ОПИСАНИЕ ТИПА СРЕДСТВ ИЗМЕРЕНИЙ

Генераторы	сигналов	высокочастотные	е Внесены в Государственный
N9310A			реестр средств измерений
			Регистрационный номер № 36082-07
			Взамен №

Выпускаются по технической документации фирмы «Agilent Technologies, Inc.», США.

НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ

Генераторы сигналов высокочастотные N9310A (далее генераторы) предназначены для генерирования стабильных по частоте и мощности немодулированных электромагнитных колебаний и электромагнитных колебаний с различными видами модуляции в диапазоне частот от 9 кГц до 3000 МГц.

Генераторы применяются для проверки чувствительности приемных устройств, настройки, испытаний и ремонта приемо-передающей аппаратуры ВЧ и СВЧ диапазонов.

Генераторы могут быть использованы в технике связи, измерительной технике, радиолокации, радионавигации, ядерной физике, полупроводниковой электронике, при разработке, производстве, эксплуатации и метрологическом обеспечении различных радиоэлектронных устройств.

ОПИСАНИЕ

Принцип действия приборов основан на формировании задающего высокостабильного сигнала генератором опорной частоты (внутренним или внешним) и расширении частотного диапазона высокочастотным синтезатором. С выхода синтезатора сигнал поступает на усилитель и выходной аттенюатор, далее на выходной разъем. Кроме воспроизведения немодулированного сигнала предусмотрены режимы амплитудной, частотной, фазовой и импульсной модуляций (внутренней и внешней), режим качания частоты и уровня, режим векторной модуляции.

Генераторы выполнены в корпусе настольного исполнения. На передней панели генераторов расположены: жидкокристаллический дисплей для отображения режимов работы и значений параметров воспроизводимых сигналов; ряд кнопок, обеспечивающих выбор требуемых режимов работы и установку параметров; разъем основного выхода прибора для выдачи различных видов сигналов; разъем выхода низкочастотного генератора и разъем интерфейса дистанционного управления USB.

На задней панели генераторов расположены: разъем сетевого питания; разъемы внешнего запуска, выхода и входа сигнала опорной частоты 10 МГц (2 МГц, 5 МГц); разъемы для входа внешнего аналогового модулирующего сигнала, разъемы для входа внешних модулирующих сигналов векторной модуляции; разъемы USB интерфейса; разъем для подключения внешнего монитора.

ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Частотные параметры

Диапазон частот выходного сигнала	9 кГц3 ГГц
Разрешение	0,1 Гц
Частота внутреннего опорного генератора	10 МГц
Пределы допускаемой относительной погрешности установки	±10 ⁻⁶
частоты внутреннего опорного генератора	

Параметры выходной мощности

Диапазон установки мощности выходного сигнала на нагрузке 50 Ом	-127 дБмВт13 дБмВт
Разрешение	0,1 дБ
Пределы допускаемой погрешности установки мощности выходного сигнала ¹	±1 дБ

Параметры формы сигнала

Уровень гармонических составляющих синусоидального сигнала по отношению к уровню сигнала несущей частоты ²	≤-30 дБн
Уровень негармонических составляющих синусоидального сигнала по отношению к уровню сигнала несущей частоты ³	≤-50 дБн

Параметры модуляции

Частотная модуляция

Диапазон частот несущей частоты	100 кГц3 ГГц
Диапазон модулирующих частот	20 Гц80 кГц
Диапазон установки девиации частоты	20 Гц100 кГц
Пределы допускаемой погрешности установки девиации частоты ΔF^4	$\pm (5 \times 10^{-2} \times \Delta F + 200)$ Гц
Коэффициент гармоник огибающей ЧМ сигнала ⁵	≤1 %

Амплитудная модуляция

Диапазон частот несущей частоты	100 кГц3 ГГц
Диапазон модулирующих частот	20 Гц20 кГц
Диапазон установки коэффициента амплитудной модуляции	0100 %
Пределы допускаемой погрешности установки коэффициента амплитудной модуляции М ⁶	$\pm (0.05 \times M + 0.2) \%$
Коэффициент гармоник огибающей АМ сигнала7	≤2%

 $^{^{1}}$ Частота F >100 кГц, мощность выходного сигнала P ≥ -120 дБмВт.

 $^{^{2}}$ Частота несущей $F \ge 1$ МГц, мощность выходного сигнала P = 0 дБмВт.

 $^{^3}$ Отстройка от несущей частоты >10 кГц, мощность выходного сигнала P = 0 дБмВт.

⁴ Модулирующая частота $f_M = 1$ к Γ ц, мощность выходного сигнала P = 0 д E_MB_T , $\Delta F \le 80$ к Γ ц.

 $^{^{5}}$ Модулирующая частота fм = 1 к Γ ц, мощность выходного сигнала P=0 дEмBт, $\Delta F=50$ к Γ ц.

⁶ Модулирующая частота fм = 1 к Γ ц, мощность выходного сигнала P = 0 д Γ мВт, M ≤ 80 %. ⁷ Модулирующая частота fм = 1 к Γ ц, мощность выходного сигнала P = 0 д Γ мВт, M = 80 %.

Фазовая модуляция

Диапазон частот несущей частоты	100 кГц3 ГГц
Диапазон модулирующих частот fм	300 Гц20 кГц
Диапазон установки девиации фазы	(010) рад при $f_{\rm M} \le 10$ к Γ ц (05) рад при 10 к Γ ц $<$ $f_{\rm M} \le 20$ к Γ ц
Пределы допускаемой погрешности установки девиации фазы $\Delta \Phi^8$	$\pm (5 \times 10^{-2} \times \Delta \Phi + 0.2)$ рад
Коэффициент гармоник огибающей ФМ сигнала9	≤ 1,5 %

Импульеная модуляция

Диапазон установки периода модулирующего	200 мкс2 с	
импульсного сигнала		
Диапазон установки длительности модулирующего	100 мкс1 с	
импульсного сигнала		
тельность фронта и спада выходных		
радиоимпульсов	≤ 5 MRC	
Ослабление сигнала рабочей частоты в паузе	> 40 -F	
между импульсами	≥ 40 дБ	

Параметры низкочастотного выхода генератора

Вид выходного сигнала	Синусоидальный
Диапазон частот	20 Гц80 кГц
Пределы допускаемой абсолютной погрешности	$\pm (5 \times 10^{-5} \times f + 0,1) \Gamma$ ц
установки частоты	
Диапазон установки амплитуды напряжения U _р	(03) B
выходного сигнала	
Неравномерность АЧХ выходного сигнала в диапазоне	≤0,2 дБ
частот 20 Гц20 кГц	
Коэффициент гармоник при амплитуде выходного	≤ 0,1 %
напряжения 1 В и частоте 1 кГц	

Условия эксплуатации и массогабаритные характеристики

5 Chobin Skelliyalaqin i maccolavapilindic xapaklepheliki		
Нормальные условия применения	Температура: (23±5) ⁰ C Относительная влажность воздуха: (30-80) % Атмосферное давление: (84-106) кПа	
Хранение/транспортирование	Температура: (-20+70) ⁰ C Относительная влажность воздуха: не более 90 %	
Macca	Не более 10,5 кг	
Геометрические размеры (ширина×глубина×высота)	340×440×155 мм	
Питание прибора, В	(100240) В частотой (5060) Гц	

 $^{^{8}}$ Модулирующая частота fм = 1 к Γ ц. 9 Модулирующая частота fм = 1 к Γ ц, $\Delta\Phi$ = 5 рад.

ЗНАК УТВЕРЖДЕНИЯ ТИПА

Знак утверждения типа наносится на титульный лист Руководства по эксплуатации и на верхнюю панель генератора.

КОМПЛЕКТНОСТЬ

1. Генератор сигналов измерительный	
2. Шнур питания	
3. Руководство по эксплуатации	
4. Методика поверки MП РТ 1213-2007	
5. Упаковочная тара	

ПОВЕРКА

Поверку генератора проводят в соответствии с методикой поверки генераторов сигналов высокочастотных N9310A МП РТ 1213-2007, утвержденной Φ ГУ "Ростест-Москва" в октябре 2007 г.

В перечень оборудования, необходимого для поверки генератора, входят:

- Частотомер электронно-счетный Ч3-64/1 с блоком сменным ЯЗЧ-175: ТО
- Стандарт частоты Ч1-69: ТО
- Ваттметр поглощаемой мощности М3-54: ТО
- Анализатор спектра Е4445А: РЭ
- Измеритель коэффициента АМ С2-23: ТО
- Измеритель АМ и ЧМ модуляции СК3-45: ТО
- Измеритель нелинейных искажений С6-11: ТО
- Вольтметр В7-78/1: РЭ
- Осциллограф Agilent 54645D: РЭ

Межповерочный интервал – 1 год.

НОРМАТИВНЫЕ И ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

- 1. ГОСТ 22261-94 "Средства измерений электрических и магнитных величин. Общие технические условия".
- 2. ГОСТ 8.322-78 "ГСИ. Генераторы сигналов измерительные. Методы и средства поверки в диапазоне частот 0.03 17.44 ГГц".
- 3. Техническая документация фирмы-изготовителя «Agilent Technologies, Inc.», США.

ЗАКЛЮЧЕНИЕ

Тип генераторов сигналов высокочастотных N9310A утвержден с техническими и метрологическими характеристиками, приведенными в настоящем описании типа, и метрологически обеспечен в эксплуатации.

Сертификат соответствия № РОСС CN.АИ29.ВО1965 от 03.10.2007.

ИЗГОТОВИТЕЛЬ

Фирма "Agilent Technologies, Inc.", США.

Адрес: «Agilent Technologies, Inc.», 1900, Garden of the Gods Rd., Colorado Springs, CO 80907-3483

Фирма Agilent-Qianfeng Electronic Technologies (Chengdu) Co., Ltd, Китай

Адрес: Qianfeng Hi-Tech Industry Park, Chengdu Hi-Tech Industrial Development Zone (West District), Chengdu, 611731 P.R.C.

Заявитель: ООО "Гарлэнд Оптима"

Генеральный директор

С.В. Багровский