

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

СВИДЕТЕЛЬСТВО

об утверждении типа средств измерений

RU.C.31.001.A № 50778

Срок действия до 17 мая 2018 г.

НАИМЕНОВАНИЕ ТИПА СРЕДСТВ ИЗМЕРЕНИЙ Сигнализаторы загазованности взрывозащищенные СГС-902

ИЗГОТОВИТЕЛЬ

ЗАО "Электронстандарт-прибор", г. Санкт-Петербург

РЕГИСТРАЦИОННЫЙ № 34684-13

ДОКУМЕНТ НА ПОВЕРКУ МП-242-1473-2012

интервал между поверками 1 год

Тип средств измерений утвержден приказом Федерального агентства по техническому регулированию и метрологии от 17 мая 2013 г. № 509

Описание типа средств измерений является обязательным приложением к настоящему свидетельству.

Заместитель Руководителя		Ф.В.Булыг
Федерального агентства		
	11 _11	2013 г.

Nº 009764

Ф.В.Булыгин

Серия СИ

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Сигнализаторы загазованности взрывозащищенные СГС-902

Назначение средства измерений

Сигнализаторы загазованности взрывозащищенные СГС-902 предназначены для измерения довзрывоопасных концентраций горючих газов и паров горючих жидкостей (метан, пропан, бутан, ацетилен, ацетон) и массовой концентрации вредных газов (оксид углерода, сероводород, диоксид серы, диоксид азота) в воздухе и выдачи сигнализации о превышении установленных значений.

Описание средства измерений

Сигнализаторы загазованности взрывозащищенные СГС-902 (в дальнейшем сигнализаторы) представляют собой стационарные приборы непрерывного действия.

Конструктивно сигнализаторы состоят из источника питания БП-902, устройства порогового двухканального УПЭС-902 и подключаемых к нему датчиков газовых термокаталитических ДГТ-902 и/или электрохимических ДГЭ-902.

Связь между датчиками и УПЭС-902 осуществляется посредством унифицированного аналогового токового сигнала (4-20) мА.

Датчики ДГТ-902 и ДГЭ-902 имеют два варианта исполнения:

- а) со встроенным пороговым устройством, настроенным на второй (аварийный) порог срабатывания звуковой и световой сигнализации;
 - б) без встроенного порогового устройства.

Сигнализаторы, содержащие датчики ДГТ-902 и ДГЭ-902 со встроенным пороговым устройством могут поставляться без УПЭС-902 и БП-902.

Способ отбора пробы – диффузионный.

Принцип действия сигнализаторов:

- с датчиками ДГТ-902 термокаталитический;
- с датчиками ДГЭ-902 электрохимический.

Сигнализаторы обеспечивают световую и звуковую сигнализацию, управляющие сигналы в виде замыкания "сухих" контактов реле при достижении концентрации двух фиксированных пороговых значений (предупредительная и аварийная сигнализация), а также цифровой выходной сигнал по интерфейсу RS-232 и RS-485.

Датчики выполнены во взрывозащищенном исполнении с видом взрывозащиты «искробезопасная электрическая цепь» по ГОСТ Р 51330.10 и «взрывобезопасная оболочка» по ГОСТ Р 51330.1. УПЭС-902 имеет встроенные барьеры искрозащиты. Маркировка взрывозащиты составных частей сигнализаторов:

- 1ExibdIIBT6 ДГТ-902;
- 1ExibIIBT6 ДГЭ-902;
- [Exib]IIB для УПЭС-902.

По защищенности от влияния пыли и воды конструкция сигнализаторов соответствует степени защиты по ГОСТ 14254-96:

- датчики ДГТ-902, ДГЭ-902 IP 54;
- УПЭС-902 IP 20.

Внешний вид сигнализаторов приведен на рисунке 1

Рисунок 1 – Внешний вид сигнализатора загазованности взрывозащищенного СГС-902

Рисунок 2 – Схема пломбирования

Программное обеспечение

Сигнализаторы имеют встроенное программное обеспечение, разработанное изготовителем специально для решения задач измерения содержания определяемых компонентов в воздухе рабочей зоны.

Программное обеспечение сигнализаторов идентифицируется по запросу через интерфейс RS-232 или RS-485.

Программное обеспечение выполняет следующие функции:

- прием и обработку измерительной информации;
- формирование выходного цифрового сигнала;
- пересчет единиц измерения;
- диагностику состояния аппаратной части.

Идентификационные данные программного обеспечения приведены в таблице 1.

Таблица 1

Наименова- ние про- граммного обеспечения	Идентификацион- ное наименование программного обеспечения	Номер вер- сии про- граммного обеспечения	Цифровой идентифи- катор программного обеспечения (кон- трольная сумма ис- полняемого кода)	Алгоритм вычисления цифрового идентификатора программного обеспечения	
SGS 902	upes902_140708.HEX	V36902	735D	CRC16	
Примечание – номер версии ПО должен быть не ниже указанного в таблице.					

Влияние встроенного программного обеспечения учтено при нормировании метрологических характеристик сигнализаторов. Уровень защиты встроенного программного обеспечения сигнализаторов от преднамеренных или непреднамеренных изменений "С" по МИ 3286-2010.

Метрологические и технические характеристики

1) Диапазоны измерений и пределы допускаемой основной погрешности сигнализаторов приведены в таблице 2.

Таблица 2

		Диапазон измерений			Пределы допускаемой	
		определяемого компонента			основной погрешности	
	Опреде-		довзры-			
Тип датчика	ляемый		воопас-	массовой		
тип датчика	компонент	объемной до-	ных	концен-	абсолют-	относи-
	ROMITOHERT	ЛИ	концен-	трации,	ной	тельной
			траций,	$M\Gamma/M^3$		
			% НКПР			
ДГТ-902-метан	Метан	От 0 до 2,2 %	От 0 до		±5 %	-
Д1 1-702-метап	(CH ₄)	ОТ 0 до 2,2 70	50		НКПР	
ДГТ-902-пропан	Пропан	От 0 до 0,85 %	От 0 до	_	±5 %	-
Д1 1-902-пропап	$(C_3\Pi_8)$	ОТ 0 до 0,05 70	50	_	НКПР	
ДГТ-902-бутан	Н-бутан	От 0 до 0,7 %	От 0 до	_	±5 %	-
, ,	$(H-C_4H_{10})$	ОТОДОО,7 70	50		НКПР	
ДГТ-902-	Ацетилен	От 0 до 1,15 %	От 0 до	_	±5 %	-
ацетилен	(C_2H_2)	ОТ 0 до 1,15 70	50		НКПР	
ДГТ-902-	Ацетон	От 0 до 1,25 %	От 0 до	_	±5 %	-
ацетон	$((CH_3)_2CO)$		50		НКПР	
ДГЭ-902- оксид	Оксид	От 0 до 17 млн ⁻¹		От 0 до 20	$\pm 5 \text{ M}\Gamma/\text{M}^3$	-
углерода	углерода	Свыше 17 до	-	Свыше 20	-	± 25 %
утлероди	(CO)	103 млн ⁻¹		до 120	2	
ДГЭ-902-	Серово-	От 0 до 7 млн ⁻¹		От 0 до 10	$\pm 2,5 \text{ M}\Gamma/\text{M}^3$	-
сероводород	дород	Свыше 7 до 32	-	Свыше 10	-	± 25 %
Сероводород	(H_2S)	млн ⁻¹		до 50	2	
	Диоксид	От 0 до 3,8		От 0 до 10	$\pm 2,5 \text{ M}\Gamma/\text{M}^3$	-
ДГЭ-902-	серы	МЛН ⁻¹	_			
диоксид серы	(SO_2)	Свыше 3,8 до		Свыше 10	-	± 25 %
	, ,	18,8 млн ⁻¹		до 50	2	
ДГЭ-902-	Диоксид	От 0 до 1 млн ⁻¹		От 0 до 2	$\pm 0.5 \text{ M}\text{г/m}^3$	-
диоксид азота	азота	Свыше 1 до	-	Свыше 2 до	-	± 25 %
7, 3	(NO_2)	10,5 млн ⁻¹		20		

Всего листов 7

		Диапаз определяе	он измере мого комп		Пределы до основной по	•
Тип датчика	Опреде- ляемый компонент	объемной до- ли	довзрывоопасных концентраций, % НКПР	массовой концен- трации, мг/м ³	абсолют- ной	относи- тельной

Примечания:

- 1) пересчет значений концентрации определяемого компонента, выраженных в объемных долях, %, в % НКПР следует проводить с учетом значений, указанных в ГОСТ Р 51330.19-99;
- 2) пересчет результатов измерений, выраженных в единицах массовой концентрации ($M\Gamma/M^3$) в единицы объемной доли ($MЛH^{-1}$), осуществляется автоматически для нормальных условий эксплуатации;
- 3) пределы допускаемой основной абсолютной погрешности сигнализатора по измерительным каналам довзрывоопасных концентраций горючих газов и паров нормированы при условии наличия в контролируемой среде только одного определяемого компонента;
- 4) диапазон показаний для всех измерительных каналов с датчиками ДГТ-902 от 0 до 100 % НКПР.
- 2) Пределы допускаемой вариации показаний, в долях от пределов допускаемой основной погрешности 0,5.
- 3) Пределы допускаемой дополнительной погрешности от влияния изменения температуры окружающей и анализируемой сред в рабочих условиях эксплуатации на каждые 10°C от температуры определения основной погрешности, в долях от пределов допускаемой основной погрешности

 0,5.
- 4) Пределы допускаемой дополнительной погрешности от влияния изменения относительной влажности воздуха в рабочих условиях эксплуатации на каждые 10° % от влажности при которой определялась основная погрешность, в долях от пределов допускаемой основной погрешности 0.5.
- 5) Пределы допускаемой погрешности срабатывания порогового устройства УПЭС-902 и датчиков со встроенным пороговым устройством, в долях от пределов допускаемой основной погрешности

 0,2.
- 6) Пределы допускаемого изменения выходных сигналов сигнализаторов за 8 ч непрерывной работы, в долях от пределов допускаемой основной погрешности 0,5.
 - 7) Время срабатывания сигнализации, с, не более:
 - для датчиков ДГТ-902

15;

- для датчиков ДГЭ-902

60.

8) Время прогрева сигнализатора, мин, не более

- 10.
- 9) Электрическое питание сигнализатора осуществляется переменным током частотой
- (50±1) Гц напряжением, В

 220^{+10}_{-15}

10) Потребляемая мощность, В-А, не более

- 12.
- 11) Габаритные размеры и масса составных частей сигнализаторов представлены в таблице 3.

Таблица 3

Условное обозначение	Габаритные размеры, мм, не более			
составной части сигнализатора	длина	ширина	высота	Масса, кг
ДГТ-902, ДГЭ-902	65	145	35	0,2
УПЭС-902	180	155	40	0,5
БП-902	115	90	80	0,8

12) Средняя наработка на отказ, ч

30000.

13) Средний срок службы, лет

10.

Условия эксплуатации

-	диапазон темпер	ратур окружающей среды, С	от мин	ус 20 до плюс 50;
-	диапазон	относительной	влажности	воздуха
	при температуре	e 40 C, %		от 0 3до 95;
-	диапазон атмосф	рерного давления, кПа		от 84 до 117
_		мм рт. ст.		от 630 ло 880.

Знак утверждения типа

Знак утверждения типа наносится типографским способом на титульный лист паспорта и руководства по эксплуатации и в виде таблички на корпус устройства порогового и датчиков

Комплектность средства измерений

Комплект поставки сигнализатора приведен в таблице 4.

Таблица 4

Наименование	Обозначение	Кол.	Примечание
Пороговое устройство УПЭС-902 и		1 шт.	По заявке за-
источник питания БП-902		1 ш1.	казчика
			Тип датчика
Датчики ДГТ-902, ДГЭ-902		1 компл.	определяется
			при заказе
Руководство по эксплуатации	ЖСКФ.411711.004 РЭ	1 экз.	
Паспорт	ЖСКФ.411711.004 ПС	1 экз.	
Методика поверки	МП 242 – 1473-2012	1 экз.	
Комплект принадлежностей		1 компл.	

Поверка

осуществляется по документу МП-242-1473-2012 «Сигнализаторы загазованности взрывозащищенные СГС-902. Методика поверки», утвержденному ГЦИ СИ ФГУП "ВНИИМ им. Д.И. Менделеева" 19 декабря 2012 г.

Основные средства поверки:

- поверочный нулевой газ (ПНГ) воздух марки Б по ТУ 6-21-5-82 в баллонах под давлением;
 - азот газообразный особой чистоты сорт 1 по ГОСТ 9293-74 в баллоне под давлением;
- стандартные образцы газовых смесей состава метан воздух (ГСО 3907-87), пропан воздух (ГСО 3969-87, 3970-87), бутан воздух (ГСО 9126-2008); ацетилен азот (ГСО 9257-2008), оксид углерода воздух (ГСО 3842-87, 3844-87, 3847-87), сероводород воздух (ГСО 8368-2003, 9172-2008), диоксид серы азот (ГСО 8372-2003), диоксид азота азот (ГСО 8370-2003), выпускаемые по ТУ 6-16-2956-92 в баллонах под давлением;
 - □ рабочий эталон 1-го разряда комплекс ГГП-1 ШДЕК.418313.500 ТУ;

- рабочий эталон 1-го разряда - генератор газовых смесей ГГС ШДЕК.418313.900 ТУ, исполнение ГГС-Р.

Сведения о методиках (методах) измерений

приведены в документе «Сигнализатор загазованности взрывозащищенный СГС-902. Руководство по эксплуатации. ЖСКФ.411711.004 РЭ», 2007 г.

Нормативные и технические документы, устанавливающие требования к сигнализаторам загазованности взрывозащищенным СГС-902

- 1 ГОСТ 13320-81 Газоанализаторы промышленные автоматические. Общие технические условия.
- 2 ГОСТ Р 52350.29.1-2010 (МЭК 60079-29-1:2007) Газоанализаторы. Общие технические требования и методы испытаний газоанализаторов горючих газов.
- 3 ГОСТ 27540-87 Сигнализаторы горючих паров и газов термохимические. Общие технические условия.
- 4 ГОСТ 12.1.005-88 Общие санитарно-гигиенические требования к воздуху рабочей зоны.
- 5 ГОСТ 12.2.007.0-75 Система стандартов безопасности труда. Изделия электротехнические. Требования безопасности.
- 6 ГОСТ 8.578-2008 Государственная поверочная схема для средств измерений содержания компонентов в газовых средах.
 - 7 ЖСКФ 411711.004 ТУ Сигнализаторы СГС-902. Технические условия.

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

- при выполнении работ по обеспечению безопасных условий и охраны труда;
- при осуществлении производственного контроля за соблюдением установленных законодательством Российской Федерации требований промышленной безопасности к эксплуатации опасного производственного объекта.

Изготовитель

ЗАО «Электронстандарт-прибор», Санкт-Петербург Адрес: 192286, Санкт-Петербург, пр. Славы, д.35, корп. 2.

Испытательный центр

ГЦИ СИ Φ ГУП «ВНИИМ им. Д.И.Менделеева», Санкт-Петербург Адрес: 190005, г. Санкт-Петербург, Московский пр., 19, тел.: (812) 251-76-01,

факс: (812) 713-01-14 e-mail: <u>info@vniim.ru</u>, <u>http://www.vniim.ru</u>, регистрационный номер

30001-10.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

Ф.В. Булыгин

М.п.	«	>>	2013 г