ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Приемник измерительный малогабаритный реестр UCR 3000M

Внесен в Государственный реестр средств измерений. Регистрационный №

35961-07

Взамен №

Изготовлен по технической документации фирмы«EM TEST GmbH», Германия. Заводской номер 04133

НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ

Приемник измерительный малогабаритный UCR 3000M (далее – приемник) предназначен для измерений напряжений радиопомех и синусоидальных напряжений.

Приемник применяется для измерения, поиска и идентификации сигналов помехи и может использоваться совместно с дополнительным оборудованием (электрические и магнитные антенны, эквиваленты сети, пробники, токосъемники, поглощающие клещи) для измерения напряженности поля, напряжения, тока и мощности индустриальных радиопомех от любых видов электрических устройств и для решения других задач электромагнитной совместимости.

Приемник может использоваться в лабораторных и полевых условиях.

ОПИСАНИЕ

Приемник представляет собой супергетеродинный измерительный приемник.

Характеристики приемника соответствуют требованиям ГОСТ Р 51319-99 к измерителям радиопомех.

Приемник может работать в режиме анализатора спектра.

Управление и обработка данных измерений производится с помощью встроенного микропроцессора, данные измерений выводятся на графический жидко-кристаллический дисплей и могут быть сохранены в памяти приемника.

Приемник имеет также интерфейс связи с компьютером RS-232, с помощью которого в память приемника могут быть загружены калибровочные данные для различных устройств, а также предельные значения измеряемых параметров. Также при помощи этого интерфейса данные измерений могут быть перенесены в память персонального компьютера.

Кроме этого приемник имеет разъем РСМСІА для подключения внешних карт памяти.

Питание приемника осуществляется от встроенной аккумуляторной батареи. Помимо работы с аккумуляторным питанием, блок питания, включенный в объём поставки, обеспечивает работу приемника от сети 220 В 50 Гц и заряд встроенного аккумулятора.

Рабочие условия применения:

- температура окружающего воздуха от +5 до +45 °C
- относительная влажность воздуха 90 % при температуре +35 °C;
- атмосферное давление от 60 до 106,7 кПа.

ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Рабочий диапазон частот, МГц	0,009 3000
Пределы допускаемой относительной погрешности	
установки частоты измерения	$\pm 1 \times 10^{-6}$
Диапазон измеряемых синусоидальных напряжений, дБмкВ	минус 20 +120
Разрешающая способность, дБ	0,1
Пределы допускаемой относительной погрешности	
измерения синусоидального напряжения, дБ	± 1
Ширина полосы пропускания по уровню минус 6 дБ, кГц	0,2; 9; 120
Диапазон ослабления аттенюатора, дБ	070 с шагом 10 дБ
Уровень собственных шумов (при использовании	
детектора среднего значения), дБмкВ, не более:	
9 кГц -150 кГц (полоса пропускания 200 Гц)	минус 20
150 кГц –30 МГц (полоса пропускания 9 кГц)	минус 10
30 МГц –1000 МГц (полоса пропускания 120 кГц)	0
1000 МГц –3000 МГц (полоса пропускания 120 кГц)	5
Детекторы в соответствии с ГОСТ Р 51319-99	квазипиковый
	средний
	пиковый
	среднеквадратичный
Анализируемая полоса частот в режиме анализатора спектра, кГц	± 6,4; 64; 640
РЧ-вход: сопротивление, Ом	50
КСВН при ослаблении менее 10 дБ, не более	2
КСВН при ослаблении более 10 дБ, не более	1,2
Выходное напряжение трекинг-генератора, дБмкВ	100 ± 2
Электропитание: - встроенный аккумулятор	12 В; 7,2 А/ч
- блок питания	(220 ± 22) В, (50 ± 0.5) Гц
Время непрерывной работы при питании	
от аккумуляторной батареи, не менее, ч	6
Потребляемая мощность, ВА, не более	50
Габаритные размеры (длина х ширина х высота), мм, не более	340 x 300 x 130
Масса, кг, не более	13,5
Средняя наработка на отказ, ч, не менее	10000

знак утверждения типа

Знак утверждения типа наносится на титульный лист руководства по эксплуатации приемника UCR 3000M РЭ. Метод нанесения – компьютерная графика.

комплектность

Наименование	Количество (шт.)
Приемник измерительный UCR 3000M	1
Блок питания	1
Набор соединительных кабелей	1
Диск с программным обеспечением	1
Руководство по эксплуатации UCR 3000M РЭ	1
Методика поверки UCR 3000M МП	1
Свидетельство о поверке	1

ПОВЕРКА

Поверка проводится в соответствии с документом: «Приемник измерительный малога-баритный UCR 3000М. Методика поверки» UCR 3000М МП, утвержденным ФГУП «ВНИИФТРИ» 03.08.07.

Основные средства поверки:

- генератор сигналов SML03 (диапазон частот 9 к Γ ц...3300 М Γ ц, погрешность установки частоты 1 х 10⁻⁷, погрешность установки уровня выходного напряжения \pm 0,5 д $\overline{\text{Б}}$);
- генератор импульсов Γ 5-100 (длительность импульса 5нс...1c, период повторения 0,1 мкс...100c, погрешность установки периода повторения $\pm 0,1$ %).

Межповерочный интервал - один год.

НОРМАТИВНЫЕ ДОКУМЕНТЫ

ГОСТ 22261-94 «Средства измерений электрических и магнитных величин. Общие технические условия.»

ГОСТ Р 51319-99 «Совместимость технических средств электромагнитная. Приборы для измерения индустриальных радиопомех. Технические требования и методы испытаний».

ЗАКЛЮЧЕНИЕ

Тип приемника измерительного малогабаритного UCR 3000M (заводской № 04133) утвержден с техническими и метрологическими характеристиками, приведенными в настоящем описании типа, метрологически обеспечен в эксплуатации.

Изготовитель: «EM TEST GmbH» (Германия),

Lünener Strasse 211, D-59174 Kamen, Germany

Заявитель:

Общество с ограниченной ответственностью «ЭМСИ»

(ООО «ЭМСИ»),

111524, Москва, ул. Плющева, 7, стр. 2

Владелец:

Федеральное государственное унитарное предприятие «Радиочастотный центр центрального федерального округа» (ФГУП «РЧЦ ЦФО»)

107.472 No. 1.01

127473, г. Москва, ул. Достоевского, д. 1/21.

Генеральный директо ООО «ЭМСИ»

М.В.Кузнецов