

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ОАО «Испытательный стенд Ивановской ГРЭС»

Внесена в Государственный реестр средств измерений

Регистрационный № 39379-08

Изготовлена ООО «ЭнергоСнабСтройСервис-Холдинг» (г. Москва) для коммерческого учета электроэнергии на объектах ОАО «Испытательный стенд Ивановской ГРЭС» по проектной документации ООО «ЭнергоСнабСтройСервис-Холдинг», согласованной с ОАО «АТС», заводской номер 105.

НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии ОАО «Испытательный стенд Ивановской ГРЭС» (далее АИИС КУЭ) предназначена для измерения активной и реактивной электроэнергии, выработанной и потребленной за установленные интервалы времени отдельными технологическими объектами ОАО «Испытательный стенд Ивановской ГРЭС»; сбора, обработки, хранения и передачи полученной информации. Выходные данные системы могут быть использованы для коммерческих расчетов.

АИИС КУЭ решает следующие задачи:

- измерение 30-минутных приращений активной и реактивной электроэнергии;
- периодический (1 раз в сутки) и /или по запросу автоматический сбор привязанных к единому календарному времени результатов измерений приращений электроэнергии с заданной дискретностью учета (30 мин);
- хранение результатов измерений в специализированной базе данных, отвечающей требованию повышенной защищенности от потери информации (резервирование баз данных) и от несанкционированного доступа;
- передача в организации—участники оптового рынка электроэнергии результатов измерений;
- предоставление по запросу контрольного доступа к результатам измерений, данных о состоянии объектов и средств измерений со стороны сервера организаций участников оптового рынка электроэнергии;
- обеспечение защиты оборудования, программного обеспечения и данных от несанкционированного доступа на физическом и программном уровне (установка паролей и т.п.);
- диагностика и мониторинг функционирования технических и программных средств АИИС;
- конфигурирование и настройка параметров АИИС КУЭ;
- ведение системы единого времени в АИИС КУЭ (коррекция времени).

ОПИСАНИЕ

АИИС КУЭ представляет собой многоуровневую систему с централизованным управлением и распределенной функцией измерений.

АИИС КУЭ включает в себя следующие уровни:

1-й уровень - измерительные трансформаторы тока (ТТ) классов точности 0,2 и 0,5 по ГОСТ 7746, напряжения (ТН) класса точности 0,5 по ГОСТ 1983 и счётчики активной и реактивной электроэнергии СЭТ-4ТМ.03 класса точности 0,2S по ГОСТ 30206 для активной электроэнергии и 0,5 по ГОСТ 26035 для реактивной электроэнергии, установленные на объектах, указанных в таблице 1 (5 точек измерений).

2-й уровень – устройство сбора и передачи данных (УСПД) на базе «СИКОН С10».

3-й уровень — информационно-измерительный комплекс (ИВК), включающий в себя каналообразующую аппаратуру, сервер баз данных (БД) АИИС, устройство синхронизации системного времени, автоматизированное рабочее место персонала (АРМ) и программное обеспечение (ПО).

Первичные фазные токи и напряжения трансформируются измерительными трансформаторами в аналоговые сигналы низкого уровня, которые по проводным линиям связи поступают на соответствующие входы электронного счетчика электрической энергии. В счетчике мгновенные значения аналоговых сигналов преобразуют в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются мгновенные значения активной и полной мощности, которые усредняются за период 0,02 с. Средняя за период реактивная мощность вычисляется по средним за период значениям активной и полной мощности.

Электрическая энергия, как интеграл по времени от средней за период 0,02 с мощности, вычисляется для интервалов времени 30 мин.

Средняя активная (реактивная) электрическая мощность вычисляется как среднее значение мощности на интервале времени усреднения 30 мин.

Цифровой сигнал с выходов счетчиков по проводным линиям связи поступает на входы УСПД, где осуществляется дальнейшая обработка измерительной информации, в частности вычисление электроэнергии и мощности с учетом коэффициентов трансформации ТТ и ТН, хранение измерительной информации, ее накопление и передача накопленных данных по проводным линиям через каналообразующую аппаратуру на верхний уровень системы (сервер БД).

На верхнем – третьем уровне системы выполняется формирование и хранение поступающей информации, оформление справочных и отчетных документов. Передача информации в организации—участники оптового рынка электроэнергии осуществляется от сервера БД по выделенным каналам связи через интернет-провайдера.

АИИС оснащена системой обеспечения единого времени (СОЕВ) включающей в себя устройство синхронизации системного времени УССВ со встроенным приемником сигналов точного времени, передаваемых спутниковой системой GPS, и специализированное программное обеспечение коррекции времени. Время сервера БД сличается с временем УССВ, сличение один раз в час, корректировка осуществляется при расхождении времени ±1 с. Сличение времени УСПД с временем сервера — один раз в час. Корректировка времени осуществляется при расхождении ±1с. Сличение времени счетчиков СЭТ-4ТМ.03 с временем УСПД при каждом обращении к счетчику, но не реже 1 раза в 3 минуты. Корректировка времени осуществляется при расхождении с временем «СИКОН С10» ±2 с. Погрешность системного времени не превышает ±5 с.

ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Состав измерительных каналов и их основные метрологические характеристики приведены в таблице 1.

Таблица 1. Метрологические характеристики ИК

	таолица т. тче	T TOUR	puntipino					
Номера точек измерений и наименование объекта		Состав измерительного канала				Вид	Метрологические характеристики ИК	
		TT	ТН	Счетчик	успд	электро- энергии	Основная погрешность, %	Погрешност ь в рабочих условиях, %
1	Генератор ГТЭ-110 ГС, сторона 10,5 кВ код точки 371040002213001	ТШ-20 Кл. т. 0,2 10000/5 Зав.№68 Зав.№483 Зав.№71	3HOM-15 Кл. т. 0,5 10000:√3/100:√3 Зав.№ 58029 Зав.№ 58038 Зав.№ 58040	СЭТ-4ТМ.03 Кл. т. 0,2S/0,5 Зав.№ 02052021	СИКОН С10 Зав.№291	Активная, реактивная	±0,8 ±1,8	±1,6 ±2,4
2	КРУ ТПУ Тр-р №33Т, сторона 10,5 кВ код точки 371040002213002	ТЛК-10 Кл. т. 0,5 300/5 Зав.№092 Зав.№102	ЗНОЛ.06-10 Кл. т. 0,5 10000:√3/100:√3 Зав.№ 2319 Зав.№ 2347 Зав.№ 2405	СЭТ-4ТМ.03 Кл. т. 0,2S/0,5 Зав.№ 02050421				
3	КРУ-6кВ II секция, яч. № 16 Тр-р №27Т код точки 371040002314203	ТЛК-10-8У3 Кл. т. 0,5 150/5 Зав.№ 02531 Зав.№ 02537	ЗНОЛ.06-6У Кл. т. 0,5 6000:√3/100:√3 Зав.№ 1635 Зав.№ 2587 Зав.№ 1633	СЭТ-4ТМ.03 Кл. т. 0,2S/0,5 Зав.№ 02050029		Активная,	±1,6	±3,0
4	КРУ-6кВ I секция, яч. № 15 Тр-р №26Т код точки 371040002314105	ТЛК-10-8У3 Кл. т. 0,5 150/5 Зав.№ 02535 Зав.№ 02386	ЗНОЛ.06-6У Кл. т. 0,5 6000:√3/100:√3 Зав.№ 1067 Зав.№ 1634 Зав.№ 1044	СЭТ-4ТМ.03 Кл. т. 0,2S/0,5 Зав.№ 02050568		реактивная	±2,6	±4,6
5	КРУ-6кВ I секция, яч. № 23 Тр-р №25Т код точки 371040002314106	ТЛК-10-8У3 Кл. т. 0,5 150/5 Зав.№ 01077 Зав.№ 08948	ЗНОЛ.06-6У Кл. т. 0,5 6000:√3/100:√3 Зав.№ 1067 Зав.№ 1634 Зав.№ 1044	СЭТ-4ТМ.03 Кл. т. 0,2S/0,5 Зав.№ 02050729				

Примечания:

- 1. Характеристики погрешности ИК даны для измерения электроэнергии и средней мощности (получасовая);
- 2. В качестве характеристик относительной погрешности указаны границы интервала, соответствующие вероятности 0,95;
 - 3. Нормальные условия:
 - параметры сети: напряжение $(0.98 \div 1.02)$ Uном; ток $(1 \div 1.2)$ Іном, $\cos \varphi = 0.9$ инд.;
 - температура окружающей среды (20 \pm 5) °C.
 - 4. Рабочие условия:
 - параметры сети: напряжение $(0,9 \div 1,1)$ Uном; ток $(0,05 \div 1,2)$ Іном; 0,5 инд.≤соѕφ≤0,8 емк.
- допускаемая температура окружающей среды для измерительных трансформаторов от минус 40 до + 70°C, для счетчиков от минус 40 °C до + 55°C; для сервера от + 10 °C до +40 °C; для УСПД от −10 °C до +50 °C;
- 5. Погрешность в рабочих условиях указана для $\cos \varphi = 0.8$ инд и температуры окружающего воздуха в месте расположения счетчиков электроэнергии от 0 °C до +40 °C;
- 6. Трансформаторы тока по ГОСТ 7746, трансформаторы напряжения по ГОСТ 1983, счетчики электроэнергии по ГОСТ 30206 в режиме измерения активной электроэнергии и ГОСТ 26035 в режиме измерения реактивной

электроэнергии;

7. Допускается замена измерительных трансформаторов и счетчиков на аналогичные (см. п. 6 Примечаний) утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в Таблице 1. Допускается замена УСПД на однотипный утвержденного типа.

Надежность применяемых в системе компонентов:

- электросчётчик среднее время наработки на отказ не менее Т = 90000 ч, среднее время восстановления работоспособности tв = 2 ч;
- УСПД среднее время наработки на отказ не менее Т = 70000 ч, среднее время восстановления работоспособности tв = 0,5 ч;
- сервер среднее время наработки на отказ не менее Т = 100000 ч, среднее время восстановления работоспособности tв = 2 ч.

Надежность системных решений:

- резервирование питания УСПД с помощью источника бесперебойного питания;
- резервирование каналов связи: информация о результатах измерений может передаваться в организации—участники оптового рынка электроэнергии по электронной почте;

Регистрация событий:

- в журнале событий счётчика:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в счетчике;
- журнал УСПД:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в УСПД;

Защищённость применяемых компонентов:

- механическая защита от несанкционированного доступа и пломбирование:
 - электросчётчика;
 - промежуточных клеммников вторичных цепей напряжения;
 - испытательной коробки;
 - УСПД;
 - сервера;
- защита информации на программном уровне:
 - результатов измерений (при передаче, возможность использования цифровой подписи)
 - установка пароля на счетчик;
 - установка пароля на УСПД;
 - установка пароля на сервер.

Глубина хранения информации:

- электросчетчик тридцатиминутный профиль нагрузки в двух направлениях не менее 113 суток; при отключении питания не менее 10 лет;
- УСПД суточные данные о тридцатиминутных приращениях электропотребления по каждому каналу 45 суток, электропотребление за месяц по каждому каналу 4 месяца (функция автоматизирована); сохранение информации при отключении питания 3 года;
- ИВК хранение результатов измерений, состояний средств измерений за весь срок эксплуатации системы (функция автоматизирована).

ЗНАК УТВЕРЖДЕНИЯ ТИПА

Знак утверждения типа наносится на титульные листы эксплуатационной документации на систему автоматизированную информационно - измерительную коммерческого учета электроэнергии (АИИС КУЭ) ОАО «Испытательный стенд Ивановской ГРЭС».

КОМПЛЕКТНОСТЬ

Комплектность системы автоматизированной информационно - измерительной коммерческого учета электроэнергии (АИИС КУЭ) ОАО «Испытательный стенд Ивановской ГРЭС» определяется проектной документацией на систему.

В комплект поставки входит техническая документация на систему и на комплектующие средства измерений.

ПОВЕРКА

Поверка проводится в соответствии с документом «Система автоматизированная информационно — измерительная коммерческого учета электроэнергии (АИИС КУЭ) ОАО «Испытательный стенд Ивановской ГРЭС». Измерительные каналы. Методика поверки», согласованной с ВНИИМС в декабре 2008

Средства поверки – по НД на измерительные компоненты:

- TT πο ΓΟCT 8.217-2003;
- ТН по МИ 2845-2003, МИ 2925-2005 и/или по ГОСТ 8.216-88;
- СЭТ-4ТМ.03 по методике поверки ИЛГШ.411152.124 РЭ1;
- УСПД «СИКОН С10» по методике поверки ВЛСТ 180.00.000 И1.

Приемник сигналов точного времени.

Межповерочный интервал - 4 года.

НОРМАТИВНЫЕ ДОКУМЕНТЫ

ГОСТ 22261-94. Средства измерений электрических и магнитных величин. Общие

технические условия.

ГОСТ 34.601-90. Информационная технология. Комплекс стандартов на

автоматизированные системы. Автоматизированные системы. Стадии

создания.

ГОСТ Р 8.596-2002. ГСИ. Метрологическое обеспечение измерительных систем. Основные положения.

ЗАКЛЮЧЕНИЕ

Тип системы автоматизированной информационно - измерительной коммерческого учета электроэнергии (АИИС КУЭ) ОАО «Испытательный стенд Ивановской ГРЭС» утвержден с техническими и метрологическими характеристиками, приведёнными в настоящем описании типа, метрологически обеспечен при выпуске из производства и в эксплуатации согласно государственной поверочной схеме.

Изготовитель: ООО «ЭнергоСнабСтройСервис-Холдинг»

127254, г. Москва, Огородный проезд, д.5, стр.7

тел: (495) 756-14-73 тел./факс: (4922) 42-44-93

Генеральный директор ООО «ЭнергоСнабСтройСервис-Холдинг»

Лебедев О.В.