

по

Система автоматизированная информационноизмерительная коммерческого учета электрической энергии (АИИС КУЭ) ПС 220 кВ «Благовещенская» Внесена в Государственный реестр средств измерений

Регистрационный номер № 35485-07

Взамен №

Изготовлена

000

«ТЕЛЕКОР-Т»,

Москва

проектной

документации

ОАО "Дальэнергосетьпроект", г. Владивосток, заводской номер № 0207011.

НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ

г.

Система автоматизированная информационно-измерительная коммерческого учета электрической энергии (АИИС КУЭ) ПС 220 кВ «Благовещенская» (далее – АИИС КУЭ) предназначена для измерения активной и реактивной электроэнергии выработанной и потребленной за установленные интервалы времени, а также для автоматизированного сбора, обработки, хранения и отображения информации.

Областью применения данной АИИС КУЭ является коммерческий и технический учёт электрической энергии на объекте ПС 220 кВ «Благовещенская» Филиала ОАО «ФСК ЕЭС» Магистральные электрические сети Востока», г. Хабаровск по утвержденной методике выполнения измерений количества электрической энергии.

ОПИСАНИЕ

АИИС КУЭ представляет собой многофункциональную, трехуровневую систему с централизованным управлением и распределенной функцией выполнения измерений, которая состоит из измерительных каналов (далее - ИК), измерительно-вычислительных комплекса электроустановки (далее - ИВКЭ), информационно-вычислительного комплекса (далее - ИВК) АИИС КУЭ.

АИИС КУЭ решает следующие задачи:

- измерение 30-минутных приращений активной и реактивной электроэнергии;
- периодический и/или по запросу автоматический сбор привязанных к единому календарному времени результатов измерений приращений электроэнергии с заданной

дискретностью учета (30 мин.);

- хранение результатов измерений в специализированной базе данных, отвечающей требованию повышенной защищенности от потери информации (резервирование баз данных) и от несанкционированного доступа;
- передача в организации участники оптового рынка электроэнергии (ОРЭ) результатов измерений;
- обеспечение защиты оборудования, программного обеспечения и данных от несанкционированного доступа на физическом и программном уровне (установка паролей и т.п.);
- диагностика и мониторинг функционирования технических и программных средств
 АИИС КУЭ;
 - конфигурирование и настройка параметров АИИС КУЭ;
 - ведение системы единого времени в АИИС КУЭ (коррекция времени).

АИИС КУЭ включает в себя следующие уровни:

1-й уровень — измерительные каналы (ИК), включающие измерительные трансформаторы тока (ТТ) класса точности 0,2S; 0,5 и 1,0 по ГОСТ 7746, измерительные трансформаторы напряжения (ТН) класса точности 0,2 по ГОСТ 1983 и счетчики активной и реактивной электроэнергии типа ЕвроАЛЬФА класса точности 0,2S и 0,5S по ГОСТ 30206 (в части активной электроэнергии); 0,5 и 1,0 по ГОСТ 26035 (в части реактивной электроэнергии).

В состав АИИС КУЭ входит 10 ИК из них 6 для коммерческого учета электрической энергии, 4 для технического учета электрической энергии (см. Таблицу 1).

2-й уровень — измерительно-вычислительный комплекс электроустановки, созданный на основе устройств сбора и передачи данных (УСПД) типа RTU-325, включающий аппаратуру передачи данных внутренних каналов связи, автоматизированное рабочее место (APM) оператора и специализированное программное обеспечение Альфа-Центр (далее - ПО).

3-й уровень - информационно-вычислительный комплекс (ИВК) АИИС КУЭ, включающий в себя сервер сбора данных АИИС КУЭ ПС 220 кВ «Благовещенская», аппаратуру передачи данных внутренних и внешних каналов связи и специализированное ПО.

Технические средства системы обеспечения единого времени (далее - COEB) включены в систему на уровне ИВКЭ: устройство синхронизации системного времени типа УССВ-35HVS включающее GPS-приемник сигналов точного времени.

Первичные фазные токи и напряжения преобразуются измерительными трансформаторами в аналоговые сигналы низкого уровня, которые по проводным линиям связи поступают на соответствующие входы электронного счетчика электрической энергии. В счетчике мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются мгновенные значения активной и полной мощности, которые усредняются за период 0,02 с. Средняя за период реактивная мощность вычисляется по средним за период значениям активной и полной мощности.

Электрическая энергия вычисляется методом интегрирования по времени активной и реактивной мощности контролируемого присоединения.

Средняя активная (реактивная) электрическая мощность вычисляется как среднее значение мощности на интервале усреднения 30 мин.

Цифровой сигнал с выходов счетчиков по проводным линиям связи интерфейса RS-485 поступает в УСПД. В целях повышения надежности функционирования ИК счетчики подключаются к источнику резервного питания через ABP.

На УСПД (уровень ИВКЭ) осуществляется хранение измерительной информации, ее накопление и передача данных по внутренним основному и/или резервному каналам связи на верхний уровень системы (ИВК). В качестве основного канала связи ИВКЭ – ИВК используется: фрагмент локальной сети (LAN), с интерфейсом Ethernet, а в качестве резервного - канал на базе GSM-модема Siemens МС(ТС)-35. Опрос УСПД происходит с периодом 30 минут, по запросу с уровня ИВК.

В состав ИВКЭ входят:

- устройство сбора и передачи данных RTU-325-E-512-M3-B8-Q-12-G;
- APM диспетчера станции;
- каналообразующая аппаратура;
- технические средства СОЕВ;
- технические средства организации локальной вычислительной сети.

На уровне ИВК системы выполняется дальнейшая обработка измерительной информации, в частности вычисление электроэнергии и мощности с учетом коэффициентов трансформации ТТ и ТН, резервное копирование, формирование и хранение поступающей информации, оформление справочных и отчетных документов. Передача информации в организации — участники ОРЭ, осуществляется от сервера через коммутатор SIGNAMAX FO-0657530 далее по каналу связи Интернет провайдера.

В состав ИВК входят:

- сервер базы данных;
- коммуникационный сервер;
- модемный пул;
- источник бесперебойного питания;
- устройства интерфейса.

АИИС КУЭ оснащена СОЕВ, созданной на базе устройства синхронизации системного времени типа УССВ-35HVS включающего приемник сигналов точного времени от спутников глобальной системы позиционирования (GPS). Время УСПД синхронизировано со временем GPS-приемника. УСПД осуществляет коррекцию времени сервера. Сличение времени сервера со временем УСПД, выполняется при каждом сеансе связи сервера АИИС КУЭ с УСПД, и корректировка времени осуществляется УСПД автоматически при обнаружении рассогласования времени УСПД и сервера АИИС КУЭ более чем на ± 1 с.

УСПД также осуществляет коррекцию времени счетчика. Сличение времени счетчиков со временем УСПД, выполняется при каждом сеансе связи УСПД со счетчиком, и корректировка времени осуществляется УСПД автоматически при обнаружении рассогласования времени УСПД и счетчика более чем на ± 2 с (программируемый параметр). Погрешность системного времени не превышает предел допускаемой абсолютной погрешности измерения текущего времени, равный 5 с/сут.

Журналы событий счетчика электроэнергии и УСПД отражают время (дата, часы, минуты) коррекции часов указанных устройств и расхождение времени в секундах, корректируемого и корректирующего устройств в момент непосредственно предшествующий корректировке.

Для защиты измерительной системы от несанкционированных изменений (корректировок) предусмотрен многоступенчатый доступ к текущим данным и параметрам настройки системы (пломбирование, физическая защита оборудования АИИС (установка в специализированные запирающиеся шкафы), электронные ключи, индивидуальные пароли и программные средства для защиты файлов и базы данных).

ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Состав измерительных каналов и их метрологические характеристики приведены в таблице 1 Таблица 1 – Состав измерительных каналов и их метрологические характеристики

I	Санал иерений			мерительного кана.				Метрологические х	аракт	рактеристики						
Номер ИК	Таименование объекта учета, диспетчерское наименование присоединения			Обозначение, тип	Заводской номер	Ктт-Ктн-Ксч	Наименование измеряемой величины	Доверительные границы относительной погрешности результата измерений количества учтенной активной и реактивной электрической		погрешность	MK, ± %	Погрешность ИК в рабочих	экспыў атации, т %			
H ₀	Наименование учета, диспет- наименова присоедине	1 данименован 1 данименован 2 3 4 4 5 6 6 7	Наименова	энергии при доверительной вероятности Р=0,95	$\cos \varphi = 1,0$	$eos \phi = 0.8$	cos φ = 0,5	$\cos \phi = 1,0$	$\cos \phi = 0.8$	$\cos \varphi = 0.5$						
1			3	4	5	6	7	8	9	10	11	12	13	14		
	Филиал ОАО «ФСК ЕЭС» МЭС Востока	АИИС КУЭ	No	АИИС КУЭ ПС 220 кВ «Благовещенская»	№ 0207011		rp WQ									
	ИВК	Сервер (ПО)	№ 20481-00	Альфа-Центр			Энергия активная, WP Энергия реактивная, WQ									
	ИВКЭ	успд	№ 19495-03	RTU-325-E-512- M3-B8-Q-12-G	№ 001669		Энер									

1	<u>2</u>		3	4	5	6	7	8	9	10	11	12	13	14
	Для коммерческого учета													
	220 кВ	II	KT 0,2S Ktt=1000/5 № 15855-96	A IMB-245 B IMB-245 C IMB-245	№ 8725966 № 8709999 № 8710007		и, W _Р іая, W _Q							
1		TH	KT 0,2 K _{TH} =220000:√3/100:√3 № 15853-96	A CPB 245 B CPB 245 C CPB 245	№ 8710016 № 8710019 № 8710017	440000	активная, Эсактивная							
	ВЛ-Сириус-1	Счетчик	KT 0,2S/0,5 Kcч=1 № 16666-97	EA02RAL-P4B-4	№ 01136499	7	Энергия активная, W _P Энергия реактивная, W _Q							
		E	КТ 0,2S Ктт=1000/5 № 15855-96	000/5 B IMB-245 J	№ 8725965 № 8725963		, W _P я, W _Q	- в диапазоне тока $0,01I_{\rm H1} \le I_1 < 0,02I_{\rm H1}$ (при $\cos \varphi = 1$)	1,0	-	-	1,1	-	-
2	1 220 кВ	TH	KT 0,2 KTH=220000:√3/100:√3 № 15853-96	A CPB 245 B CPB 245 C CPB 245	№ 8725964 № 8710016 № 8710019 № 8710017	440000	Энергия активная, нергия реактивная	- в диапазоне тока $0.02I_{H1} \le I_1 < 0.05I_{H1}$ - в диапазоне тока $0.05I_{H1} \le I_1 < 0.2I_{H1}$	0,9	2,1 0,8 1,3	1,8 1,5 1,3 1,0	1,1 - 0,8	1,3 2,7 1,0 1,6	1,9 2,0 1,4 1,3
	AT-1	Счетчик	KT 0,2S/0,5 Kcy=1 № 16666-97	EA02RAL-P4B-4	№ 01136497	4	Энергия активная, W _P Энергия реактивная, W _Q	- в диапазоне тока $0,2I_{H1} \le I_1 < I_{H1}$ - в диапазоне тока $I_{H1} \le I_1 < 1,2I_{H1}$	0,5 - 0,5 -	0,6 0,9 0,6 0,9	0,9 0,7 0,9 0,7	0,7 - 0,7 -	0,8 1,2 0,8 1,1	1,1 1,0 1,1 1,0
	я-1	II	KT 0,2S KTT=1000/5 № 15855-96	A IMB-245 B IMB-245 C IMB-245	№ 8710006 № 8710004 № 8710012		я, W _Р ая, W _Q							
3	Л-220 Амурская-1		КТ 0,2 Ктн=220000:√3/100:√3 № 15853-96	A CPB 245 B CPB 245 C CPB 245	№ 8710016 № 8710019 № 8710017	440000	Энергия активная, нергия реактивная							
	Л-220	Счетчик	КТ 0,2S/0,5 Ксч=1 № 16666-97	EA02RAL-P4B-4	№ 01118172	4	Энергия активная, W _P Энергия реактивная, W _Q							

1	<u>2</u>		3		4	5	6	7	8	9	10	11	12	13	14
		Ĺ	KT 0,2S	A	IMB-245	№ 8710010		p. 1/Q							
	_,	TT	Ктт=1000/5 № 15855-96	В	IMB-245	№ 8725967		W _P							
	2-2			C	IMB-245	№ 8725968		ая, ная							
	Сириус-2	т	KT 0,2	A	CPB 245	№ 8710015	440000	активная, еактивная							
4	Chl	TH	KTH=220000:√3/100:√3	\longrightarrow	CPB 245	№ 8710014		кту							i l
	00		№ 15853-96	С	CPB 245	№ 8710018	44	я а be					'		1
	Л-220	Счетчик	KT 0,2S/0,5 Kcч=1 № 16666-97	E.	A02RAL-P4B-4	№ 01136498		Энергия активная, W _P Энергия реактивная, W _Q							
		ļ.		Α	IMB-245	№ 8710011		~	- в диапазоне тока	1,0	-	-	1,1	-	-
				В	IMB-245	№ 8710000		M _P W	$0.01I_{H1} \le I_1 < 0.02I_{H1}$ (при $\cos \varphi = 1$)	-	-	-	-	-	-
		•	№ 15855-96	C	IMB-245	№ 8710003		я, ая,	- в диапазоне тока	0,9	1,1	1,8	1,1	1,3	1,9
			KT 0,2	Α	CPB 245	№ 8710015		3H2	$0.02I_{H1} \le I_1 < 0.05I_{H1}$	-	2,1	1,5		2,7	2,0
5	AT-2	TH	Ктн=220000:√3/100:√3	В	CPB 245	№ 8710014)00	INT X	- в диапазоне тока	0,6	0,8	1,3	0,8	1,0	1,4
"	A7		№ 15853-96	C	CPB 245	№ 8710018	440000	реа	$0.05I_{H1} \le I_1 < 0.2I_{H1}$	_	1,3	1,0	-	1,6	1,3
		Счетчик	КТ 0,2S/0,5 Ксч=1			№ 01136500		Энергия активная, W _P Энергия реактивная, W _Q	- в диапазоне тока	0,5	0,6	0,9	0,7	0,8	1,1
				EA02RAL-P4B-4	$0.2I_{H1} \le I_1 < I_{H1}$					0,9	0,7	-	1,2	1,0	
		Ae Ae	№ 16666-97	-	TOZICIE I ID I	7.2 01130300		7. 3H	- в диапазоне тока	0,5	0,6	0,9	0,7	0,8	1,1
				L.,				(-)	$I_{H1} \le I_1 < 1,2I_{H1}$	<u> -</u>	0,9	0,7	-	1,1	1,0
		_	KT 0,2S	Α	IMB-245	№ 8710002									
	7	Π	Ктт=1000/5	В	IMB-245	№ 8710001									
	ая-		№ 15855-96	C	IMB-245	№ 8710005		ая, ная							
)CK		KT 0,2	A	CPB 245	№ 8710015	0	ВНК							
9	Ī {	TH		В	CPB 245	№ 8710014	440000	CTM IKT							
			№ 15853-96	C	CPB 245	№ 8710018	44	r ar							
	Л-220	Счетчик	KT 0,2S/0,5 Kcy=1 № 16666-97	E	A02RAL-P4B-4	№ 01126585	-	Энергия активная, W _P Энергия реактивная, W _Q							

1	2	е таоли	3	4	5	6	7	8	9	10	11	12	13	14
					Для т	ехни	ческого уч	ета	1					
	0,4 кВ	TT	KT 1,0 KTT=50/5 № 31089-06	A ASK31.4 B ASK31.4 C ASK31.4	№ 90545121 № 90545122 № 90545123		и, W _P							
7	кабель	TH	<u>-</u>	A B C	-	10	10 Энергия активная, W _P Энергия реактивная, W _Q							
	Греющий	Счетчик	KT 0,5S/1,0 Kcч=1 № 16666-97	EA05RL-P2B-4	№ 01136493		Энерги	- в диапазоне тока 0,05Iн1 ≤ I1 < 0,2Iн1 - в диапазоне тока	3,3	5,5 8,5 2,8	10,5 4,9 5,3	3,5	5,6 8,8 3,0	10,6 5,2 5,4
	сборку 0,4 кВ	II	KT 1,0 KTT=200/5 № 31089-06	A ASK31.4 B ASK31.4 C ASK31.4	№ 90550836 № 90550837 № 90550840		я, W _Р ая, W _Q	0,2Iн1 ≤ I1 < Iн1 - в диапазоне тока Iн1 ≤ I1 ≤ 1,2Iн1	1,2	4,3 1,9 3,0	2,6 3,6 1,9	1,7	4,5 2,2 3,2	2,9 3,8 2,3
∞	ій сборку	TH	-	A B C	· -	40	Энергия активная, \ Энергия реактивная,							
	Питающий	Счетчик	KT 0,5S/1,0 Kcч=1 № 16666-97	EA05RL-P2B-4	№ 01136496									
	TCH-2	TT	КТ 0,5 Ктт=1250/5 № 31089-06	A ASK561.4 B ASK561.4 C ASK561.4	№ 90550854 № 90550853 № 90471892		я, W _Р	- в диапазоне тока	1,7	2,8	5,4	2,1	3,1	5,5
6	кВ	ТН	-	A B C	-	250	активна	0,05Iн1 ≤ I1 < 0,2Iн1 - в диапазоне тока 0,2Iн1 ≤ I1 < Iн1	1,0	4,5 1,5 2,4	2,8 2,7 1,6	- 1,5 -	5,0 1,9 2,7	3,3 3,0 2,1
	Ввод 0,4	Счетчик	КТ 0,5S/1,0 Ксч=1 № 16666-97	EA05RAL-P4B-4	№ 01131980		Энергия активная, W _P Энергия реактивная, W _Q	- в диапазоне тока Ін1 ≤ I1 ≤ 1,2Ін1	0,8	1,1	1,9	1,4	1,6	2,3

1	2		3	4	5	6	7	8	9	10	11	12	13	14
	1	TT	KT 0,5 KTT=1250/5 № 31089-06	A ASK561.4 B ASK561.4	№ 90550851 № 90550855	⊣ ∣	W _P							
	.H-			C ASK561.4	№ 90434015		ная, Л	- в диапазоне тока	1,7	2,8		2,1		5,5
	T.	Ε.		A			IBH	0,05Ін1 ≤ І1 < 0,2Ін1	-	4,5		-	5,0	
10	кВ	TH	-	B -	_	20	кти	- в диапазоне тока	1,0	1,5		1,5		3,0
	0,4			C		7	ж be	0,2IH1 ≤ I1 < IH1	 -	2,4	1,6	-	2,7	2,1
	од	¥	KT 0,5S/1,0				ИЛ ВИ	- в диапазоне тока	0,8	1,1	1,9	1,4	1,6	
	Ввс	Ē	Кт 0,35/1,0 Ксч=1	EA05RAL-P4B-4	№ 01131981		нер	IH1 ≤ I1 ≤ 1,2IH1		1,8	1,3		2,2	1,8
		Сче	№ 16666-97	Entosia in Tabel	3/2 01131701		Энер							

Примечания:

- 1. В Таблице 1 приведены метрологические характеристики основной погрешности ИК (нормальные условия эксплуатации) и погрешности ИК в реальных условиях эксплуатации для измерения электрической энергии и средней мощности (получасовых);
 - 2. Нормальные условия эксплуатации:
 - параметры питающей сети: напряжение (220 \pm 4,4) В; частота (50 \pm 0,5) Ги;
- параметры сети: диапазон напряжения $(0.99 \div 1.01)U_{\rm H}$; диапазон силы тока $(0.01 \div 1.2)I_{\rm H}$; диапазон коэффициента мощности $\cos \varphi$ ($\sin \varphi$) $0.5 \div 1.0(0.6 \div 0.87)$; частота (50 ± 0.15) Γ $_{\rm H}$;
 - магнитная индукция внешнего происхождения (для счетчиков) не более 0, 5 мТл;
 - температура окружающего воздуха: TH и TT от $-50^{\circ}C$ до $+50^{\circ}C$; счетчиков от $+18^{\circ}C$ до $+25^{\circ}C$; УСПД и ИВК от $+15^{\circ}C$ до $+25^{\circ}C$;
 - относительная влажность воздуха (70±5) %;
 - атмосферное давление (750±30) мм рт.ст.
 - 3. Рабочие условия эксплуатации:

для TT и TH:

- параметры сети: диапазон первичного напряжения $(0.9 \div 1.1)U_{nl}$; диапазон силы первичного тока $(0.01 \div 1.2)I_{nl}$; коэффициент мощности $\cos \varphi$ ($\sin \varphi$) $0.5 \div 1.0(0.6 \div 0.87)$; частота (50 ± 0.5) Γ $_{4}$;
 - температура окружающего воздуха от −50°C до +40°C;
 - относительная влажность воздуха (70±5) %;
 - атмосферное давление (750±30) мм рт.ст.

Для электросчетчиков:

- параметры сети: диапазон вторичного напряжения $(0.9 \div 1.1)U_{H2}$; диапазон силы вторичного тока $(0.02 \ (0.01 \ \text{при } \cos \varphi = 1) \div 1.2)I_{H2}$; диапазон коэффициента мощности $\cos \varphi$ ($\sin \varphi$) $0.8 \div 1.0(0.6)$;
 - частота (50 ± 0.5) Гу;
 - магнитная индукция внешнего происхождения, не более 0,5 мТл;

- температура окружающего воздуха для каналов: om $+18^{\circ}$ C до $+30^{\circ}$ C;
- относительная влажность воздуха (40-60) %;
- атмосферное давление (750±30) мм рт.ст.

Для аппаратуры передачи и обработки данных:

- параметры питающей сети: напряжение (220 ± 10) В; частота (50 \pm 1) Γ ų;
- температура окружающего воздуха от $+15^{\circ}C$ до $+25^{\circ}C$;
- относительная влажность воздуха (70±5) %;
- атмосферное давление (750±30) мм рт.ст.
- 4. Измерительные каналы включают измерительные трансформаторы тока по ГОСТ 7746, измерительные трансформаторы напряжения по ГОСТ 1983, счетчики электрической энергии по ГОСТ 30206 в режиме измерения активной электрической энергии и по ГОСТ 26035 в режиме измерения реактивной электрической энергии;
- 5. Допускается замена измерительных трансформаторов и счетчиков на аналогичные (см. п.1 Примечания) утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в Таблице 1, УСПД на однотипное утвержденного типа. Замена оформляется актом установленном в Филиале ОАО «ФСК ЕЭС» Магистральные электрические сети Востока порядке. Акт хранится совместно с настоящим описанием типа АИИС КУЭ как его неотъемлемая часть.

Надежность применяемых в системе компонентов:

- в качестве показателей надежности измерительных трансформаторов тока и напряжения, в соответствии с ГОСТ 1983 и ГОСТ 7746, определены средний срок службы и средняя наработка на отказ;
 - электросчетчик среднее время наработки на отказ не менее $T_0 = 50000$ ч.;
 - УСПД среднее время наработки на отказ не менее То =40000 ч.;
 - сервер АИИС КУЭ среднее время наработки на отказ не менее $T_O = 50000$ ч.;

Значения показателей надежности АИИС КУЭ:

- среднее время наработки на отказ $T_O = 35000$ ч;
- коэффициент готовности $K_{\Gamma} = 0,99$.

Надежность системных решений:

- резервирование электрического питания счетчиков электрической энергии с помощью резервного источника питания;
- резервирование электрического питания УСПД с помощью источника бесперебойного питания;
- резервирование электрического питания сервера с помощью источника бесперебойного питания:
 - резервирование внутренних каналов передачи данных (УСПД ИВК);
- резервирование внешних каналов передачи данных (сервер АИИС КУЭ или АРМ оператора участники ОРЭ).

Регистрация событий:

- журнал событий счетчика:
- параметрирования;
- пропадания напряжения;
- коррекции времени в счетчике;
- журнал событий УСПД:
- параметрирования;
- пропадания напряжения;
- коррекции времени в УСПД.

Защищенность применяемых компонентов:

- механическая защита от несанкционированного доступа и пломбирование:
- электросчетчиков;
- промежуточных клеммников вторичных цепей;
- испытательных коробок;
- УСПД;
- сервера АИИС КУЭ;
- защита информации на программном уровне:
- результатов измерений при передаче информации (возможность использования

- цифровой подписи);
- установка пароля на счетчик;
- установка пароля на УСПД;
- установка пароля на сервер.

Глубина хранения информации:

- электросчетчик тридцатиминутный профиль нагрузки в двух направлениях не менее 35 суток; при отключении питания не менее 5 лет при температуре +25 °C;
- УСПД суточные данные о тридцатиминутных приращениях электропотребления по каждому каналу и электропотребление за месяц по каждому каналу не менее 35 суток; при отключении питания не менее 3 лет;
- ИВК хранение результатов измерений и информации состояний средств измерений за весь срок эксплуатации системы.

ЗНАК УТВЕРЖДЕНИЯ ТИПА

Знак утверждения типа наносится на титульные листы эксплуатационной документации на систему автоматизированную информационно-измерительную коммерческого учета электрической энергии (АИИС КУЭ) ПС 220 кВ «Благовещенская».

КОМПЛЕКТНОСТЬ

Комплектность АИИС КУЭ определяется проектной документацией на систему. В комплект поставки входит техническая документация на систему и на комплектующие средства измерений.

Комплектность АИИС КУЭ представлена в таблице 2.

Таблица 2 – Комплектность АИИС КУЭ

Наименование	Количество
Измерительный трансформатор тока типа IMB-245	18 шт.
Измерительный трансформатор тока типа ASK31.4	6 шт.
Измерительный трансформатор тока типа ASK561.4	6 шт.
Измерительный трансформатор напряжения СРВ 245	6 шт.
Счетчик электроэнергии многофункциональный типа EA02RAL-P4B-4	6 шт.
Счетчик электроэнергии многофункциональный типа EA05RL-P2B-4	2 шт.
Счетчик электроэнергии многофункциональный типа EA05RAL-P4B-4	2 шт.
Устройство сбора и передачи данных RTU-325-E-512-M3-B8-Q-12-G	1 шт.
Устройство синхронизации системного времени типа УССВ-35HVS на базе GPS- приемника сигналов точного времени	1 шт.
Сервер базы данных в составе: системный блок Compaq Proliant ML 370R G3 Xeon /2.8 GGz/CD FDD NIC/1024 MB (2x512)/3x36GB HDD hot plug/SmartArray 641/ i/o 4xRs 232 (PCI-X) /CDRW/LAN; Windows 2000 serv (лиценция ОС) + option kit CPU Xeon /2.8 GGz/	1 комплект

Наименование	Количество
Коммуникационный сервер в составе: системный блок Hewlett Packard (Compaq) Proliant ML350R G3 X /2.4GHz/LAN; 512 Mb; 36 GB HDD hot plug; 4*8x Rs232 PCI-X CP-168U (DB-9 male); Windows 2000 pro (лицензия ОС)	1 комплект
Модемный пул для коммутируемых линий на базе модемного управляемого крейта серии ZyXEL RS-1612E rack chassis с блоком управления, блоком вентиляторов, блоком резервного питания и ЖКИ, 4-мя модульными модемами для выделенных/коммутируемых двух- или четырехпроводнях линий U-336 R	1 комплект
Источник бесперебойного питания Smart – UPS 3000 XL	1 шт.
Источник бесперебойного питания Black Smart-UPS 1500VA/980W	1 шт.
Коммутатор Ethernet Switch 19" (RM) 16x10/100 Base TX FO-065-7530i	1 шт.
Автоматизированное рабочее место (APM) оператора в составе: системный блок Compaq Evo CMT (convertible mini-tower) D510 CMT P4/2.0 GHz / 256 Mb RAM/40Gb HDD/CD/LAN; Windows 2000 pro (лицензия ОС)	2 комплекта
Специализированное программное обеспечение (ПО) Альфа-Центр	1 комплект
Переносной компьютер, ПО «АльфаЦентр» Navigator AC_N», ПО «АльфаЦентр Time AC_T», ПО «АльфаЦентр» Monitoring AC_M», ПО «АльфаЦентр» Laptor AC_L», ПО «AlphaPlus W-P» и оптический преобразователь «AE-1» для работы со счетчиками системы	1 комплект
Руководство по эксплуатации	1 экземпляр
Методика поверки	1 экземпляр

ПОВЕРКА

Поверка АИИС КУЭ проводится по документу «ГСИ. Система автоматизированная информационно-измерительная коммерческого учета электрической энергии АИИС КУЭ ПС 220 кВ «Благовещенская». Методика поверки ТЕ.411.711.604.МП, утвержденному ГЦИ СИ ФГУП «ВНИИМС».

Средства поверки – по НД на измерительные компоненты:

- TT в соответствии с ГОСТ 8.217-2003 «ГСИ. Трансформаторы тока. Методика поверки»;
- ТН в соответствии с ГОСТ 8.216-88 «ГСИ. Трансформаторы напряжения. Методика поверки» и/или МИ 2925-2005 «Измерительные трансформаторы напряжения 35...330/√3.
 Методика поверки на месте эксплуатации с помощью эталонного делителя»;
- ЕвроАЛЬФА в соответствии с документом «Многофункциональные счетчики электрической энергии типа ЕвроАЛЬФА. Методика поверки», согласованным «ВНИИМ» имени Д. И. Менделеева;;
- УСПД в соответствии с документом «Комплексы аппаратно-программных средств для учета электроэнергии на основе УСПД серии RTU-300. Методика поверки», утвержденному ГЦИ СИ ФГУП «ВНИИМС» в 2003 году;
- радиочасы МИР РЧ-01, принимающие сигналы спутниковой навигационной системы Global Positioning System (GPS), номер в Государственном реестре средств измерений № 27008-04;
- переносной компьютер с ПО и оптический преобразователь для работы со счетчиками системы; ПО для работы с радиочасами МИР РЧ-01.
- термометр по ГОСТ 28498, диапазон измерений от 40 ... +50 °C, цена деления 1°C.

Межповерочный интервал - 4 года.

НОРМАТИВНЫЕ И ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

ГОСТ 1983-2001 «Трансформаторы напряжения. Общие технические условия».

ГОСТ 7746-2001 «Трансформаторы тока. Общие технические условия».

ГОСТ Р 52323-2005 (МЭК 62053-22:2003) «Аппаратура для измерения электрической энергии переменного тока. Частные требования. Часть 22. Статические счетчики активной энергии классов точности 0,2S и 0,5S».

ГОСТ 30206-94 (МЭК 687-92) «Статические счетчики ватт-часов активной энергии переменного тока (классы точности 0,2S и 0,5S)».

ГОСТ 26035-83 «Счетчики электрической энергии переменного тока электронные. Общие технические условия».

ГОСТ 22261-94 «Средства измерений электрических и магнитных величин. Общие технические условия».

ГОСТ Р 8.596-2002 «ГСИ. Метрологическое обеспечение измерительных систем. Основные положения».

МИ 3000-2006 «Системы автоматизированные информационно-измерительные коммерческого учета электрической энергии. Типовая методика поверки».

Техническая документация на систему автоматизированную информационноизмерительную коммерческого учета электрической энергии АИИС КУЭ ПС 220 кВ «Благовещенская».

ЗАКЛЮЧЕНИЕ

Тип системы автоматизированной информационно-измерительной коммерческого учета электрической энергии (АИИС КУЭ) ПС 220 кВ «Благовещенская» утвержден с техническими и метрологическими характеристиками, приведенными в настоящем описании типа, метрологически обеспечен при выпуске и в эксплуатации согласно государственным поверочным схемам.

Изготовитель: ООО «ТЕЛЕКОР-Т»

Адрес: 121309, г. Москва,

ул. Новозаводская, д. 18, стр. 1,

тел./факс: (495) 795-09-30,

Заместитель генерального директора

В. В. Лобко

Заявитель: Филиал ОАО «ФСК ЕЭС»

Магистральные электрические сети Востока

Адрес: 680000, г. Хабаровск,

ул. Дзержинского, 47

Заместитель генерального директора

С. Л. Рыбаков