ОПИСАНИЕ ТИПА СРЕДСТВ ИЗМЕРЕНИЙ

СОГЛАСОВАНО
Руководитель ГЦИ СИ Зам. Генерального директора
ФГУ «РОСТЕСТ – Москва»

А.С.Евдокимов

«<u>23</u>» <u>12</u> 2008 2

Измерительная система для измерений при испытаниях транспортных средств на пассивную безопасность ТИИС

Внесена в Государственный реестр средств измерений Регистрационный № <u>ДО228-08</u>

Изготовлена ФГУП "НАМИ", 125438, г. Москва ул. Автомоторная, дом 2, зав. № 01.

НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ

Измерительная система для измерений при испытаниях транспортных средств на пассивную безопасность ТИИС № 01 (далее по тексту - измерительная система, ИС) предназначена для измерений, для высокоскоростного многоканального сбора данных и протоколирования результатов измерений ускорений, сил, крутящих моментов, действующих в различных частях манекена, и смещений элементов конструкций манекена при испытаниях транспортных средств в соответствии с ГОСТ Р 41.94, ГОСТ Р 41.95 и ИСО 6487.

ОПИСАНИЕ ТИПА

Измерительная система обеспечивает измерение и протоколирование результатов измерений ускорений центра тяжести головы в трёх взаимно перпендикулярных направлениях; сил сжатия таза, грудной клетки сбоку и бедра; сил сжатия и растяжения соединения «голова — шея»; сил сжатия, растяжения и крутящих моментов голени; смещений грудной клетки, рёбер и колена. В зависимости от назначения измерительные каналы системы подразделяются на каналы определённого типа. Типы каналов, их условные обозначения и количество входных каналов АЦП указаны в таблице 1.

<u>Примечание</u>: В измерительных каналах системы применяются первичные преобразователи типа 7231С-750 ТS и типа 7264В-2000 производства фирмы «ENDEVCO» США, а также типа 1716А, типа 2121А, типа 1584А, типа 2631 и типа 3096А производства фирмы Robert A. Denton, Inc (США). Программное обеспечение NANODAS64L производства фирмы «EME Corp» (США).

Таблица 1

Обозначе-	Назначение канала	Количество
ние		каналов
канала		АЦП
«ИУс-1/1»	Измерение ускорения в центре тяжести головы по осям X, Y, Z	6
«ИУс-1/2»	Измерение ускорения в центре тяжести головы по осям X, Y, Z	3
«ИСл-1»	Измерение сил, действующих в «соединении голова – шея» по осям X, Y, Z	6
«ИСл-2»	Измерение силы сжатия бедра по оси Х	4
«ИСл-3»	Измерение силы сжатия и растяжения голени по оси Z	4
«ИСл-4»	Измерение силы бокового сжатия грудной клетки по оси Ү	3
«ИСл-5»	Измерение силы сжатия таза по оси У	1
«ИМо-1»	Измерение крутящих моментов, действующих в соединении «голова – шея» относительно осей X, Y, Z	6
«ИМо-2»	Измерение крутящих моментов, действующих в верхней и нижней части голени относительно осей X, Y	6
«ИСм-1»	Измерение смещения грудной клетки	2
«ИСм-2»	Измерение смещения голени	4
«ИСм-3»	Измерение смещения ребра	3

Конструктивно измерительная система представляет собой комплекс технических средств, состоящий из первичных преобразователей; блока промежуточных измерительных преобразователей, в состав которого входят аналого-цифровые преобразователи и накопители информации, поступающей от первичных преобразователей (далее по тексту — блок преобразователей); персонального компьютера с программным обеспечением NANODAS64L.

Первичные преобразователи (датчики) предназначены для измерения физической величины, карактеризующей определённое состояние манекена, и преобразование её в электрический сигнал. По принципу действия первичные преобразователи подразделяются на датчики пьезорезистивного типа (измерение сил, крутящих моментов и ускорений) и датчики потенциометрического типа (измерение смещения). Все датчики идентифицированы по назначению: месту установки в соответствующих узлах манекена, амплитудному и частотному диапазонам. Некоторые типы датчиков предназначены для измерений только одной физической величины (типа Model 7231C-750 TS и Model 7264B-2000 — для измерения ускорения, типа Model 2121A, Model 2631, Model 3096A — для измерения силы сжатия бедра по оси X, типа «потенциометр» — для измерения смещений грудной клетки, ребра и голени); все они являются одноканальными. Другие типы датчиков предназначены для измерения нескольких физических величин (типа Model 1716A — для измерения сил и моментов; типов 1583 и 1584A — для измерения сил и моментов; типов 1583 и 1584A — для измерения сил и моментов голени). Выходные сигналы всех датчиков являются аналоговыми.

Состав каналов ИС с типами и номерами применяемых датчиков приведен в таблице 2.

Таблица 2

	Таблица 2			,
NoNo	Обозначение	Тип преобразователя (датчика)	Номер	Номер
п/п	канала		датчика	канала в бло-
				ке промежу-
				точных пре-
	<u> </u>			образовате-
				лей
1	ИУс-1/1	Датчик типа Model 7231C-750 TS	C16028	01
2	ИУс-1/1	Датчик типа Model 7231C-750 TS	C16073	02
3	ИУс-1/1	Датчик типа Model 7231C-750 TS	C16062	03
4	ИУс-1/1	Датчик типа Model 7231C-750 TS	C16007	35
5	ИУс-1/1	Датчик типа Model 7231C-750 TS	C16084	36
6	ИУс-1/1	Датчик типа Model 7231C-750 TS	C16049	37
7	ИУс-1/2	Датчик типа Model 7264B-2000	B17842	01
8	ИУс-1/2	Датчик типа Model 7264B-2000	B18012	02
9	ИУс-1/2	Датчик типа Model 7264B-2000	B18015	03
10	ИСл-1	Датчик типа Model 1716A	1118	04
11	ИСл-1	Датчик типа Model 1716A	1118	06
12	ИСл-1	Датчик типа Model 1716A	1117	38
13	ИСл-1	Датчик типа Model 1716A	1117	40
14	ИСл-2	Датчик типа Model 2121A	1040	17
15	ИСл-2	Датчик типа Model 2121A	1043	18
16	ИСл-2	Датчик типа Model 2121A	1038	51
17	ИСл-2	Датчик типа Model 2121A	1044	52
18	ИСл-3	Датчик типа Model 1584A	633	15
19	ИСл-3	Датчик типа Model 1584A	632	49
20	ИСл-4	Датчик типа Model 2631	1081	09
2	ИСл-4	Датчик типа Model 2631	1082	10
22	ИСл-4	Датчик типа Model 2631	1083	11
23	ИСл-5	Датчик типа Model 3096A	262	12
24	ИМо-1	Датчик типа Model 1716A	1118	08
25	ИМо-1	Датчик типа Model 1716A	1117	42
26	ИМо-2	Датчик типа Model 1583	691	11
27	ИМо-2	Датчик типа Model 1583	691	12
28	ИМо-2	Датчик типа Model 1584A	633	13
29	ИМо-2	Датчик типа Model 1583	690	45
30	ИМо-2	Датчик типа Model 1583	690	46
31	ИМо-2	Датчик типа Model 1584A	632	47
32	ИСм-1	Датчик- потенциометр	без номера	10
		смещения грудной клетки		
33	ИСм-1	Датчик- потенциометр	без номера	44
1		смещения грудной клетки		
34	ИСм-2	Датчик – потенциометр	без номера	19
		смещения колена		
35	ИСм-2	Датчик - потенциометр	без номера	20
		смещения колена		
36	ИСм-2	Датчик - потенциометр смещения колена	без номера	53
37	ИСм-2	Датчик - потенциометр смещения колена	без номера	54
38	ИСм-3	Датчик - потенциометр смещения ребра	44704G	04
39	ИСм-3	Датчик - потенциометр смещения ребра	44702G	05
40	ИСм-3	Датчик - потенциометр смещения ребра	45036G	06

Блок промежуточных измерительных преобразователей предназначен для:

⁻электрического питания датчиков;

⁻усиления сигналов, поступающих от датчиков;

-аналогово-цифрового преобразования сигналов и регистрации их в собственной памяти блока.

Перед аналогово-цифровым преобразованием в блоке промежуточных измерительных преобразователей выполняется аппаратурная фильтрация высокочастотной составляющей сигнала, обеспечивающая бесперебойную работу аналогово-цифрового преобразователя. Конструктивно блок промежуточных измерительных преобразователей выполнен в виде блока, с расположенными на одной из его сторон электрическими разъёмами для присоединения источников питания, выходных кабелей датчиков и интерфейсных кабелей персонального компьютера. Внутри имеется 64 независимых идентичных измерительных канала, выполняющих указанные выше функции.

Персональный компьютер с установленным программным обеспечением NANODAS64L предназначен для настройки функциональных параметров блока преобразователей: введение и извлечение из блока преобразователей измерительной информации и обработки её с целью расчёта требуемых параметров и характеристик манекена. Программное обеспечение этих расчётов не входит в комплектацию данной измерительной системы.

ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

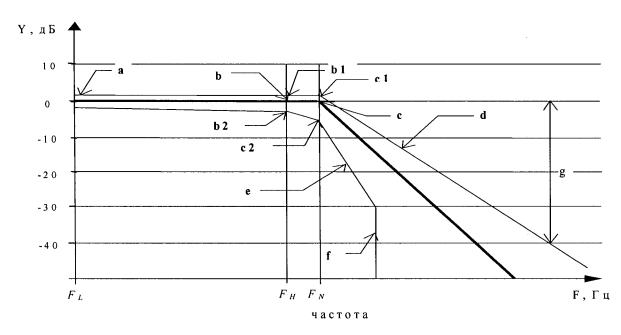

1 Сведения о диапазонах измерений, частотных диапазонах и количествах каналов для каждого типа каналов приведены в таблице 3.

Таблица 3

Обозначение	Верхний предел измерения	Класс частот по ИСО 6487	Количество каналов
канала			АЦП
ИМо-1	100 Н∙м	600	6
ИМо-2	200 Н∙м	600	6
ИСл-1	5 ĸH	1000	6
ИСл-2	10 кН	600	4
ИСл-3	10 кН	600	4
ИСл-4	5 кН	600	3
ИСл-5	10 кН	600	1
ИСм-1	90 мм	180	2
ИСм-2	25 мм	180	4
ИСм-3	65 мм	180	3
ИУс-1/1	1960 м/c² (200 g)	1000	6
ИУс-1/2	$1960 \text{ m/c}^2 (200 \text{ g})$	1000	6

² Пределы допускаемой приведенной погрешности измерения для всех измерительных каналов $\pm 5.0 \%$ (± 0.6 дБ).

³ Параметры амплитудно-частотных характеристик измерительных каналов (с учётом использования четырехполюсного бесфазного цифрового фильтра Баттерворта) соответствуют ИСО 6487 и приведены в таблице 4 и на рисунке 1.

Рисунок 1 – Условное изображение обобщённой амплитудно-частотной характеристики измерительного канала.

Таблица 4 – Параметры амплитудно-частотных характеристик для классов частот по ИСО 6487 (по рисунку 1)

Класс частот по ИСО 6487	F _L , Гц	F _н , Гц	F _N , Гц	а, дБ	b _{l,}	b _{2,} дБ	с _{і,} дБ	с _{2,} дБ	d, дБ	е, дБ/окт	f, дБ/окт	g, дБ
«180»	0,1	180	300	±0,5	+0,5	-1	+0,5	4	-0,5	-24	œ	-40
«600»	0,1	600	1000	±0,5	+0,5	-1	+0,5	4	-0,5	-24	œ	-40
«1000»	0,1	1000	1650	±0,5	+0,5	-1	+0,5	4	-0,5	-24	∞	-40

- 4 Относительный коэффициент поперечного преобразования («поперечная чувствительность» по ИСО 6487): не более \pm 5 % (\pm 0,6 дБ).
- 5 Нелинейность амплитудной характеристики («линейная ошибка» по ИСО 6487) каждого канала не более $\pm 2.5 \% (\pm 0.2 \text{ дБ})$ от диапазона измерений.
 - 6 Питание компонентов ИС производится:
- датчиков от внутреннего источника блока промежуточных измерительных преобразователей;
- блока промежуточных измерительных преобразователей, аналого-цифровых преобразователей и вычислительного процессора от аккумулятора $+(10 \div 14)$ В или сетевого питания 220_{-22}^{+33} В, частота 50 Γ ц ± 1 Γ ц;
 - персонального компьютера от сетевого питания 220 В, 50 Гц.
 - 7 Габаритные и конструктивные размеры и массы всех составных частей ИС по спецификации изготовителя.
 - 8 Условия эксплуатации ИС: Температура +(22±5)°С.
 - 9 Назначенный ресурс ИС: не менее 10 лет.

ЗНАК УТВЕРЖДЕНИЯ ТИПА

Знак утверждения типа СИ наносится на титульный лист эксплуатационной документации типографическим способом.

КОМПЛЕКТНОСТЬ

В комплект измерительной системы для измерений при испытаниях транспортных средств на пассивную безопасность ТИИС N 01 входят:

- первичные преобразователи (датчики), указанные в таблице 5;
- блок промежуточных измерительных преобразователей;
- комплект соединительных кабелей;
- комплект интерфейсных кабелей;
- персональный компьютер типа PS/AT с операционной системой Windows 95/98/NT;
 - программное обеспечение «NANODAS64L»;
- руководство по эксплуатации «Измерительная система для измерений при испытаниях транспортных средств на пассивную безопасность ТИИС. Руководство по эксплуатации. И37.052.015–2006 РЭ»;
- формуляр «Измерительная система для измерений при испытаниях транспортных средств на пассивную безопасность ТИИС. Формуляр. И37.052.015–2006 ФО».

Таблица 5

NoNo	Обозначение	Тип преобразователя (датчика)	Номер	Номер
n/n	канала		датчика	канала АЦП
				в блоке про-
				межуточных
				преобразова-
				телей
1	ИУс-1/1	Датчик типа Model 7231C-750 TS	C16028	01
2	ИУс-1/1	Датчик типа Model 7231C-750 TS	C16073	02
3	ИУс-1/1	Датчик типа Model 7231C-750 TS	C16062	03
4	ИУс-1/1	Датчик типа Model 7231C-750 TS	C16007	35
5	ИУс-1/1	Датчик типа Model 7231C-750 TS	C16084	36
6	ИУс-1/1	Датчик типа Model 7231C-750 TS	C16049	37
7	ИУс-1/2	Датчик типа Model 7264B-2000	B17842	01
8	ИУс-1/2	Датчик типа Model 7264B-2000	B18012	02
9	ИУс-1/2	Датчик типа Model 7264B-2000	B18015	03
10	ИСл-1	Датчик типа Model 1716A	1118	04
11	ИСл-1	Датчик типа Model 1716A	1118	06
12	ИСл-1	Датчик типа Model 1716A	1117	38
13	ИСл-1	Датчик типа Model 1716A	1117	40
14	ИСл-2	Датчик типа Model 2121A	1040	17
15	ИСл-2	Датчик типа Model 2121A	1043	18
16	ИСл-2	Датчик типа Model 2121A	1038	51
17	ИСл-2	Датчик типа Model 2121A	1044	52
18	ИСл-3	Датчик типа Model 1584A	633	15
19	ИСл-3	Датчик типа Model 1584A	632	49
20	ИСл-4	Датчик типа Model 2631	1081	09
2	ИСл-4	Датчик типа Model 2631	1082	10
22	ИСл-4	Датчик типа Model 2631	1083	11
23	ИСл-5	Датчик типа Model 3096A	262	12
24	ИМо-1	Датчик типа Model 1716A	1118	08
25	ИМо-1	Датчик типа Model 1716A	1117	42
26	ИМо-2	Датчик типа Model 1583	691	11
27	ИМо-2	Датчик типа Model 1583	691	12
28	ИМо-2	Датчик типа Model 1584A	633	13

№№ п/п	Обозначение канала	Тип преобразователя (датчика)	Номер датчика	Номер канала АЦП в блоке про- межуточных преобразова-
				телей
29	ИМо-2	Датчик типа Model 1583	690	45
30	ИМо-2	Датчик типа Model 1583	690	46
31	ИМо-2	Датчик типа Model 1584A	632	47
32	ИСм-1	Датчик- потенциометр смещения грудной клетки	без номера	10
33	ИСм-1	Датчик- потенциометр смещения грудной клетки	без номера	44
34	ИСм-2	Датчик – потенциометр смещения колена	без номера	19
35	ИСм-2	Датчик - потенциометр смещения колена	без номера	20
36	ИСм-2	Датчик - потенциометр смещения колена	без номера	53
37	ИСм-2	Датчик - потенциометр смещения колена	без номера	54
38	ИСм-3	Датчик - потенциометр смещения ребра	44704G	04
39	ИСм-3	Датчик - потенциометр смещения ребра	44702G	05
40	ИСм-3	Датчик - потенциометр смещения ребра	45036G	06

ПОВЕРКА

Поверка ИС осуществляется в соответствии с методикой поверки, изложенной в эксплуатационной документации: «Измерительная система для измерений при испытаниях транспортных средств на пассивную безопасность. Руководство по эксплуатации. И37.052.015–2006 РЭ» и согласованной с ФГУ «Ростест-Москва» в 2008 г.

Межповерочный интервал 1 год.

Основное оборудование для поверки:

- 1. Установка ударная поверочная УУП-1 первого разряда по ГОСТ 8.137 -84;
- 2. Машина образцовая силоизмерительная OCM 2-5 второго разряда по ГОСТ 8.065 –85;
 - 3. Машина моментоизмерительная ОММ-2500, $\Pi\Gamma \pm 0.1$ %;
 - 4. Штангенциркуль ШЦ-I-150-0,1, $\Pi\Gamma \pm 0,1$ мм.
 - 5. Спецприспособление КМД.
- 6. Меры длины концевые плоскопараллельные набор №1 по ГОСТ 9038-90 4 разряда по МИ 2060-90.

НОРМАТИВНЫЕ И ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

ГОСТ 8.137-84 ГСИ Государственный специальный эталон и государственная поверочная схема для средств измерений ускорения при ударном движении.

МИ 2060-90 ГСИ Государственная поверочная схема для средств измерений длины в диапазоне $1 \cdot 10^{-5} \dots 50$ м и длин волн в диапазоне $0, 2 \dots 50$ мкм.

ГОСТ 8.065-85 ГСИ Государственный первичный эталон и государственная поверочная схема для средств измерений силы.

ГОСТ Р 8.541-86 ГСИ Государственный первичный эталон и государственная поверочная схема для средств измерений крутящего момента силы.

ИСО 6487-80 Техника измерений в испытаниях на столкновение. Аппаратура.

ГОСТ Р 41.95-99 Единообразные предписания, касающиеся официального утверждения транспортных средств в отношении защиты водителя и пассажиров в случае бокового столкновения.

ГОСТ Р 41.94-99 Единообразные предписания, касающиеся официального утверждения транспортных средств в отношении защиты водителя и пассажиров в случае лобового столкновения.

Техническая документация фирм – изготовителей.

ЗАКЛЮЧЕНИЕ

Измерительная система для измерений при испытаниях транспортных средств на пассивную безопасность ТИИС № 01 утверждена с техническими и метрологическими характеристиками, приведенными в настоящем описании типа, метрологически обеспечена в эксплуатации согласно поверочным схемам.

ИЗГОТОВИТЕЛЬ: ФГУП " НАМИ", 125438, г. Москва ул. Автомоторная, д. 2.

Руководитель **НИЦИАМТ** ФГУП "**НАМИ**"

Д.А.Загарин