

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

СВИДЕТЕЛЬСТВО

об утверждении типа средств измерений

RU.C.32.010.A № 46464

Срок действия до 11 мая 2017 г.

Н<mark>АИМЕНОВАНИ</mark>Е ТИПА СРЕДСТВ ИЗМЕРЕНИЙ
Преобразователи термоэлектрические кабельные ТПК-ТХА(К), ТПК-ТНН(N)

ИЗГОТОВИТЕЛЬ

ОАО "Правдинский опытный завод источников тока", п. Правдинский, Московская обл.

РЕГИСТРАЦИОННЫЙ № 33780-12

ДОКУМЕНТ НА ПОВЕРКУ ГОСТ 8.338-2002

ИНТЕРВАЛ МЕЖДУ ПОВЕРКАМИ

2 года - для ТПК-ТХА(К), работающих в диапазоне до 400 °C; 1 год - для ТПК-ТХА(К) и ТПК-ТНН(N), работающих в диапазоне до 800 °C

Тип средств измерений утвержден приказом Федерального агентства по техническому регулированию и метрологии от 11 мая 2012 г. № 328 с изменением, утвержденным приказом от 08 мая 2013 г. № 481

Описание типа средств измерений является обязательным приложением к настоящему свидетельству.

Заместитель Руководителя Федерального агентства	Ф.В.Булыги
Федерального агентетва	"" 2013 г.

№ 009606

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Преобразователи термоэлектрические кабельные ТПК-ТХА(К), ТПК-ТНН(N)

Назначение средства измерений

Преобразователи термоэлектрические кабельные ТПК-ТХА(К), ТПК-ТНН(N) предназначены для измерений температуры в вакууме, газообразных, жидких и твердых средах, не агрессивных к материалу оболочки.

Описание средства измерений

Принцип действия основан на термоэлектрическом эффекте – генерировании термоэлектродвижущей силы, пропорциональной разности температур рабочего конца и свободных концов двух проводников (термоэлектродов) из различных металлов или сплавов.

Конструктивно преобразователи термоэлектрические кабельные ТПК-ТХА(К), ТПК-ТНН(N) состоят из:

- кабеля в оболочке с минеральной изоляцией и двумя термоэлектродами;
- узла герметизации с двумя выводами.

По заказу преобразователи термоэлектрические кабельные $T\Pi K$ -TXA(K), $T\Pi K$ -THH(N) комплектуются защитным чехлом.

Материал термоэлектродов:

- ТПК-ТХА(К) хромель/алюмель;
- ТПК-ТНН(N) нихросил/нисил.

Материал изоляции – окись магния (MgO).

Материал оболочки кабеля и защитного чехла:

- сталь 08Х18Н10Т или 12Х18Н10Т;
- сталь 10X17H13M2T или AISI316Ti;
- жаропрочный сплав ХН78Т;
- сплав Инконель 600;
- сплав ХН 45Ю.

Внешний вид преобразователей термоэлектрических кабельных ТПК-ТХА(K), ТПК- $\mathrm{THH}(N)$ изображён на рисунке 1.

По числу зон измерения преобразователи термоэлектрические кабельные ТПК-ТХА(К), ТПК-ТНН(N) являются однозонными.

В зависимости от конструкции преобразователи термоэлектрические кабельные ТПК-ТХА(К), ТПК-ТНН(N) изготавливаются с изолированным и неизолированным от оболочки рабочим концом.

Узел герметизации преобразователей термоэлектрических кабельных ТПК-ТХА(К), ТПК-ТНН(N) имеет степень защиты не ниже IP65.

Рисунок 1

Метрологические и технические характеристики

1 Рабочие диапазоны температур, в которых нормируется погрешность, преобразователей термоэлектрических кабельных ТПК-ТХА(К), ТПК-ТНН(N) приведены в таблице 1. Таблица 1

Тип преобразователей термоэлектрических кабельных	Рабочие диапазоны температур
TIIK-TXA(K)	от 0 до 400 °C
	от 400 до 800 °C
TIIK-THH(N)	от 0 до 800 °C

2 Номинальные статические характеристики (HCX) соответствуют ГОСТ Р 8.585-2001. Пределы допускаемых отклонений от HCX приведены в таблице 2. Таблица 2

Тип	Класс	Диапазон измерений, °С	Пределы допускаемых
	допуска		отклонений от НСХ, °С
$T\Pi K$ - $TXA(K)$, $T\Pi K$ - $THH(N)$	1	от 0 до 375	± 1,5
		свыше 375 до 800	± 0,004·t
ТПК-ТХА(К), ТПК-ТНН(N)	2	от 0 до 333	± 2,5
		свыше 333 до 800	± 0,0075·t

- 3 Нестабильность HCX преобразования не превышает $\frac{1}{2}$ предела допускаемых отклонений.
- 4 Показатель тепловой инерции преобразователей термоэлектрических кабельных ТПК-ТХА(K), ТПК-ТНН(N) при коэффициенте теплоотдачи практически равном бесконечности приведён в таблице 3.

Таблица 3

Конструкция	Показатель тепловой инерции без защитного чехла,				
рабочего конца	в зависимости от диаметра оболочки кабеля, с, не более				
	0,9 мм	1,0 мм	1,3 мм	1,5 мм	3,0 мм
Неизолированный	0,2	0,3	0,7	1,0	2,0
Изолированный	0,4	0,5	1,1	1,5	2,5

5 Размеры преобразователей термоэлектрических кабельных ТПК-ТХА(K), ТПК-ТНН(N) приведены в таблице 4.

Tofrance	1
Таблица	4

Диаме	тр, мм	Диаметр термоэлектродов, мм		Диаметр узла	Длина, м
Номинальный	Предельное	Номинальный	Предельное	герметизации,	
	отклонение		отклонение	мм, не более	
		без защитн	ого чехла		
0,9		0,18			
1,0	$\pm 0,04$	0,20			
1,3		0,26	$\pm 0,05$	4,5	от 1 до 100
1,5	± 0,05	0,27			01 1 до 100
3,0	± 0,03	0,50			
3,0	± 0,05	0,65	± 0,07		
с защитным чехлом					
4,0	-0,02/-0,05	-	-	6,0	от 1 до 100

6 Значения электрического сопротивления изоляции между цепью чувствительного элемента и оболочкой преобразователей термоэлектрических кабельных ТПК-ТХА(К), ТПК-ТНН(N) приведены в таблице 5.

Таблица 5

Температура, °С	25 ± 10	до 400	до 800
Величина электрического сопротивления, МОм	1000	1	0,025

7 Значения испытательного напряжения выдерживаемого изоляцией преобразователей термоэлектрических кабельных ТПК-ТХА(К), ТПК-ТНН(N) с изолированным рабочим концом, соответствуют ГОСТ 23847-79 и приведены в таблице 6.

Таблица 6

Диаметр, мм	Испытательное напряжение, В		
0,9; 1,0; 1,3	100		
1,5; 3,0	250		

8 Значение вероятности безотказной работы не менее 0,95 при работе:

- в течение 40000 часов в диапазоне температур от 0 до 400 °C;
- в течение 8000 часов в диапазоне температур от 400 до 800 °C.

Минимальная наработка на отказ при температуре не более 800 °C в условиях атмосферы с влажностью не более 98 %:

- диаметром от 0,9 до 1,5 мм 10000 ч;
- диаметром 3,0 мм 12000 ч.

Знак утверждения типа

Знак утверждения типа наносится на титульный лист эксплуатационной документации и бумажную ламинированную бирку типографским способом, на узел герметизации методом электрогравировки.

Комплектность средства измерений

Комплектность средства измерения приведена в таблице 7.

Таблица 7

Наименование	Кол-во, шт	Примечание
ТПК-ТХА(К) или ТПК-ТНН(N)	1	
Паспорт	1	
ШПИС.405220.003 ПС		Общепромышленного применения
ШПИС.405220.011 ПС		Для АЭС
Руководство по эксплуатации	1	
ШПИС.405220.002 РЭ		Общепромышленного применения
ШПИС.405220.008 РЭ		Для АЭС

Поверка

осуществляется по ГОСТ 8.338-2002 «ГСИ. Преобразователи термоэлектрические. Методика поверки».

Сведения о методиках (методах) измерений

Сведения о методах измерений содержатся в руководствах по эксплуатации.

Нормативные и технические документы, устанавливающие требования к преобразователям термоэлектрическим кабельным ТПК-ТХА(К), ТПК-ТНН(N)

- 1 ШПИС.405220.001 ТУ «Преобразователь термоэлектрический кабельный. Технические условия».
 - 2 ГОСТ 6616-94 «Преобразователи термоэлектрические. Общие технические условия».
- 3 ГОСТ 23847-79 «Преобразователи термоэлектрические кабельные типов КТХАС, КТХАСп, КТХКС. Технические условия».

- 4 ГОСТ Р 52931-2008 «Приборы контроля и регулирования технологических процессов. Общие технические условия».
- 5 ГОСТ Р 8.585-2001 «ГСИ. Термопары. Номинальные статические характеристики преобразования».
- 6 ГОСТ 8.558-93 «ГСИ. Государственная поверочная схема для средств измерений температуры».

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

- осуществление производственного контроля за соблюдением установленных законодательством Российской Федерации требований промышленной безопасности к эксплуатации опасного производственного объекта,
- выполнение работ по оценке соответствия промышленной продукции и продукции других видов, а также иных объектов установленным законодательством Российской Федерации обязательным требованиям.

Изготовитель

ОАО «Правдинский опытный завод источников тока»

141260, Московская обл., Пушкинский район, п. Правдинский, ул. Фабричная, д. 8.

Тел. (495) 524-06-00, факс (495) 993-34-02.

E-mail: oao_pozit@mail.ru.

Испытательный центр

ГЦИ СИ ФБУ «Ростест–Москва», регистрационный номер 30010-10 от 15.03.2010г. 117418, г. Москва, Нахимовский проспект, 31.

Тел. (495) 544-00-00, (499) 129-19-11, факс (499) 124-99-96.

E-mail: info@rostest.ru, web: www.rostest.ru.

Заместитель				
Руководителя Федерального				Ф.В.Булыгин
агентства по техническому				
регулированию и метрологии				
	${ m M.\Pi}$	«	>>	2013