ОПИСАНИЕ ТИПА СРЕДСТВ ИЗМЕРЕНИЙ

СОГЛАСОВАНО

ТОТИТОВНИЕ В ПОТИТОВНИЕ В ПОТИ

Датчики весоизмерительные тензорезисторные Single Point

Внесены в Госудерственный реестр средств измерений Регистрационный № 37069 - 08 Взамен №

Выпускаются по технической документации фирмы "Vishay Tedea-Huntleigh International Ltd and Vishay Technology Ltd.", Израиль.

НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ

Датчики весоизмерительные тензорезисторные Single Point (далее - датчик) предназначены для преобразования статических и квазистатических значений нагрузки в электрический сигнал в весах, весовых и весодозирующих устройствах, применяемых на предприятиях промышленности, сельского хозяйства и торговли.

ОПИСАНИЕ

Принцип действия датчика заключается в преобразовании нагрузки, действующей на его упругий элемент, в деформацию наклеенных на него тензорезисторов и в последующем преобразовании этой деформации в пропорциональный аналоговый электрический сигнал. Тензорезисторы соединены в мостовую схему, в которой предусмотрена система термокомпенсации.

Датчики изготавливаются из алюминиевого сплава.

ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Значения наибольшего предела измерений (D max), кг приведены в таб.1 Таблица 1

Модификация	Наибольший предел измерений (D max),кг		
1	2		
1022	3; 5; 7; 10; 15; 20; 30; 35; 50; 100; 150; 200		
LPS	0,6; 1; 2; 3; 6; 10; 15; 20; 30; 35; 60; 100; 200		
1002	0,5; 1; 2; 3; 5		
1002-К	5, 8, 15, 20		
1004	0,3; 0,6; 1,5; 3		
1006	2; 3; 5		
1010/1015	3; 5; 7; 10; 15; 20; 30; 50; 90		
1030	2; 3; 5; 7; 10; 15		

1040/1041	5; 7; 10; 15; 20; 30; 50; 75; 100
1	2
1042	1; 3; 5; 7; 10; 15; 20; 30; 50; 75; 100; 150; 200
1242	50; 100; 150; 200; 250
1263	50; 100; 150; 200; 250; 300; 500; 635
1250	50; 75; 100; 150; 200; 250; 300; 500; 635; 750; 1000; 1500
1252	75; 100; 150; 200; 250; 300; 500; 635
1320	1000; 1500; 2000
HOC	750; 1000; 2000
LOC-SE	5; 7; 10; 15; 20; 30; 50; 60; 75; 100; 150
LOC-ME	50; 100; 150; 200; 250; 300; 500; 635; 800
LOC-LE	100; 250
1510	100; 250; 500

Значения класса точности , наименьшего предела измерений (D min), числа поверочных интервалов (Dmax/ V, где V-поверочный интервал), минимального поверочного интервала (V min), рабочего коэффициента передачи (РКП), входного и выходного сопротивления приведены в таб.2

Таблица 2

Модификации	Класс	Наи-	Число	Мини-	Рабочий ко-	Входное	Выход-
_	точно-	меньший	повероч-	мальный	эффициент	сопротив-	ное со-
	сти по	предел	ных ин-	повероч-	передачи при	ление, Ом	против-
	ГОСТ	измере-	тервалов,	ный ин-	номинальной		ление,
	30129	ния, D _{min}	D_{max}/v	тервал,	нагрузке		Ом
				$ u_{\text{min}}$, % от $ u_{\text{max}}$	(РКП), мВ/В		
1022	C3	20V	3000	0,01	2,0±0,2	415±15	350±3
LPS	C3	20V	3000	0,01	2,0±0,2	410±10	350±3
1002	C1	20V	1000	0,1	0,5±0,05	350±50	350±50
1002-К	C1	20V	1000	0,1	(1,5-2,0)±0,05	1000±50	1000±50
1004	C3	20V	3000	0,01	0,9±0,1	415±20	350±3
1006	C3	20V	3000	0,01	2,0±0,2	415±20	350±3
1010/1015	C3	20V	3000	0,01	2,0±0,2	415±15	350±3
1030	C2	20V	2500	0,1	2,0±0,2	415±15	350±3
1040/1041	C3	20V	3000	0,1	2,0±0,2	415±15	350±3
1042	C3	20V	3000	0,01	2,0±0,2	415±15	350±3
1242	C3	20V	3000	0,01	2,0±0,2	415±15	351±5
1263	C3	20V	3000	0,01	2,0±0,2	415±15	350±3
1250	C3	20V	3000	0,01	2,0±0,2	415±15	350±3
1252	C3	20V	3000	0,01	2,0±0,2	415±15	350±3
1320	C3	20V	3000	0,01	2,0±0,2	415±15	350±3
HOC	C3	20V	3000	0,01	2,0±0,2	410±10	350±3
LOC-SE	C3	20V	3000	0,01	2,0±0,2	410±10	350±3
LOC-ME	C3	20V	3000	0,01	2,0±0,2	410±10	350±3
LOC-LE	C3	20V	3000	0,01	2,0±0,2	410±10	350±3
1510	C3	20V	3000	0,01	2,0±0,2	380±10	350±3

Значения пределов допускаемой погрешности датчика по входу при первичной поверке или калибровке, в единицах поверочного интервала (ν = D_{max} /число поверочных интервалов) приведены в таблице 3.

Таблица 3

Диапазон измерения	Пределы допускаемой погрешности		
от D _{min} до 500 v включ.	± 0,35 v		
св. 500 v до 2000 v включ.	± 0,7 v		
св. 2000 v	± 1,05 v		
Примечание: При эксплуатации указан	ные значения пределов допускаемой погрешно-		

сти удваиваются.

Допускаемый размах значений выходного сигнала датчиков, приведенных ко входу, соответствующих одной и той же нагрузке, не более

Пределы допускаемого изменения значения выходного сигнала датчика, приведенного ко входу, при постоянной нагрузке, составляющей (90 - 100) % D_{max}

Пределы допускаемого изменения значения выходного сигнала датчика, приведенного ко входу, при постоянной нагрузке D_{min}

Номинальный диапазон напряжения питания постоянным током, В

Габаритные размеры датчиков, мм:

длинаширина

- высота

Масса датчика, кг

Диапазон рабочих температур, °С

абсолютные значения пределов допускаемой погрешности при трех повторных измерениях

0,7 пределов допускаемой погрешности в течение 30 мин;

0,15 пределов допускаемой погрешности за время между 20 и 30 минутами нагружения

 \pm 0,5 v после нагружения датчика в течение 30 мин постоянной нагрузкой, составляющей (90 - 100) % D_{max} ;

 \pm 0,7 v при изменении температуры окружающего воздуха на каждые 5 °C;

 \pm 1,0 ν при изменении атмосферного давления на каждый 1 кПа

от 5 до 15

от 70 до 191

от 12,6 до 72,2

от 12,6 до 126

от 0,03 до 4,8

от минус 10 до плюс 40

ЗНАК УТВЕРЖДЕНИЯ ТИПА

Знак утверждения типа наносится на титульный лист Руководства по эксплуатации типографским способом.

КОМПЛЕКТНОСТЬ

1 Датчик с кабелем

- 1 шт.

2 Руководство по эксплуатации

- 1 экз.

ПОВЕРКА

Поверка датчиков производится в соответствии с Методикой поверки МИ 2720-2002 «Рекомендация. Государственная система обеспечения единства измерений. Датчики весо-измерительные тензорезисторные. Методика поверки».

Межповерочный интервал – 1 год.

Приложение к свидетельству № _______об утверждении типа средств измерений

Всего листов 4

Основное поверочное оборудование: гири класса точности M_1 ГОСТ 7328-2001, массозадающие установки с пределом допускаемой погрешности не более 0,5 предела допускаемой погрешности датчика.

НОРМАТИВНЫЕ И ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

ГОСТ 30129 «Датчики весоизмерительные тензорезисторные. Общие технические требования», техническая документация фирмы.

ЗАКЛЮЧЕНИЕ

Тип датчиков весоизмерительных тензорезисторных Single Point утвержден с техническими и метрологическими характеристиками, приведенными в настоящем описании типа, метрологически обеспечен при выпуске из производства и в эксплуатации согласно государственной поверочной схеме.

ИЗГОТОВИТЕЛЬ

Изготовитель — фирма "Vishay Tedea-Huntleigh International Ltd and Vishay Technology Ltd.", Израиль.

8A Hazoran Street, P.O.Box 8381, New Industrial Zone, Netanya 42506, Israel

- фирма "Vishay Celtron (TIANJIN) Ltd", KHP. No.S. Binguan Nan Dao Youuyi Rd. Hexi Distrikt Tianjin, China.

Представитель фирм "Vishay Tedea-Huntleigh International Ltd and Vishay Technology Ltd.", Израиль, и "Vishay Celtron (TIANJIN) Ltd", КНР

Director Operations

Moshe Edri

Moshe Edri
Director Operations
Load Cells Israel