Подлежит публикации в открытой печати

СОГЛАСОВАНО

Руководитель ГЦИ СИ,

Зам. генерального директора

Система автоматизированная информационноизмерительная коммерческого учета электрической энергии и мощности (АИИС КУЭ) ООО «Вектор»

Внесена в Государственный реестр средств измерений Регистрационный № 39604 года

Изготовлена ООО «Энерго-Мастер» для коммерческого учета электроэнергии и мощности на объектах ООО «Вектор» по проектной документации ООО «Энерго-Мастер» г. Санкт-Петербург.

Заводской номер 001.

НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ

Система автоматизированная информационно-измерительная коммерческого учета электрической энергии и мощности на предприятии ООО «Вектор» (далее АИИС КУЭ) предназначена для измерения активной и реактивной электрической энергии и мощности, выработанной и потребленной за установленные интервалы времени, отдельными технологическими объектами предприятия ООО «Вектор», г. Санкт-Петербург, сбора, обработки, хранения полученной информации. Выходные данные системы могут быть использованы для коммерческих расчетов на розничном рынке электрической энергии.

ОПИСАНИЕ

АИИС КУЭ представляет собой многофункциональную, многоуровневую систему с централизованным управлением и распределенной функцией измерения.

АИИС КУЭ решает следующие задачи:

- измерение 30-минутных приращений активной и реактивной электроэнергии;
- периодический (1 раз в сутки) и/или по запросу автоматический сбор привязанных к единому календарному времени результатов измерений приращений электроэнергии с заданной дискретностью учета (30 мин);
- хранение результатов измерений в специализированной базе данных, отвечающей требованию повышенной защищенности от потери информации (резервирование баз данных) и от несанкционированного доступа;
- предоставление по запросу контрольного доступа к результатам измерений данных о состоянии средств измерений со стороны организаций-участников розничного рынка электроэнергии;
- обеспечение защиты оборудования, программного обеспечения и данных от несанкционированного доступа на физическом и программном уровне (установка паролей и т.п.);

- диагностика и мониторинг функционирования технических и программных средств АИИС КУЭ;
- конфигурирование и настройка параметров АИИС КУЭ;
- ведение единого времени в АИИС КУЭ (коррекция времени).

АИИС КУЭ включает в себя следующие уровни:

1-й уровень — трансформаторы тока (ТТ) типа ТПЛ-10-М (Госреестр РФ № 22192-07), кл. точности 0,5S по ГОСТ 7746, трансформаторы напряжения (ТН) типа НАМИТ-10-2 (Госреестр РФ № 16687-07), кл. точности 0,5 и счетчики активной и реактивной электроэнергии типа EA05RAL-B-4 (Госреестр РФ № 16666-97) кл. точности 0,5S по ГОСТ 30206 для активной электроэнергии и класса точности 1,0 по ГОСТ 26035 для реактивной энергии, установленные на объектах, указанных в табл. 1 (2 точки измерения).

2-й уровень — информационно-вычислительный комплекс (ИВК), включающий в себя каналообразующую аппаратуру, сервер баз данных (БД) АИИС КУЭ, автоматизированное рабочее место (АРМ) с программным обеспечением (ПО) «Альфа Центр».

Первичные фазные токи и напряжения трансформируются измерительными трансформаторами в аналоговые сигналы низкого уровня, которые по проводным линиям связи поступают на соответствующие входы электронного счетчика электрической энергии. В счетчике мгновенные значения аналоговых сигналов преобразуют в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются мгновенные значения активной и полной мощности, которые усредняются за период 0,02 с. Средняя за период реактивная мощность вычисляется по средним за период значениям активной и полной мощности.

Электрическая энергия, как интеграл по времени от средней за период 0,02 с мощности, вычисляется для интервалов времени 30 мин.

Средняя активная (реактивная) электрическая мощность вычисляется как среднее значение мощности на интервале времени усреднения 30 мин.

Цифровой сигнал с выходов счетчиков по проводным линиям поступает на верхний уровень системы.

На верхнем — втором уровне системы выполняется дальнейшая обработка измерительной информации, в частности вычисление электроэнергии и мощности с учетом коэффициентов трансформации ТТ и ТН, формирование и хранение поступающей информации, оформление справочных и отчетных документов. Передача информации в организации-участники розничного рынка электроэнергии осуществляется от сервера БД, по коммутируемым телефонным линиям или сотовой связи через интернет-провайдера.

Для защиты информационных и измерительных каналов АИИС КУЭ от несанкционированных вмешательств, предусмотрена механическая и программная защита. Все кабели, приходящие на счетчик от измерительных трансформаторов и сигнальные кабели от счетчика, кроссируются в пломбируемом отсеке счетчика.

Коррекция хода системных часов (астрономическое время, часы Сервера и внутренние часы счетчика) АИИС КУЭ ООО «Вектор» производится от системных часов сервера верхнего уровня ОАО «Петербургская сбытовая компания» в ходе опроса счетчиков. Коррекция выполняется автоматически, если расхождение часов сервера верхнего уровня ОАО «Петербургская сбытовая компания» и часов АИИС КУЭ ООО «Вектор» превосходит 2 с. Факт каждой коррекции регистрируется в Журнале событий Сервера БД АИИС КУЭ ООО «Вектор». Погрешность системного времени не превышает ± 5 с.

Журналы событий счетчика электроэнергии отражают: время (дата, часы, минуты) коррекции часов указанных устройств и расхождение времени в секундах корректируемого и корректирующего устройств в момент непосредственно предшествующий корректировке.

ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Состав измерительных каналов приведен в табл. 1.

Таблица 1

	Состав и				
Наименование объекта	TT	ТН	Счетчик	Вид электроэнергии	
РУ-6 кВ РП-4299 СР-II	ТПЛ-10-М 300/5 Кл. т. 0,5S Зав.№ 185 Зав.№ 301 Зав.№ 184 Госреестр РФ № 22192-07	НАМИТ-10-2, 6000/100 Кл. т. 0,5 Зав.№ 2267 Госреестр РФ № 16687-07	EA05RAL-B-4 Кл. т. 0,5S/1 100B,5A Зав.№ 01154536 Госреестр РФ № 16666-97	Активная и реактивная	
РУ-6 кВ РП-4299 CP-IV	ТПЛ-10-М 300/5 Кл. т. 0,5S Зав.№5203 Зав.№ 5212 Зав.№ 5213 Госреестр РФ № 22192-07	НАМИТ-10-2, 6000/100 Кл. т. 0,5 Зав.№ 0047 Госреестр РФ № 16687-07	EA05RAL-B-4 Кл. т. 0,5S/1 100B,5A Зав.№ 01162737 Госреестр РФ № 16666-97		

Примечания:

- 1. Трансформаторы тока по ГОСТ 7746, трансформатор напряжения по ГОСТ 1983, счетчики электроэнергии по ГОСТ 30206 в режиме измерения активной электроэнергии и по ГОСТ 26035 в режиме измерения реактивной электроэнергии.
- 2. Допускается замена измерительных трансформаторов и счетчиков на аналогичные утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в табл. 1. Замена оформляется актом в установленном на ООО «Вектор» порядке. Акт хранится совместно с настоящим описанием типа АИИС КУЭ как его неотъемлемая часть.

Пределы допускаемых относительных погрешностей измерения активной и реактивной электрической энергии и мощности для реальных (рабочих) условий эксплуатации АИИС КУЭ ООО «Вектор» приведены в табл. 2.

Таблица 2

	Наименование	Значение	$1\% < I/I_{H}$	5% < I/I _H	20% < I/I _H	20% < I/I _H		
	присоединения	cosφ	≤5%	≤ 20%	≤ 100%	≤ 120%		
	Активная электрическая энергия							
1	РУ-6 кВ РП-4299 СР-II	1,0	±2,46	±1,76	±1,65	±1,65		
	РУ-6 кВ РП-4299 СР-IV			ŕ		,		
2	РУ-6 кВ РП-4299 СР-II	0,8	±3,35	±2,39	±1,98	±1,98		
	РУ-6 кВ РП-4299 CP-IV	0,0	-5,55		-1,70	-1,70		
3	РУ-6 кВ РП-4299 СР-II	0,5	±5,74	±3,51	±2,78	±2,78		
	РУ-6 кВ РП-4299 СР-IV							
	Реактивная электрическая энергия							
1	РУ-6 кВ РП-4299 СР-II	0,8	±9,42	±3,85	±2,68	±2,58		
	РУ-6 кВ РП-4299 СР-IV							
2	РУ-6 кВ РП-4299 СР-II	0,5	±7,10	±3,18	±2,36	±2,33		
	РУ-6 кВ РП-4299 СР-IV	0,5	-/,10	43,10	12,50	+4,55		

Примечание:

В качестве характеристик допускаемой основной погрешности указаны доверительные границы погрешности результата измерений при доверительной вероятности 0,95.

Рабочие условия:

- параметры сети: напряжение $(95 \div 105)\%U_{\text{ном}}$; ток $(15 \div 90)\%I_{\text{ном}}$; $\cos \varphi = 0.96$;
- допускаемая температура окружающей среды для измерительных трансформаторов и счетчиков от 0 до 30°С.

Надежность применяемых в системе компонентов:

- электросчётчик среднее время наработки на отказ не менее T = 50000 ч, среднее время восстановления работоспособности tв = 2 ч. Средний срок службы 30 лет;
- TT и TH средний срок службы 25 лет.

Надежность системных решений:

- резервирование каналов связи: информация о результатах измерений может передаваться в организации—участники розничного рынка электроэнергии по электронной почте;
- регистрация событий:
- в журнале событий счётчика:
- параметрирования;
- пропадания напряжения;
- коррекции времени в счетчике;

Защищённость применяемых компонентов:

- механическая защита от несанкционированного доступа и пломбирование:
- электросчётчика;
- промежуточных клеммников вторичных цепей напряжения;
- испытательной коробки;
- сервера;
- защита информации на программном уровне:
- результатов измерений (при передаче, возможность использования цифровой подписи);
- установка пароля на счетчик;
- установка пароля на сервер.

Глубина хранения информации:

- электросчетчик тридцатиминутный профиль нагрузки в двух направлениях не менее 35 суток, сохранение информации при отключении питания не менее 10 лет;
- ИВК хранение результатов измерений и информации состояний средств измерений за весь срок эксплуатации системы.

ЗНАК УТВЕРЖДЕНИЯ ТИПА

Знак утверждения типа наносится на титульных листах эксплуатационной документации на систему автоматизированную информационно-измерительную коммерческого учета электрической энергии и мощности АИИС КУЭ ООО «Вектор».

КОМПЛЕКТНОСТЬ

Комплектность АИИС КУЭ определяется проектной документацией на систему. Комплект поставки приведен в табл. 3.

Таблица 3

Наименование	Кол-во	
Трансформатор тока ТПЛ-10-М 300/5 А	6	
Трансформатор напряжения НАМИТ-10-2 6000/100В	2	
Счетчик электрической энергии «ЕвроАЛЬФА» EA05RAL-B-4	2	
Модем U.S.Robotics 56 k	2	
Сотовый модем GSM Siemens TC 35	1	
Руководство по эксплуатации	1 комп.	
Методика выполнения измерений	1	
Методика поверки	1	
Паспорт	1	

ПОВЕРКА

Поверка проводится в соответствии с документом «Система автоматизированная информационно-измерительная коммерческого учета электрической энергии и мощности (АИИС КУЭ) на предприятии ООО «Вектор». Методика поверки», согласованным с ГЦИ СИ Тест-С.-Петербург в ноябре 2008 г.

Основное оборудование, необходимое для поверки:

- средства поверки измерительных трансформаторов напряжения по ГОСТ 8.216-88;
- средства поверки измерительных трансформаторов тока по ГОСТ 8.217-2003;
- средства поверки счетчиков электрической энергии по документу «Многофункциональный микропроцессорный счетчик электрической энергии типа ЕвроАльфа (ЕА). Методика поверки», утвержденному ВНИИМ им. Д.И. Менделеева в 1998 г.;
- переносной компьютер с ПО и оптический преобразователь для работы со счетчиками системы;
- радиоприемник УКВ диапазона, принимающий сигналы службы точного времени.

Межповерочный интервал – 4 года.

НОРМАТИВНЫЕ И ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

ГОСТ 22261-94 «Средства измерений электрических и магнитных величин. Общие технические условия».

ГОСТ Р 8.596-2002 «ГСИ Метрологическое обеспечение измерительных систем. Основные положения».

ГОСТ 1983-01 «Трансформаторы напряжения. Общие технические условия».

ГОСТ 7746-01 «Трансформаторы тока. Общие технические условия».

ГОСТ 26035-2001 «Счетчики электрической энергии переменного тока электронные. Общие технические условия».

ГОСТ 30207-94 (МЭК 1036-90) «Статические счетчики Ватт-часов активной энергии переменного тока (классы точности 1,0 и 2,0)».

Техническая документация на систему коммерческого учета электрической энергии и мощности автоматизированную АИИС КУЭ ООО «Вектор».

ЗАКЛЮЧЕНИЕ

Тип системы автоматизированной информационно-измерительной коммерческого учета электрической энергии и мощности (АИИС КУЭ) на предприятии ООО «Вектор» утвержден с техническими и метрологическими характеристиками, приведенными в настоящем описании типа, и метрологически обеспечен в эксплуатации.

Изготовитель: ООО «Энерго-Мастер»

Адрес: 198099, г. Санкт-Петербург, ул. Калинина, д. 5, оф. 214.

тел./ факс (812) 786-10-79.

Генеральный директор OOO «Вектор»

В.Н. Петренко