ОПИСАНИЕ ТИПА СРЕДСТВ ИЗМЕРЕНИЙ

СОГЛАСОВАНО
Руководитель ГЦИ СИ —
внерального директора
остест-Москва»

А.С. Евдокимов
средств измерений
(ГЦИ СИ)

н в Горманствений ресстр средств

Датчики весоизмерительные тензорезисторные S-Type

Внесены в Госульновенный реестр средств измерений Регистрационный № 37065-08 Взамен №

Выпускаются по технической документации фирмы "Vishay Tedea-Huntleigh International Ltd and Vishay Technology Ltd.", Израиль.

НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ

Датчики весоизмерительные тензорезисторные S-Туре (далее - датчик) предназначены для преобразования статических и квазистатических значений нагрузки в электрический сигнал в весах, весовых и весодозирующих устройствах, применяемых на предприятиях промышленности, сельского хозяйства и торговли.

ОПИСАНИЕ

Принцип действия датчика заключается в преобразовании нагрузки, действующей на его упругий элемент, в деформацию наклеенных на него тензорезисторов и в последующем преобразовании этой деформации в пропорциональный аналоговый электрический сигнал. Тензорезисторы соединены в мостовую схему, в которой предусмотрена система термокомпенсации.

В зависимости от конструктивного исполнения и наибольшего предела измерений датчики изготавливаются следующих модификаций: 363; 9363; 614; 615; 616; 620; STC.

Датчики изготавливаются из легированной стали

ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Значения наибольшего предела измерений (D max), кг приведены в таб.1

Таблица 1

Модификация	Наибольший предел измерений (D max),кг		
363; 9363	50 ;100; 250; 500; 1000; 2500; 5000; 7500; 10000		
614	50; 100; 150; 200; 300; 500		
615; 616	50; 100; 150; 20; 300; 500; 750; 1000		
620	500; 1000; 2000; 5000		
STC	25;50;75; 100; 250;500;750;1000;1500; 2000; 2500; 5000		

Значения класса точности , наименьшего предела измерений (D min), числа поверочных интервалов (Dmax/ V, где V-поверочный интервал), минимального поверочного интервала, ν_{min} , % от D_{max} , рабочего коэффициента передачи (РКП), входного и выходного сопротивления датчиков приведены в таб.2

Таблица 2

Технические характеристики	Модификации						
	363	9363	614	615	616	620	STC
Класс точности по ГОСТ 30129	C3						C2
Наименьший предел измерения, D_{min}	20v						
Число поверочных интервалов, D_{max}/ν	3000						2000
Минимальный поверочный интервал, ν_{min} , % от D_{max}	0,01	0,01	0,01	0,01	0,01	0,016	0,02
Рабочий коэффициент передачи при номинальной нагрузке (РКП), мВ/В	3,0 ± 0,075	3,0 ± 0,075	2,0 ± 0,2	2,0 ± 0,02	2,0 ± 0,02	2,0 ± 0,0035	3,0 ± 0,2
Входное сопротивление, Ом	430±60	390±15	415±15	400±20	400±20	400±20	385±5
Выходное сопротивление, Ом	350±3,5	430±60	350±3	350±3	350±3	350±3	350±3

Значения пределов допускаемой погрешности датчика по входу при первичной поверке или калибровке, в единицах поверочного интервала (ν =D_{max}/число поверочных интервалов) приведены в таблице 3.

Таблица 3

Диапазон измерения	Пределы допускаемой погрешности				
от D _{min} до 500 v включ.	± 0,35 v				
св. 500 v до 2000 v включ.	± 0,7 v				
св. 2000 v	± 1,05 v				
Примечание: При эксплуатации указанные значения пределов допускаемой погрешно-					
сти удваиваются.					

Допускаемый размах значений выходного сигнала датчиков, приведенных ко входу, соответствующих одной и той же нагрузке, не более абсолютные значения пределов допускаемой погрешности при трех повторных измерениях Пределы допускаемого изменения значения выходного сигнала датчика, приведенного ко входу, при постоянной нагрузке, составляющей (90 - 100) % D_{max}

Пределы допускаемого изменения значения выходного сигнала датчика, приведенного ко входу, при постоянной нагрузке D_{min}

0,7 пределов допускаемой погрешности в течение 30 мин;

0,15 пределов допускаемой погрешности за время между 20 и 30 минутами нагружения

 \pm 0,5 v после нагружения датчика в течение 30 мин постоянной нагрузкой, составляющей (90 - 100) % D_{max} ;

 \pm 0,7 ν при изменении температуры окружающего воздуха на каждые 5 °C;

± 1,0 v при изменении атмосферного дав ления на каждый 1 кПа

Номинальный диапазон напряжения питания постоянным током, В

Габаритные размеры датчиков, мм:

- длина
- ширина
- высота

Масса датчика, кг

Диапазон рабочих температур, °С

от 5 до 15

от 50,8 до 112,8

от 15,5 до 47,8

от 61 до 177,8

от 0,4 до 7,2

от минус 10 до плюс 40

ЗНАК УТВЕРЖДЕНИЯ ТИПА

Знак утверждения типа наносится на титульный лист Руководства по эксплуатации типографским способом.

КОМПЛЕКТНОСТЬ

1 Датчик с кабелем

- 1 шт.

2 Руководство по эксплуатации

- 1 экз.

ПОВЕРКА

Поверка датчиков производится в соответствии с Методикой поверки МИ 2720-2002 «Рекомендация. Государственная система обеспечения единства измерений. Датчики весо-измерительные тензорезисторные. Методика поверки».

Основное поверочное оборудование: гири класса точности M_1 ГОСТ 7328-2001, массозадающие установки с пределом допускаемой погрешности не более 0,5 предела допускаемой погрешности датчика.

Межповерочный интервал – 1 год.

НОРМАТИВНЫЕ И ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

ГОСТ 30129 «Датчики весоизмерительные тензорезисторные. Общие технические требования», техническая документация фирмы.

ЗАКЛЮЧЕНИЕ

Тип датчиков весоизмерительных тензорезисторных S-Туре утвержден с техническими и метрологическими характеристиками, приведенными в настоящем описании типа, метрологически обеспечен при выпуске из производства и в эксплуатации согласно государственной поверочной схеме.

ИЗГОТОВИТЕЛЬ

Изготовитель — фирма "Vishay Tedea-Huntleigh International Ltd and Vishay Technology Ltd.", Израиль.

8A Hazoran Street, P.O.Box 8381, New Industrial Zone, Netanya 42506, Israel

- фирма 'Vishay Celtron (TIANJIN) Ltd", КНР.

No.S. Binguan Nan Dao Youuyi Rd. Hexi Distrikt Tianjin, China.

Представитель фирм "Vishay Tedea-Huntleigh International Ltd and Vishay Technology Ltd.", Израиль, и "Vishay Celtron (TIANJIN) Ltd", КНР

Director Operations

Moshe Edri

Moshe Edri
Director Operations
Load Cells Israel