Приложение к свидетельству № _____ об утверждении типа средств измерений Лист № 1 Всего листов 5

ОПИСАНИЕ ТИПА СРЕДСТВ ИЗМЕРЕНИЙ ДЛЯ ГОСУДАРСТВЕННОГО РЕЕСТРА

Счетчики электрической энергии электронные многофункциональные «НЕЙРОН»

Внесены в Государственный реестр средств измерений.

Регистрационный № 38214-09

Взамен №

Выпускаются по ГОСТ Р 52322, ГОСТ Р 52425 (в части счетчиков реактивной энергии), ГОСТ 22261 и техническим условиям ТУ 4228-004-72928956-2008.

НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ

Счетчики электрической энергии электронные многофункциональные «НЕЙРОН» (далее - счетчик) класса 1 предназначены для измерения активной или активной и реактивной энергии и мощности в режиме многотарифности в однофазных и трехфазных цепях переменного тока с частотой 50 Гц. Счетчики подключаются к цепям тока и напряжения непосредственно, а трехфазный может подключаться по току как непосредственно, так и через трансформатор тока. Счетчик может применяться как автономно, так и в составе автоматизированных систем контроля и учета электроэнергии бытового потребления (АСКУЭ БП).

ОПИСАНИЕ

Измерительная схема счетчика состоит из трансформаторов тока, резистивных делителей напряжения, аналого-цифровых преобразователей, микропроцессора и жидкокристаллического дисплея. Счетчик имеет энергонезависимые память для хранения учетных данных, а также часы реального времени, обеспечивающие задание границ тарифных зон суток, типа дня недели, сезон и переключения зима\лето. Счетчик питается от измерительной цепи напряжения.

Счетчик имеет два интерфейса - PLC-модем и оптический порт. Дополнительно может быть установлен один из интерфейсов: RS-485, RS-232, радиомодем, Ethernet.

На счетчик может устанавливаться размыкатель нагрузки (для однофазного — на фазный и нулевой провод, для трехфазного — на каждый фазный провод), который может срабатывать:

- по внешней команде;
- по превышению заданных пределов параметров сети;
- по превышению ограничения энергопотребления;
- при попытке несанкционированного доступа.

По согласованию с заказчиком алгоритм срабатывания размыкателя может быть изменен.

На передней панели счетчика расположена кнопка управления режимами индикации дисплея и включения размыкателя нагрузки.

При нажатии на кнопку размыкатель включится после его срабатывания по превышению параметров сети (если параметры вернулись к норме).

Измеряемые параметры:

- активная энергия нарастающим итогом и мощность;
- реактивная энергия нарастающим итогом и мощность;
- фазное напряжение и ток.

Измеряемые параметры сохраняются в памяти, передаются по линиям связи и выводятся на жидкокристаллический дисплей.

Дисплей счетчика может работать в нескольких режимах - основной, полный и индикация принятых сообщений. На дисплей могут выводиться:

- потребленная активная и реактивная энергия нарастающим итогом с момента включения и «защелкнутая» на конец суток и месяца, суммарная и по тарифным зонам;

Приложение к свидетельству № _____ Лист № 2 об утверждении типа средств измерений Всего листов 5

- активная и реактивная мощность по каждой фазе и суммарная;
- границы тарифных зон;
- текущая тарифная зона;
- действующие значения напряжения и мощности;
- время и дата;
- принятые счетчиком сообщения.

По согласованию с заказчиком перечень выводимых на дисплей параметров может быть расширен или изменен.

В журнале событий счетчика фиксируются с указанием времени и даты:

- снятие и возобновление подачи напряжения (для трехфазного счетчика по каждой из фаз);
 - факт и причина срабатывания размыкателя нагрузки;
 - факт включения нагрузки;
 - факт перепрограммирования тарифного расписания;
 - изменение значения максимальной мощности при ограничении энергопотребления;
 - значение максимальной мощности при формировании команды на отключение;
 - статусная информация о сбоях и ошибках в работе основных узлов счетчика;
 - попытки хищения энергии (недоучета);
 - попытки несанкционированного доступа (в том числе и при отсутствии питания).

Конструктивно счетчик выполнен в серийно выпускаемом пластмассовом корпусе, предназначенном для навесного крепления к щитам и панелям и обеспечивающий его быструю замену. Клеммная колодка съемная, надевается на жесткие выводы счетчика и зажимается винтами. Цепи тока, напряжения, интерфейса и поверочных выходов гальванически развязаны между собой и корпусом. Заводская и поверительная пломбы устанавливаются на крепежных винтах на задней стороне корпуса, на крышке клеммной колодки — навесные пломбы энергоснабжающей организации.

Счетчик может выпускаться в исполнениях:

1П – однофазный непосредственного включения

3П – трехфазный непосредственного включения

3Т – трехфазный трансформаторного включения

ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Номинальное напряжение, В	230 (220)
Номинальный ток, А	5
Максимальный ток, А:	
для непосредственного включения	50; 80
для трансформаторного включения	7,5
Номинальная частота сети, Гц	50
Максимальный рабочий температурный диапазон, °C	-30 +40
Класс точности при измерении энергии	
активной (ГОСТ Р 52322)	1
реактивной (ГОСТ Р 52425)	2
Стартовый ток (порог чувствительности), А:	
для непосредственного включения	0,02
для трансформаторного включения	0,01
Основная относительная погрешность измерения мощности, не более, %:	
активной	±1,0
реактивной	±2,0
Основная относительная погрешность при измерении напряжения в диа-	
пазоне (0,85 – 1,1) Uном, не более, %	±1,0
Основная относительная погрешность при измерении тока в диапазоне	
(0,02 – 1,5) Іном, не более, %	±1,0
Дополнительная погрешность, вызываемая изменением влияющих велич	ин при измерении на-
пряжения и тока, не превышает пределов, установленных для активной эн-	ергии.
Основная погрешность хода часов реального времени, не более, с/сутки	±0,4
Дополнительная температурная погрешность часов реального времени,	
не более, с/сут. °С	±0,2
Передаточное значение поверочного выхода, имп/кВт·ч:	4000
по спецзаказу	16000
В энергонезависимой памяти хранятся:	
активная и реактивная энергия на 30-минутных интервалах, на конец	
суток и на конец месяца;	
минимальные и максимальные значения фазного напряжения на 30-	
минутных интервалах и за сутки.	
Глубина хранения данных определяется в договоре на поставку.	
Время хранения данных при отсутствии питания, лет	10
Ход часов реального времени от литиевого аккумулятора (при отсутст-	
вии питания), не менее, лет	1
Средний срок службы литиевого аккумулятора, не менее, лет	40
Активная и полная потребляемая мощность в цепях напряжения, не бо-	
лее, Вт и ВА	2,0 и 10,0
Полная мощность, потребляемая каждой цепью тока, не более, ВА:	4,0
Работоспособность счетчика сохраняется при напряжении, не ниже, В	150

Приложение к свидетельству №	Лист № 4	
об утверждении типа средств измерений Все	го листов 5	
Размыкатель нагрузки:		
максимальный ток (без приваривания контактов), А	100	İ
наработка на отказ при максимальном токе счетчика,	· I	
операций	10000	
Срабатывание по превышению:		
параметров сети:		
ток, А	60	
напряжение, В	250	
время задержки на отключение задается программой		
ограничения энергопотребления:		
шаг задания максимальной мощности, кВт	0,1	
время задержки на отключение, мин.	1	
Параметры режима многотарифности, максимальное количеств	o:	
суточных временных тарифных зон	8	
типов дней недели	2	
сезонов	2	
Переключения лето\зима	автоматич	ески
Средняя наработка на отказ, ч	90000	
Средний срок службы, лет	40	
Масса, не более, кг	1,4	
Габаритные размеры, не более, мм	234;180;9	1

ЗНАК УТВЕРЖДЕНИЯ ТИПА

Знак утверждения типа наносят на лицевую панель счетчика методом офсетной печати, на титульные листы эксплуатационной документации – типографским способом.

КОМПЛЕКТНОСТЬ

1. Счетчик электрической энергии электронный многофункциональный «НЕЙРОН»	1 шт.
2. Паспорт 72928956-422860-950ПС	1экз.
3. Руководство по эксплуатации 72928956-422860-950РЭ	1экз.
4. Методика поверки 72928956-422860-950МП	1 экз.
5. Упаковочная коробка или групповая тара	1 шт.
6. Устройство для подключения счетчика к компьютеру.	1 шт.
7. Программное обеспечение для работы со счетчиком «Конфигуратор»	1 экз.

Руководство по эксплуатации (п. 3) и методика поверки (п. 4) высылаются по отдельному договору по заказу организации, производящей эксплуатацию и поверку счетчика.

Комплектация счетчика по пп. 6 и 7 определяется в договоре на поставку.

ПОВЕРКА

Поверку счетчика проводят в соответствии с документом «Счетчики электрической энергии электронные многофункциональные «НЕЙРОН». Методика поверки 72928956-422860-950МП, утвержденным ГЦИ СИ ФГУП «ВНИИМС».

Основные средства поверки:

установка МТЕ для поверки электросчетчиков (Госреестр СИ № 17750-03) с относительной погрешностью при измерении мощности и энергии не более $\pm 0,05$ % в рабочем диапазоне 1 мА -120 А;

универсальная пробойная установка УПУ-10, погрешность ± 5 %; секундомер ОС, погрешность ± 0.4 %; радиочасы МИР РЧ-01.

Межповерочный интервал - 10 лет.

НОРМАТИВНЫЕ И ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

ГОСТ 22261-94. Средства измерений электрических и магнитных величин. Общие технические условия.

ГОСТ Р 52322-2005 (МЭК 62053-21: 2003). Аппаратура для измерения электрической энергии переменного тока. Частные требования. Часть 21. Статические счетчики активной энергии классов точности 1 и 2.

ГОСТ Р 52425-2005 (МЭК 62053-23: 2003). Аппаратура для измерения электрической энергии переменного тока. Частные требования. Часть 23. Статические счетчики реактивной энергии.

ТУ 4228-004-72928956-2008. Счетчики электрической энергии электронные многофункциональные «НЕЙРОН». Технические условия.

ЗАКЛЮЧЕНИЕ

Тип счетчиков электрической энергии электронных многофункциональных «НЕЙРОН» утвержден с техническими и метрологическими характеристиками, приведенными в настоящем описании типа, метрологически обеспечен при выпуске из производства и в эксплуатации.

Счетчики электрической энергии электронные многофункциональные «НЕЙРОН» имеют сертификат соответствия требованиям безопасности и ЭМС № РОСС RU.ME65.B01401, выданный ОС «Сомет» АНО «Поток-Тест».

изготовитель:

ООО «СИСТЕЛ-АВТОМАТИЗАЦИЯ»

Почтовый адрес 142281 М.об. г. Протвино а\я 129

Юридический адрес: 115201, г. Москва, Каширское шоссе, д.22, корп.3.

Телефон/факс: (4967) 31-13-30, (495) 727-3964

Генеральный директор ООО «СИСТЕЛ АВТОМАТИЗАИ

А.Т. Комаров

2009 г.