Солд совъя О: Директо ФГУ «Кемеровский ЦСМ» БИТ Голин

Система компьютеризированная диспетчерского контроля аэрогазовой обстановки угольной шахты КСДК — ш

Внесена в Постарственный реестр средств измерений Регистрационный № 36056-07

Изготовлена по технической документации ЗАО «НПК «Кузнецкий научноисследовательский угольный институт», г. Прокопьевск. Партия в количестве 6 штук .Заводские номера 02-07.

Назначение и область применения

Система компьютеризированная диспетчерского контроля аэрогазовой обстановки угольной шахты КСДК —ш, далее - система, предназначена для измерения силы тока. Апалоговый сигнал (0...5) мА, поступающий с датчиков контроля метана, окиси углерода, скорости движения воздуха, преобразуется в цифровую форму, которая передается по двухироводной линии связи на автоматизированное рабочее место оператора.

Система служит для обеспечения безопасности труда и применяется для дистанционного контроля аэрогазовой обстановки угольных шахт, обогатительных фабрик.

Описание

Принцип работы Системы заключается в преобразовании аналоговых сигналов с датчиков метана, окиси углерода, скорости движения воздуха, установленных в шахтах, в цифровую форму и в передачи этой информации по двухпроводной линии связи на автоматизированное рабочее место оператора.

Система состоит из:

- аппаратно программного блока, далее АПБ;
- автоматизированного рабочего места оператора, далее АРМ;

К АПБ подключают серийные искробезопасные датчики аэрогазового контроля (до 80 штук) с токовыми выходами типа ДМТ-4, ППИ (в составе аппаратуры АТ1-1, АТ3-1), ДМС 01, Сигма СО, ДОУ, СДОУ 01, ИСНВ -1, СДСВ 01 и другие соответствующие ГОСТ 24032-80 «Приборы шахтные газоаналитические».

АРМ производит донолнительные преобразования сигналов с датчиков и выводит их на экран монитора в наглядном виде, осуществляет архивирование заданных сигналов и голосовое оповещение оператора об аварийных, предаварийных ситуациях. Для обеспечения бесперебойной круглосуточной работы АРМ выполнено на основе персональных компьютеров в виде двух полукомплектов, выполняющих одинаковые функции и включенные по схеме «горячего» резерва. Питание каждого полукомплекта осуществляется от источников бесперебойного питания.

Основные технические характеристики

1 Диапазон измерений:
- входного сигнала измерительного канала, мА0-5;
2 Базовая конфигурация измерительных каналов:
-число измерительных каналов, штук
-измерение объемной доли метана каналы № 1-60;
-измерение объемной доли окиси углерода, скорости воздухаканалы № 61-80;
3 Пределы допускаемой приведенной основной погрешности
измерительного канала, $\%$
4 Параметры электрического питания и потребляемой мощности:
- напряжения питания, В
-потребляемая мощность, Вт, не более
6 Условия эксплуатации:
- гемпература окружающей среды, °С
- относительная влажность воздуха, %
- CENOCHTETISHAN BRANCHOUTS BOSAYNA, 76
7 Средний срок службы, лет, не менее
8 Индивидуальная гальваническая развязка входных цепей
измерительных каналов, В
9 Параметры взрывозащиты входных цепей измерительных каналов(Exla)I.
10 Габаритные размеры и масса составных частей приведены в табл.1

Таблица 1

Наименование	Исполнение	Габаритные размеры,	Масса, кг
составных частей		MM	
1 APM:			
-системный блок общего назначения	IP20	350*200*420	5
-монитор общего назначения	IP20	420*450*450	8
-принтер общего назначения	IP20	420*150*200	3
-источник бесперебойного питания	IP20	150*150*450	22
2 ЛПБ	IP54	600*400*250	8
Эеточник постоянного тока	IP20	200*100*80	1

Знак утверждения типа

Знак утверждения типа наносится на АПБ, системные блоки АРМ методом наклейки и на эксплуатационную документацию типографским способом в правом верхнем углу титульного листа.

Комплектность

I Аппаратно-программный блок (АПБ)	- 1 шт.
2 Системный блок общего назначения	- 2 шт.
3 Монитор общего назначения	- 2 iiit.
4 Принтер общего назначения	- 1 шт.
5 Источник бесперебойного питания	
общего назначения	- 2 шт.
6 Клавиатура общего назначения	- 2 шт.
7 Звуковые колонки общего назначения	- 2 шт.
8 Манипулятор «мышь» общего назначе	
9 Автоматический выключатель общего	назначения – 1 шт.

Поверка

Поверка осуществляется в соответствии с Методикой поверки КСДК — ш МП, утвержденной ФГУ «Кемеровский ЦСМ» 23.03.2007 г.

Основное поверочное оборудование:

- калибретов постоянного тока, диапазон измерений (0-5) мА, класс точности не ниже 0,1;

Межноверечный интервал – 1 год;

Нормативные документы

- 1 ГОСТ 8.022-91 «ГСИ. Государственный первичный эталон и государственная новерочных схема для средств измерений силы постоянного электрического тока в диализоне 1*10*16 ...30 А»;
- 2 СОСТ Р 51330.0-99 «Электрооборудование взрывозащищенное. Часть 0. Общие требования»:
- 3 ГОСТ Р 51330.10-99 «Электрооборудование взрывозащищенное. Часть 11. Искробезонасная электрическая цень 1»;
- 4ГОС! 24754-81 «Электрооборудование рудничное нормальное. Общие технические требования и методы испытаний»;
- 5 ГОСТ 24032-80 «Приборы шахтные газоаналитические. Общие технические требования. Методы испытаний»:
- 6 Теминческая документация изготовителя.

Заключение

Тип Система компьютезированная диспетчерского контроля аэрогазовой обстановки угольной втахты КСДК —пг (партия в количестве 6 штук, заводские номера 02-07) утвержден с техмическими и метрологическими характеристиками, приведенными в настоящем описания типа, метрологически обеспечен при выпуске из производства и в эксплуатации согласно государственной поверочной схеме по ГОСТ 8.022.

Система имеет сертификат соответствия № РОСС RU.МГ 02.A00611, выданный органем по сертификация взрывозащищенного и рудничного электрооборудования научно-исследовательского фонда «Сертификационный центр ВОСТНИИ» (аттестат аккрельтации № РОСС RU. 0001.21 ГБ01).

Мзготовитель

Закрытое акционерное общество «Научно-производственная корпорация» «Кузненкий научно-исследовательский угольный институт» (ЗАО «НПК «КузНИУИ»). 653004. Кемеровская область, г. Прокопьевск, ул. Гагарина, 26. Т/ф 8 (38466) 3-21-00.

Директор по науке ЗАО «НПК «КузНИУИ»

В.П. Белов