 2006 г.

Перечень основных средств поверки:

- Трансформаторы тока − в соответствии с ГОСТ 8.217-20003 «ГСИ.
 Трансформаторы тока. Методика поверки»;
- Трансформаторы напряжения в соответствии с ГОСТ 8.216-88 «ГСИ. Трансформаторы напряжения. Методика поверки» и/или МИ 2845-2003 «Измерительные трансформаторы напряжения 6/√3... 35 кВ. Методика поверки на месте эксплуатации»;
- Счетчик Альфа A1800 в соответствии с документом мп-2203-0042-2006 «Счетчики электрической энергии трехфазные многофункциональные Альфа A1800. Методика поверки», утвержденным ГЦИ СИ «ВНИИМ им. Д.И. Менделеева» 19 мая 2006 г.;
- Счетчик "ЕвроАЛЬФА" по методике поверки с помощью установок МК6800, МК6801 для счетчиков классов точности 0,2 и 0,5 и установок ЦУ 6800 для счетчиков классов точности 1,0 и 2,0;
- УСПД RTU-300 по документу "Комплексы программно-аппаратных средств для учета электроэнергии на основе УСПД серии RTU-300. Методика поверки", утвержденному ГЦИ СИ ВНИИМС в 2003 г.;
- Радиочасы МИР РЧ-01, принимающие сигналы спутниковой навигационной системы Global Positioning System (GPS), номер в Государственном реестре средств измерений 27008-04;
- Переносной компьютер с ПО и оптический преобразователь для работы со счетчиками системы и с ПО для работы с радиочасами МИР РЧ-01;
- термогигрометр CENTER (мод.314): диапазон измерений температуры от -20...+ 60 °C, дискретность 0,1 °C; диапазон измерений относительной влажности от 10...100 %, дискретность 0,1 %.

Межповерочный интервал - 4 года.

НОРМАТИВНЫЕ И ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия.

ГОСТ 34.601-90 Информационная технология. Комплекс стандартов на автоматизированные системы. Автоматизированные системы. Стадии создания.

ГОСТ Р 8.596-2002 ГСИ. Метрологическое обеспечение измерительных систем. Основные положения.

ГОСТ 7746 Трансформаторы тока. Общие технические условия

ГОСТ 1983 Трансформаторы напряжения. Общие технические условия.

ГОСТ 26035-83 Счетчики электрической энергии переменного тока электронные. Общие технические условия.

ГОСТ 30206—94. Статические счетчики ватт-часов активной энергии переменного тока (классы точности 0.2S - 0.5S).

ГОСТ Р 52323-2005. Аппаратура для измерения электрической энергии переменного тока. Частные требования. Часть 22. Статические счетчики активной энергии классов точности 0,2S и 0,5S.

ГОСТ 8.217-2003 ГСИ. Трансформаторы тока. Методика поверки

ГОСТ 8.216-88 ГСИ. Трансформаторы напряжения. Методика поверки.

МИ 2999-2006 "Рекомендация. ГСИ. Системы автоматизированные информационноизмерительные коммерческого учета электрической энергии. Рекомендации по составлению описания типа".

МИ 3000-2006 "Рекомендация. ГСИ. Системы автоматизированные информационно-измерительные коммерческого учета электрической энергии. Типовая методика поверки".

Техническая документация на систему автоматизированную информационноизмерительную коммерческого учета электроэнергии (АИИС КУЭ) ТП ОАО "РЖД" в границах ОАО "Удмуртэнерго".

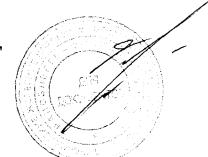
ЗАКЛЮЧЕНИЕ

Тип системы автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) тяговых подстанций ОАО "Российские железные дороги" в границах ОАО "Удмуртэнерго" утвержден с техническими и метрологическими характеристиками, приведенными в настоящем описании типа, метрологически обеспечен при выпуске из производства и в эксплуатации согласно государственным поверочным схемам.

ИЗГОТОВИТЕЛЬ

ОАО "Российские Железные Дороги"

Адрес 107174, г. Москва, Новая Басманная ул., д.2


Тел. (495) 262-60-55

Факс (495) 262-60-55

e-mail: <u>info@rzd.ru</u> http://www.rzd.ru/

Главный инженер

"Трансэнерго" - филиал ОАО "РЖД"

В.В. Абрамов