Подлежит публикации в открытой печати

СОГЛАСОВАНО

Руководитель ГЦИ СИ,

Зам. генерального директора

ΦΓΥ «TecreC. Tlerepoypr»

А. А. Рагулин Захай

 $2007 \ г.$

Система автоматизированная информационноизмерительная коммерческого учета электрической энергии и мощности (АИИС КУЭ) «Балтика-Вена» Внесена в Государственный реестр средств измерений Регистрационный № 36392-07 Взамен №

Изготовлена ООО «Оператор коммерческого учета» для коммерческого учета электроэнергии и мощности на объектах обособленного подразделения ОАО «Пивоваренная компания «Балтика» - «Балтика-Вена» по проектной документации ООО «Оператор коммерческого учета», заводской номер № 001.

НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ

Система автоматизированная информационно-измерительная коммерческого учета электрической энергии и мощности (АИИС КУЭ) «Балтика-Вена» (далее АИИС КУЭ «Балтика-Вена») предназначена для измерения активной и реактивной электрической энергии и мощности, выработанной и потребленной за установленные интервалы времени, отдельными технологическими объектами обособленного подразделения ОАО «Пивоваренная компания «Балтика» - «Балтика-Вена», сбора, хранения и обработки полученной информации. Выходные данные системы могут быть использованы для коммерческих расчетов.

ОПИСАНИЕ

АИИС КУЭ представляет собой многофункциональною, многоуровневую систему с централизованным управлением и распределенной функцией измерения.

АИИС КУЭ решает следующие задачи:

- измерение 30-минутных приращений активной и реактивной электроэнергии;
- периодический (1 раз в сутки) и /или по запросу автоматический сбор привязанных к единому календарному времени результатов измерений приращений электроэнергии с заданной дискретностью учета (30 мин);
- хранение результатов измерений в специализированной базе данных, отвечающей требованию повышенной защищенности от потери информации (резервирование баз данных) и от несанкционированного доступа;
- передача в организации—участники оптового рынка электроэнергии результатов измерений;

- предоставление по запросу контрольного доступа к результатам измерений, данных о состоянии объектов и средств измерений со стороны сервера организаций участников оптового рынка электроэнергии;
- обеспечение защиты оборудования, программного обеспечения и данных от несанкционированного доступа на физическом и программном уровне (установка паролей и т.п.);
- диагностика и мониторинг функционирования технических и программных средств АИИС КУЭ;
 - конфигурирование и настройка параметров АИИС КУЭ;
 - ведение системы единого времени в АИИС КУЭ (коррекция времени).

АИИС КУЭ включает в себя следующие уровни:

1-й уровень (ИИК ТИ) — измерительно-информационный комплекс точек измерения, трансформаторы тока (ТТ) класса точности 0,5 по ГОСТ 7746, трансформаторы напряжения (ТН) класса точности 0,5 по ГОСТ 1983 и счетчики активной и реактивной электроэнергии EA05RAL-P3-B-4 класса точности 0,5 по ГОСТ 30206 для активной электроэнергии и класса точности 1,0 по ГОСТ 26035 для реактивной энергии, установленные на объектах, указанных в таблице 1 (4 точки измерений).

2-й уровень (ИВКЭ) — информационно вычислительный комплекс электроустановки, устройство сбора и передачи данных (УСПД) на базе RTU 325L-E2-512-M2-B2 (Госреестр РФ № 19495-03), устройство синхронизации системного времени (УССВ) и каналообразующую аппаратуру.

3-й уровень (ИВК) — информационно-вычислительный комплекс (ИВК), включающий в себя каналообразующую аппаратуру, сервер баз данных (БД) АИИС КУЭ, автоматизированные рабочие места персонала и программное обеспечение (ПО).

Первичные фазные токи и напряжения трансформируются измерительными трансформаторами в аналоговые сигналы низкого уровня, которые по проводным линиям связи поступают на соответствующие входы электронного счетчика электрической энергии. Счетчик производит измерение действующих (среднеквадратических) значений напряжения и тока и рассчитывает полную мощность.

Измерение активной мощности счетчиком выполняется путем перемножения мгновенных значений сигналов напряжения и тока и интегрирования полученных значений мгновенной мощности по периоду основной частоты сигналов.

Реактивная мощность вычисляется по значениям активной и полной мощности.

Средняя активная (реактивная) электрическая мощность вычисляется как среднее значение мощности на интервале времени усреднения 30 мин.

Цифровой сигнал с выходов счетчиков по радиоканалу поступает на входы УСПД. УСПД осуществляет обработку результатов измерений, а в частности расчет расхода активной и реактивной электрической энергии и мощности с учетом коэффициентов трансформации ТТ и ТН, хранение полученной информации и передача накопленных данных по проводным линиям на верхний уровень системы (уровень ИВК), а также отображение информации на подключаемых к УСПД устройствах и обеспечение доступа организациямучастникам оптового рынка электрической энергии к накопленной информации по коммутируемой телефонной линии.

На верхнем — третьем уровне системы выполняется последующее формирование и хранение поступающей информации, оформление справочных и отчетных документов. Передача информации в организации—участники оптового рынка электроэнергии осуществляется от сервера БД по выделенным каналам или коммутируемым телефонным линиям связи через интернет-провайдера.

АИИС КУЭ оснащена системой обеспечения единого времени (СОЕВ), включающей в себя приемник сигналов точного времени от спутников глобальной системы позиционирования (GPS). GPS-приемник подключен к УСПД (уровень ИВКЭ). Время УСПД синхронизировано со временем приемника, сличение ежечасное, погрешность синхронизации не более 2 с. УСПД осуществляет коррекцию времени сервера и счетчиков. Сличение времени сервера БД с временем УСПД осуществляется при каждом опросе УСПД со стороны сервера, коррекция времени выполняется при расхождении времени сервера и УСПД ±2 с. Сличение времени счетчиков с временем УСПД один раз в сутки, корректировка времени счетчиков при расхождении со временем УСПД ±4 с. Погрешность системного времени не превышает ±5 с.

Журналы событий счетчика электроэнергии и УСПД отражают: время (дата, часы, минуты) коррекции часов указанных устройств и расхождение времени в секундах корректируемого и корректирующего устройств в момент непосредственно предшествующий корректировке.

ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Состав измерительных каналов приведен в таблице 1.

Таблица 1

Наименова-	Состав измерительного канала				Вид
ние ооъекта	TT	TH	Счетчик	успд	электро- энергии
яч.3 (ф.107-26) РУ-10 кВ РП-8221	АRM3/N2F, 300/5А; класс точности 0,5S; зав.№ 9714588 зав.№ 9714589 зав.№ 9714590	VRQ3n/S2, 10000/100В; класс точности 0,5; зав.№ 9719253 зав.№ 9719254 зав.№ 9719255	ЕвроАЛЬФА» EA05RAL-P3B-4; ГОСТ 30206-94; 26035-83 класс точности: по активной энергии - 0,5S; по реактивной — 1,0; зав.№ 01159656	RTU 3 25L- E2- 512- M2- B2; 3aB.№ 2358;	Активная, реактивная
яч.14 (ф.107-230) РУ-10 кВ РП-8221	ARM3/N2F, 300/5A; класс точности 0,5S; зав.№ 9714594 зав.№ 9714595 зав.№ 9714596	VRQ3n/S2, 10000/100В; класс точности 0,5; зав.№ 9719259 зав.№ 9719260 зав.№ 9719261	ЕвроАЛЬФА» EA05RAL-P3B-4; ГОСТ 30206-94; 26035-83 класс точности: по активной энергии - 0,5S; по реактивной — 1,0; зав.№ 01159657	RTU 3 25L- E2- 512- M2- B2; 3aB.№ 2358;	Активная, реактивная

Наименова-	Состав измерительного канала				Вид
ние объекта	ТТ	TH	Счетчик	УСПД	электро- энергии
яч.2 (ф.107-21) РУ-10 кВ РП-8221	ARM3/N2F, 300/5A; класс точности 0,5S; зав.№ 9719262 зав.№ 9719263 зав.№ 9719264	VRQ3n/S2, 10000/100В; класс точности 0,5; зав.№ 9719250 зав.№ 9719251 зав.№ 9719252	ЕвроАЛЬФА» EA05RAL-P3B-4; ГОСТ 30206-94; 26035-83 класс точности: по активной энергии - 0,5S; по реактивной — 1,0; зав.№ 01159658	RTU 3 25L- E2- 512- M2- B2; 3aB.№ 2358;	Активная, реактивная
яч.13 (ф.107-231) РУ-10 кВ РП-8221	ARM3/N2F, 300/5A; класс точности 0,5S; зав.№ 9714591 зав.№ 9714592 зав.№ 9714593	VRQ3n/S2, 10000/100В; класс точности 0,5; зав.№ 9719256 зав.№ 9719257 зав.№ 9719258	ЕвроАЛЬФА» ЕА05RAL-Р3В-4; ГОСТ 30206-94; 26035-83 класс точности: по активной энергии - 0,5S; по реактивной – 1,0; зав.№ 01159659	RTU 3 25L- E2- 512- M2- B2; 3aB.№ 2358;	Активная, реактивная

Примечания:

- 1. Трансформаторы тока по ГОСТ 7746, трансформатор напряжения по ГОСТ 1983, счетчики электроэнергии по ГОСТ 30206 в режиме измерения активной электроэнергии и ГОСТ 26035 в режиме измерения реактивной электроэнергии;
- 2. Допускается замена измерительных трансформаторов и счетчиков на аналогичные утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в Таблице 1. Замена оформляется актом в установленном на обособленном подразделении ОАО «Пивоваренная компания «Балтика» «Балтика-Вена» порядке. Акт хранится совместно с настоящим описанием типа АИИС КУЭ как его неотъемлемая часть.

Пределы допускаемых относительных погрешностей измерения активной и реактивной электрической энергии и мощности для реальных (рабочих) условий эксплуатации АИИС КУЭ «Балтика-Вена » приведены в таблице 2.

Таблица 2

	Наименование объекта	Коэффи- циент мощности	$1\% < I/I_H \le 5\%$	5% < I/I _H 20%	$20\% < I/I_{H} \le 120\%$		
	Активная электрическая энергия						
1	яч.3 (ф.107-26)	1,0	±2,1	±1,3	±1,2		
	РУ-10 кВ РП-8221				·		
	яч.14 (ф.107-230)						
	РУ-10 кВ РП-8221						
	яч.2 (ф.107-21)			<u>.</u>			
	РУ-10 кВ РП-8221						
	яч.13 (ф.107-231)						
	РУ-10 кВ РП-8221						

	Наименование	Коэффи-	$1\% < I/I_{H} \le 5\%$	5% < I/I _H 20%	$20\% < I/I_{H} \le 120\%$
	объекта	циент			
		мощности			
2	яч.3 (ф.107-26)	0,8	±2,8	±2,1	±1,6
	РУ-10 кВ РП-8221		·	· ·	
	яч.14 (ф.107-230)				
	РУ-10 кВ РП-8221				
	яч.2 (ф.107-21)				
	РУ-10 кВ РП-8221				
	яч.13 (ф.107-231)		:		
	РУ-10 кВ РП-8221				
3	яч.3 (ф.107-26)	0,5	±5,5	±3,3	±2,5
	РУ-10 кВ РП-8221		ŕ	,	,
	яч.14 (ф.107-230)				
	РУ-10 кВ РП-8221				
	яч.2 (ф.107-21)				
	РУ-10 кВ РП-8221				
	яч.13 (ф.107-231)				
	РУ-10 кВ РП-8221				
		Реактивная	электрическая э	нергия	
1	яч.3 (ф.107-26)	0,8	±8,0	±3,4	±2,4
	РУ-10 кВ РП-8221		-,-	, , ,	_, -
	яч.14 (ф.107-230)				
	РУ-10 кВ РП-8221				
	яч.2 (ф.107-21)				
-	РУ-10 кВ РП-8221				
	яч.13 (ф.107-231)				
	РУ-10 кВ РП-8221				
2	яч.3 (ф.107-26)	0,5	±5,6	±2,6	±1,9
	РУ-10 кВ РП-8221		, , , , , , , , , , , , , , , , , , ,	,	,
	яч.14 (ф.107-230)				
	РУ-10 кВ РП-8221				
	яч.2 (ф.107-21)				
	РУ-10 кВ РП-8221				
	яч.13 (ф.107-231)				
	РУ-10 кВ РП-8221				

Примечание:

1. В качестве характеристик допускаемой основной погрешности указаны доверительные границы погрешности результата измерений при доверительной вероятности 0,95.

Рабочие условия:

- параметры сети: напряжение $(0.9 \div 1.1)$ U_{ном}, ток $(30 \div 110)$ % $I_{\text{ном}}$; соѕф 0.9.
- допускаемая температура окружающей среды для измерительных трансформаторов и счетчиков от 5 до 38°C;

Надежность применяемых в системе компонентов:

- электросчетчик среднее время наработки на отказ не менее Т = 50000 ч; Средний срок службы 30 лет.
- TT и TH средний срок службы 30 лет.
- УСПД-среднее время наработки на отказ не менее T = 40000 ч; Средний срок службы 30 лет.

- Надежность системных решений:
- резервирование каналов связи: информация о результатах измерений может передаваться в организации—участники рынка электронергии по электронной почте;
- резервирование питания УСПД с помощью источника бесперебойного питания;
- регистрация событий:
- в журнале событий счетчика:
- параметрирования;
- пропадания напряжения;
- коррекции времени в счетчике;
- журнал УСПД:
- параметрирования;
- пропадания напряжения;
- коррекции времени в УСПД;

Защищенность применяемых компонентов:

- механическая защита от несанкционированного доступа и пломбирование:
- электросчетчика;
- промежуточных клеммников вторичных цепей напряжения;
- испытательной коробки;
- УСПД;
- сервера;
- защита информации на программном уровне:
- результатов измерений (при передаче, возможность использования цифровой подписи);
- установка пароля на счетчик;
- установка пароля на УСПД;
- установка пароля на сервер.

Глубина хранения информации:

- электросчетчик тридцатиминутный профиль нагрузки в двух направлениях не менее 35 суток;
- УСПД-сохранение информации при отключении питания-3 года
- ИВК хранение результатов измерений и информации состояний средств измерений за весь срок эксплуатации системы.

ЗНАК УТВЕРЖДЕНИЯ ТИПА

Знак утверждения типа наносится на титульные листы эксплуатационной документации на систему автоматизированную информационно-измерительную коммерческого учета электрической энергии и мощности (АИИС КУЭ) «Балтика-Вена».

КОМПЛЕКТНОСТЬ

Комплектность АИИС КУЭ определяется проектной документацией на систему. В комплект поставки входит:

- Методика поверки;
- Методика выполнения измерений;
- Свидетельство об аттестации МВИ № 432-10/2007 от 03.10.2007;
- Техническая документация на систему и на комплектующие средства измерений.

ПОВЕРКА

Поверка проводится в соответствии с документом «Система автоматизированная информационно-измерительная коммерческого учета электрической энергии и мощности (АИИС КУЭ) «Балтика-Вена». Методика поверки. 0145/07.01-00.000MП», согласованным с ГЦИ СИ Тест-С.-Петербург в ноябре 2007 г.

Средства поверки – по НД на измерительные компоненты:

- TT- πο ΓΟCT 8.217-2003;
- TH- πο ΓΟCT 8.216-88;
- средства поверки счетчиков электрической энергии по документу «Многофункциональный микропроцессорный счетчик электрической энергии типа ЕвроАЛЬФА (ЕА). Методика поверки», утвержденному ФГУП «ВНИИМ им. Д.И. Менделеева» в 1998 г.;
- переносной компьютер с ПО и оптический преобразователь для работы со счетчиками системы;
 - радиоприемник УКВ диапазона, принимающий сигналы службы точного времени.
 Межповерочный интервал 4 года.

НОРМАТИВНЫЕ И ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

ГОСТ 22261-94 «Средства измерений электрических и магнитных величин. Общие технические условия».

ГОСТ Р 8.596-2002 «ГСИ Метрологическое обеспечение измерительных систем. Основные положения».

ГОСТ 7746-01 «Трансформаторы тока. Общие технические условия».

ГОСТ 1983-01 «Трансформаторы напряжения. Общие технические условия».

ГОСТ 26035-83 «Счетчики электрической энергии переменного тока электронные. Общие технические условия».

ГОСТ 30206-94 (МЭК 687-92) «Статические счетчики Ватт-часов активной энергии переменного тока (классы точности 0,2S и 0,5S)».

Техническая документация на систему коммерческого учета электрической энергии и мощности автоматизированную АИИС КУЭ «Балтика-Вена».

ЗАКЛЮЧЕНИЕ

Тип системы автоматизированной информационно-измерительной коммерческого учета электрической энергии и мощности (АИИС КУЭ) «Балтика-Вена» утвержден с техническими и метрологическими характеристиками, приведенными в настоящем описании типа, и метрологически обеспечен при выпуске из производства и в эксплуатации.

Изготовитель: ООО «Оператор коммерческого учета»

Адрес: 190031, г. Санкт-Петербург, Набережная реки Фонтанки, д. 113, лит. А.

тел. (812) 740-63-22, факс (812) 740-63-22.

Генеральный директор

ООО «Оператор коммерческого учета»

Я.Н. Полещук