Приложение к свидетельству № ______ об утверждении типа средств измерений серийного производства

ОПИСАНИЕ ТИПА СРЕДСТВ ИЗМЕРЕНИЙ

СОГЛАСОВАНО
Руководитель ГЦИ СИ
Зам. Генерального директора
ФГУ "Ростест-Москва"
А.С. Евдокимов

4 " шитеря 2009 г

Мультиметры цифровые METRAHIT

Внесены в Государственный реестр средств измерений Регистрационный № 41496 - 09 Взамен №

Выпускаются по технической документации фирмы "GMC-I Gossen-Metrawatt GmbH", Германия.

НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ

Мультиметры цифровые METRAHIT (далее — мультиметры) предназначены для измерений силы и напряжения постоянного и переменного тока, электрического сопротивления, электрической емкости, температуры, частоты, а так же проверки целостности электрической цепи.

Мультиметры применяются для контроля параметров радиоэлектронной аппаратуры и ее компонентов при ее разработке, производстве и эксплуатации.

ОПИСАНИЕ

Мультиметры METRAHIT модификации EXTRA, ETECH, ESPECIAL, EBASE, X-TRA, OUTDOOR, TECH, PRO, BASE, ISO, T-COM, 2, 27I, 27EX, 30M представляют собой многофункциональные цифровые портативные электроизмерительные приборы, принцип действия которых основан на преобразовании входных сигналов в цифровую форму быстродействующим АЦП, дальнейшей его обработке и отображении результатов измерений на жидкокристаллическом индикаторе.

На лицевой панели мультиметров расположены функциональные клавиши, поворотный переключатель, входные разъёмы, предназначенные для присоединения измерительных проводов и подключения их к измеряемой сети, жидкокристаллический цифровой дисплей. Включение и выключение мультиметров, выбор режимов измерения осуществляется при помощи поворотного переключателя. Функциональные клавиши служат для переключения пределов измерений и выбора специальных функций при измерениях.

Для проведения измерений мультиметры непосредственно подключают к измеряемой цепи. Процесс измерения отображается на жидкокристаллическом дисплее в виде цифровых значений результатов измерений, индикаторов режимов измерений, индикаторов единиц измерений и предупреждающих индикаторов.

Модели мультиметров отличаются друг от друга функциональными возможностями и техническими характеристиками. Функциональные возможности мультиметров отражены в таблице 1.

Таблица 1 - Функциональные возможности мультиметров

1 аолица 1 - Функциональные воз	MUM	HUC	IH M	Anpi	имс	_ + _	8								
Наименование параметра	EXTRA	ETECH	ESPECIAL	EBASE	X-TRA	OUTDOOR	TECH	PRO	BASE	ISO	T-COM	7	271	27EX	30M
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Измерение напряжения постоянного тока	+	+	+	+	+	+	+	+	+	+	+	+	+	_	+
Измерение напряжения переменного тока	+	+	+	+	+	+	+	+	+	+	+	+	+	_	+
Измерение силы постоянного тока	+	+	+	-	+	+	+	+	_	+	+	+	_	_	+
Измерение силы переменного тока	+	+	+	_	+	+	+	+	_	+	+	+	_	-	+
Измерение электрического сопротивления	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Измерение электрической емкости	+	+	_	_	+	+	+	_	-	+	+	_	_	_	-
Измерение частоты напряжения переменного тока	+	+	+	+	+	+	+	+	+	+	+	+	+	_	+
Измерение частоты силы переменного тока	+	+	+	_	+	+	+	+		+	+	_	_	_	_
Измерение температуры	+	+	+	+	+	+	+	+	+	+	+	+	+	_	+
Проверка диодов	+	+	+	+	+	+	+	+	+	+	+	+	+	_	_
Проверка целостности электрической цепи	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+

ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Основные метрологические и технические характеристики мультиметров приведены в таблицах 2 - 14.

Таблица 2 - Основные метрологические характеристики мультиметров при измерении на-

пряжения постоянного тока

Модификация мультиметра	Пределы измерений	Разрешение	Пределы допускаемой абсолютной погрещности измерений
1	2	3	4
	600 мВ	0,01 мВ	± (0,09·10 ⁻² ·U _{изм.} +5 ед.мл.р.)
	6 B	0,1 мВ	$\pm (0.05 \cdot 10^{-2} \cdot U_{\text{изм.}} + 5 \text{ ед.мл.р.})$
EXTRA	60 B	1 мВ	$\pm (0.05\cdot10^{-2}\cdot U_{\text{изм.}} + 5 \text{ ед.мл.р.})$
	600 B	10 мВ	$\pm (0.05 \cdot 10^{-2} \cdot U_{\text{изм.}} + 5 \text{ ед.мл.р.})$
	1000 B	100 мВ	$\pm (0.09 \cdot 10^{-2} \cdot U_{\text{изм.}} + 5 \text{ ед.мл.р.})$
	600 мВ	0,01 мВ	$\pm (0.09 \cdot 10^{-2} \cdot U_{изм.} + 5 ед.мл.р.)$
	6 B	0,1 мВ	$\pm (0.05 \cdot 10^{-2} \cdot U_{\text{изм.}} + 5 \text{ ед.мл.р.})$
ETECH	60 B	1 мВ	$\pm (0.05\cdot10^{-2}\cdot U_{\text{изм.}} + 5 \text{ ед.мл.р.})$
	600 B	10 мВ	$\pm (0.05 \cdot 10^{-2} \cdot U_{\text{изм.}} + 5 \text{ ед.мл.р.})$
	1000 B	100 мВ	$\pm (0.09 \cdot 10^{-2} \cdot U_{\text{изм.}} + 5 \text{ ед.мл.р.})$

Продолжение табл 1	2	3	4
	600 мВ	0,01 мВ	$\pm (0.09 \cdot 10^{-2} \cdot U_{изм.} + 5 \text{ ед.мл.р.})$
	6 B	0,1 мВ	± (0,05·10 ⁻² ·U _{изм.} + 5 ед.мл.р.)
ESPECIAL	60 B	1 мВ	$\pm (0.05 \cdot 10^{-2} \cdot U_{\text{изм.}} + 5 \text{ ед.мл.р.})$
	600 B	10 мВ	$\pm (0.05 \cdot 10^{-2} \cdot U_{\text{изм.}} + 5 \text{ ед.мл.р.})$
	1000 B	100 мВ	$\pm (0.09 \cdot 10^{-2} \cdot U_{\text{изм.}} + 5 \text{ ед.мл.р.})$
**************************************	600 мВ	0,01 мВ	$\pm (0.09 \cdot 10^{-2} \cdot U_{\text{изм.}} + 5 \text{ ед.мл.р.})$
	6 B	0,1 мВ	± (0,05·10 ⁻² ·U _{изм.} + 5 ед.мл.р.)
EBASE	60 B	1 мВ	± (0,05·10 ⁻² ·U _{изм.} + 5 ед.мл.р.)
·	600 B	10 мВ	± (0,05·10 ⁻² ·U _{изм.} + 5 ед.мл.р.)
	1000 B	100 мВ	± (0,09·10 ⁻² ·U _{изм.} +5 ед.мл.р.)
	100 мВ	0,01 мВ	± (0,09·10 ⁻² ·U _{изм.} + 5 ед.мл.р.)
	1 B	0,1 мВ	± (0,05·10 ⁻² ·U _{изм.} + 3 ед.мл.р.)
X-TRA	10 B	1 мВ	± (0,05·10 ⁻² ·U _{изм.} + 3 ед.мл.р.)
	100 B	10 мВ	$\pm (0.05 \cdot 10^{-2} \cdot U_{\text{изм.}} + 3 \text{ ед.мл.р.})$
	1000 B	100 мВ	$\pm (0.09 \cdot 10^{-2} \cdot U_{\text{изм.}} + 3 \text{ ед.мл.р.})$
	100 мВ	0,01 мВ	$\pm (0.09 \cdot 10^{-2} \cdot \text{U}_{\text{изм.}} + 5 \text{ ед.мл.р.})$
	1 B	0,1 мВ	$\pm (0.05 \cdot 10^{-2} \cdot U_{изм.} + 3 \text{ ед.мл.р.})$
OUTDOOR	10 B	1 мВ	$\pm (0.05 \cdot 10^{-2} \cdot U_{\text{изм.}} + 3 \text{ ед.мл.р.})$
	100 B	10 мВ	± (0,05·10 ⁻² ·U _{изм.} + 3 ед.мл.р.)
	1000 B	100 мВ	$\pm (0.09 \cdot 10^{-2} \cdot U_{\text{изм.}} + 3 \text{ ед.мл.р.})$
	100 мВ	0,01 мВ	± (0,09·10 ⁻² ·U _{изм.} + 5 ед.мл.р.)
	1 B	0,1 мВ	$\pm (0.05 \cdot 10^{-2} \cdot U_{\text{изм.}} + 3 \text{ ед.мл.р.})$
TECH	10 B	1 мВ	$\pm (0.05 \cdot 10^{-2} \cdot U_{\text{изм.}} + 3 \text{ ед.мл.р.})$
	100 B	10 мВ	$\pm (0.05 \cdot 10^{-2} \cdot U_{\text{изм.}} + 3 \text{ ед.мл.р.})$
	1000 B	100 мВ	$\pm (0.09 \cdot 10^{-2} \cdot U_{\text{изм.}} + 3 \text{ ед.мл.р.})$
	100 мВ	0,01 мВ	$\pm (0.09 \cdot 10^{-2} \cdot U_{\text{изм.}} + 5 \text{ ед.мл.р.})$
	1 B	0,1 мВ	$\pm (0.05\cdot 10^{-2}\cdot U_{\text{изм.}} + 3 \text{ ед.мл.р.})$
PRO	10 B	1 мВ	$\pm (0.05 \cdot 10^{-2} \cdot U_{\text{изм.}} + 3 \text{ ед.мл.р.})$
	100 B	10 мВ	$\pm (0.05 \cdot 10^{-2} \cdot U_{\text{изм}} + 3 \text{ ед.мл.р.})$
	1000 B	100 мВ	$\pm (0.09 \cdot 10^{-2} \cdot U_{\text{изм.}} + 3 \text{ ед.мл.р.})$
	100 мВ	0,01 мВ	$\pm (0.09 \cdot 10^{-2} \cdot U_{\text{изм}} + 5 \text{ ед.мл.р.})$
	1 B	0,1 мВ	$\pm (0.05 \cdot 10^{-2} \cdot U_{\text{изм.}} + 3 \text{ ед.мл.р.})$
BASE	10 B	1 мВ	$\pm (0.05 \cdot 10^{-2} \cdot U_{\text{изм.}} + 3 \text{ ед.мл.р.})$
	100 B	10 мВ	$\pm (0.05 \cdot 10^{-2} \cdot U_{\text{изм.}} + 3 \text{ ед.мл.р.})$
	1000 B	100 мВ	$\pm (0.09 \cdot 10^{-2} \cdot U_{\text{изм.}} + 3 \text{ ед.мл.р.})$
	300 мВ	0,1 мВ	$\pm (0,2\cdot10^{-2}\cdot U_{изм.} + 3 ед.мл.р.)$
	3 B	1 мВ	$\pm (0,15\cdot10^{-2}\cdot U_{\text{изм.}} + 2 \text{ ед.мл.р.})$
ISO	30 B	10 мВ	$\pm (0,15\cdot10^{-2}\cdot U_{\text{изм.}} + 2 \text{ ед.мл.р.})$
	300 B	100 мВ	$\pm (0,15\cdot10^{-2}\cdot U_{\text{изм.}} + 2 \text{ ед.мл.р.})$
	600 B	1 B	$\pm (0,2\cdot10^{-2}\cdot U_{\text{изм.}} + 2 \text{ ед.мл.р.})$
	300 мВ	0,1 мВ	$\pm (0,5 \cdot 10^{-2} \cdot U_{\text{изм.}} + 3 \text{ ед.мл.р.})$
	3 B	1 мВ	$\pm (0.5 \cdot 10^{-2} \cdot U_{\text{изм.}} + 1 \text{ ед.мл.р.})$
T -COM	30 B	10 мВ	$\pm (0,5 \cdot 10^{-2} \cdot U_{\text{изм.}} + 1 \text{ ед.мл.р.})$
	300 B	100 мВ	$\pm (0,5\cdot 10^{-2}\cdot U_{изм.} + 1 ед.мл.р.)$
	600 B	1 B	$\pm (0,5 \cdot 10^{-2} \cdot U_{\text{изм.}} + 1 \text{ ед.мл.р.})$

Продолжение таблицы 2

1	2	3	4
	600 мВ	0,1 мВ	$\pm (0,5\cdot 10^{-2}\cdot U_{\text{изм.}} + 5 \text{ ед.мл.р.})$
2	6 B	1 мВ	$\pm (0,5\cdot10^{-2}\cdot U_{\text{изм.}} + 5 \text{ ед.мл.р.})$
2	60 B	10 мВ	$\pm (0.5 \cdot 10^{-2} \cdot U_{\text{изм.}} + 5 \text{ ед.мл.р.})$
	600 B	100 мВ	$\pm (0,5\cdot 10^{-2}\cdot U_{\text{изм.}} + 5 \text{ ед.мл.р.})$
	3 B	0,1 мВ	$\pm (0,1\cdot10^{-2}\cdot U_{изм.} + 10 ед.мл.р.)$
27I	30 B	1 мВ	$\pm (0,1\cdot10^{-2}\cdot U_{\text{изм.}} + 5 \text{ ед.мл.р.})$
2/1	300 B	10 мВ	$\pm (0,1\cdot 10^{-2}\cdot U_{\text{изм.}} + 5 \text{ ед.мл.р.})$
	600 B	100 мВ	$\pm (0,1\cdot10^{-2}\cdot U_{изм.} + 5 ед.мл.р.)$
	100 мВ	0,0001 мВ	$\pm (0.005 \cdot 10^{-2} \cdot U_{изм.} + 0.0006 \cdot 10^{-2} \cdot U_{пред.})$
	1 B	0,001 мВ	$\pm (0.003 \cdot 10^{-2} \cdot U_{\text{изм.}} + 0.0004 \cdot 10^{-2} \cdot U_{\text{пред.}})$
30M	10 B	0,01 мВ	$\pm (0.003 \cdot 10^{-2} \cdot U_{\text{изм.}} + 0.0004 \cdot 10^{-2} \cdot U_{\text{пред.}})$
	100 B	0,1 мВ	$\pm (0.003 \cdot 10^{-2} \cdot U_{\text{изм.}} + 0.0006 \cdot 10^{-2} \cdot U_{\text{пред.}})$
	600 B	1 мВ	$\pm (0.004 \cdot 10^{-2} \cdot U_{\text{изм.}} + 0.001 \cdot 10^{-2} \cdot U_{\text{пред.}})$

Примечания

- 1. $U_{\mbox{\tiny изм.}}$ измеренное значение напряжения постоянного тока;
- 2. $U_{\text{пред.}}$ верхнее граничное значение диапазона измерения напряжения.

Таблица 3 - Основные метрологические характеристики мультиметров при измерении на-

пряжения переменного тока

Тип мульти- метра	Пределы измерений	Разреше- ние	Частотный диапазон	Пределы допускаемой абсолютной погрешности измерений
1	2	3	4	5
	600 мВ	0,01 мВ		$\pm (0,5\cdot10^{-2}\cdot U_{\text{изм.}} +30 \text{ ед.мл.р.})$
	6 B	0,1 мВ	от 10 Гц	$\pm (0,5\cdot10^{-2}\cdot U_{\text{изм.}} + 9 \text{ ед.мл.р.})$
EXTRA	60 B	1 мВ	до 300 кГц	$\pm (0.5 \cdot 10^{-2} \cdot U_{\text{изм.}} + 9 \text{ ед.мл.р.})$
	600 B	10 мВ	до 300 кг ц	$\pm (0.5 \cdot 10^{-2} \cdot U_{\text{изм.}} + 9 \text{ ед.мл.р.})$
	1000 B	100 мВ		$\pm (0,5\cdot10^{-2}\cdot U_{\text{изм.}} + 9 \text{ ед.мл.р.})$
	600 мВ	0,01 мВ		$\pm (0.5 \cdot 10^{-2} \cdot U_{\text{изм.}} + 30 \text{ ед.мл.р.})$
	6 B	0,1 мВ	от 10 Гц	$\pm (0,5.10^{-2} \cdot U_{\text{изм.}} + 9 \text{ ед.мл.р.})$
ETECH	60 B	1 мВ	до 300 кГц	$\pm (0.5 \cdot 10^{-2} \cdot U_{\text{изм.}} + 9 \text{ ед.мл.р.})$
	600 B	10 мВ		$\pm (0,5.10^{-2} \cdot U_{\text{изм.}} + 9 \text{ ед.мл.р.})$
	1000 B	100 мВ		$\pm (0,5.10^{-2} \cdot U_{\text{изм.}} + 9 \text{ ед.мл.р.})$
	600 мВ	0,01 мВ	от 10 Гц до 300 кГц	$\pm (0.5 \cdot 10^{-2} \cdot U_{\text{изм.}} + 30 \text{ ед.мл.р.})$
	6 B	0,1 мВ		$\pm (0,5.10^{-2} \cdot U_{\text{изм.}} + 9 \text{ ед.мл.р.})$
ESPECIAL	60 B	1 мВ		$\pm (0.5 \cdot 10^{-2} \cdot U_{\text{изм.}} + 9 \text{ ед.мл.р.})$
	600 B	10 мВ		$\pm (0,5\cdot10^{-2}\cdot U_{\text{изм.}} + 9 \text{ ед.мл.р.})$
	1000 B	100 мВ		$\pm (0.5 \cdot 10^{-2} \cdot U_{\text{изм.}} + 9 \text{ ед.мл.р.})$
	600 мВ	0,01 мВ		$\pm (0.5 \cdot 10^{-2} \cdot U_{\text{изм.}} + 30 \text{ ед.мл.р.})$
	6 B	0,1 мВ	от 10 Гц	$\pm (0,5\cdot10^{-2}\cdot U_{\text{изм.}} + 9 \text{ ед.мл.р.})$
EBASE	60 B	1 мВ	до 300 кГц	$\pm (0.5 \cdot 10^{-2} \cdot U_{\text{изм.}} + 9 \text{ ед.мл.р.})$
	600 B	10 мВ	до 300 кг ц	$\pm (0.5 \cdot 10^{-2} \cdot U_{\text{изм.}} + 9 \text{ ед.мл.р.})$
	1000 B	100 мВ		$\pm (0,5\cdot 10^{-2}\cdot U_{\text{изм.}} + 9 \text{ ед.мл.р.})$
	100 мВ	0,01 мВ		$\pm (0.01 \cdot U_{\text{изм.}} + 30 \text{ ед.мл.р.})$
	1 B	0,1 мВ	от 10 Гц	$\pm (0.5 \cdot 10^{-2} \cdot U_{\text{изм.}} + 9 \text{ ед.мл.р.})$
X-TRA	10 B	1 мВ	до 300 кГц	$\pm (0.5 \cdot 10^{-2} \cdot U_{\text{изм.}} + 9 \text{ ед.мл.р.})$
	100 B	10 мВ	до 500 кг ц	$\pm (0.5 \cdot 10^{-2} \cdot U_{\text{изм.}} + 9 \text{ ед.мл.р.})$
	1000 B	100 мВ		$\pm (0.5 \cdot 10^{-2} \cdot U_{\text{изм.}} + 9 \text{ ед.мл.р.})$

Продолжение				_
1	2	3	4	5
	100 мВ	0,01 мВ		± (0,01·U _{изм.} + 30 ед.мл.р.)
	1 B	0,1 мВ	от 10 Гц	$\pm (0.5 \cdot 10^{-2} \cdot U_{\text{изм.}} + 9 \text{ ед.мл.р.})$
OUTDOOR	10 B	1 мВ	до 300 кГц	$\pm (0.5\cdot10^{-2}\cdot U_{изм.} + 9 ед.мл.р.)$
	100 B	10 мВ	AO 200 KI A	$\pm (0.5 \cdot 10^{-2} \cdot U_{\text{изм.}} + 9 \text{ ед.мл.р.})$
	1000 B	100 мВ		$\pm (0.5 \cdot 10^{-2} \cdot U_{\text{изм.}} + 9 \text{ ед.мл.р.})$
	100 мВ	0,01 мВ		$\pm (0.01 \cdot U_{\text{изм.}} + 30 \text{ ед.мл.р.})$
	1 B	0,1 мВ	от 10 Гц	$\pm (0,5\cdot 10^{-2}\cdot U_{изм.} + 9 ед.мл.р.)$
TECH	10 B	1 мВ	до 100 Гц	$\pm (0.5 \cdot 10^{-2} \cdot U_{\text{изм.}} + 9 \text{ ед.мл.р.})$
	100 B	10 мВ	до тоот ц	$\pm (0.5 \cdot 10^{-2} \cdot U_{\text{изм.}} + 9 \text{ ед.мл.р.})$
	1000 B	100 мВ		$\pm (0,5\cdot10^{-2}\cdot U_{\text{изм.}} + 9 \text{ ед.мл.р.})$
	100 мВ	0,01 мВ		$\pm (0.01 \cdot U_{\text{изм.}} + 30 \text{ ед.мл.р.})$
	1 B	0,1 мВ	om 10 F	$\pm (0.5 \cdot 10^{-2} \cdot U_{\text{изм.}} + 9 \text{ ед.мл.р.})$
PRO	10 B	1 мВ	от 10 Гц	$\pm (0.5 \cdot 10^{-2} \cdot U_{\text{изм.}} + 9 \text{ ед.мл.р.})$
	100 B	10 мВ	до 100 Гц	$\pm (0.5 \cdot 10^{-2} \cdot U_{\text{изм.}} + 9 \text{ ед.мл.р.})$
	1000 B	100 мВ		$\pm (0.5 \cdot 10^{-2} \cdot U_{\text{изм.}} + 9 \text{ ед.мл.р.})$
	100 мВ	0,01 мВ		± (0,01·U _{изм.} + 30 ед.мл.р.)
	1 B	0,1 мВ	10.17	$\pm (0.5 \cdot 10^{-2} \cdot U_{\text{изм.}} + 9 \text{ ед.мл.р.})$
BASE	10 B	1 мВ	от 10 Гц	$\pm (0.5 \cdot 10^{-2} \cdot U_{\text{изм.}} + 9 \text{ ед.мл.р.})$
	100 B	10 мВ	до 100 Гц	$\pm (0.5 \cdot 10^{-2} \cdot U_{\text{изм.}} + 9 \text{ ед.мл.р.})$
	1000 B	100 мВ		$\pm (0.5 \cdot 10^{-2} \cdot U_{\text{изм.}} + 9 \text{ ед.мл.р.})$
	300 мВ	0,1 мВ		$\pm (1,5\cdot 10^{-2}\cdot U_{\text{изм.}} + 3 \text{ ед.мл.р.})$
	3 B	1 мВ	от 10 Гц до 300 Гц	$\pm (1,5\cdot 10^{-2}\cdot U_{\text{изм.}} + 3 \text{ ед.мл.р.})$
ISO	30 B	10 мВ		$\pm (1,5\cdot10^{-2}\cdot U_{\text{изм.}} + 3 \text{ ед.мл.р.})$
	300 B	100 мВ		$\pm (1,5\cdot 10^{-2} \cdot \text{U}_{\text{изм.}} + 3 \text{ ед.мл.р.})$
	600 B	1 B		$\pm (1,5\cdot10^{-2}\cdot U_{\text{изм.}} + 3 \text{ ед.мл.р.})$
	300 мВ	0,1 мВ		$\pm (1,5\cdot10^{-2}\cdot U_{\text{изм.}} + 3 \text{ ед.мл.р.})$
-	3 B	1 мВ		$\pm (1,5 \cdot 10^{-2} \cdot U_{\text{изм.}} + 3 \text{ ед.мл.р.})$
T -COM	30 B	10 мВ	- от 10 Гц - до 300 кГц	$\pm (1,5\cdot 10^{-2}\cdot U_{\text{изм.}} + 3 \text{ ед.мл.р.})$
	300 B	100 мВ		$\pm (1,5\cdot10^{-2}\cdot U_{\text{изм.}} + 3 \text{ ед.мл.р.})$
	600 B	1 B		$\pm (1,5\cdot10^{-2}\cdot U_{\text{изм.}} + 3 \text{ ед.мл.р.})$
	600 мВ	0,1 мВ		$\pm (1,0.10^{-2} \cdot \text{U}_{\text{изм.}} + 3 \text{ ед.мл.р.})$
	6 B	1 мВ	от 10 Гц	$\pm (1,0.10^{-2} \cdot \text{U}_{\text{изм.}} + 3 \text{ ед.мл.р.})$
2	60 B	10 мВ	до 1 кГц	$\pm (1,0.10^{-2} \cdot \text{U}_{\text{изм.}} + 3 \text{ ед.мл.р.})$
	600 B	100 мВ		$\pm (1,0.10^{-2} \cdot \text{U}_{\text{изм.}} + 3 \text{ ед.мл.р.})$
	3 B	0,1 мВ		$\pm (0.2 \cdot 10^{-2} \cdot U_{\text{изм.}} + 10 \text{ ед.мл.р.})$
	30 B	1 MB		$\pm (0.2 \cdot 10^{-2} \cdot U_{\text{изм.}} + 10 \text{ ед.мл.р.})$
2 7 I	300 B	10 мВ	от 10 Гц до 3 кГц	$\pm (0.2 \cdot 10^{-2} \cdot U_{\text{изм.}} + 10 \text{ ед.мл.р.})$
	600 B	100 мВ		$\pm (0.2 \cdot 10^{-2} \cdot U_{\text{изм.}} + 10 \text{ ед.мл.р.})$
	000 D	100 MD	от 10 Гц до 45 Гц	$\pm (0.1 \cdot 10^{-2} \cdot U_{\text{изм.}} + 0.1 \cdot 10^{-2} \cdot U_{\text{пред.}})$
			от 45 Гц до 65 Гц	$\pm (0.08 \cdot 10^{-2} \cdot U_{\text{изм.}} + 0.06 \cdot 10^{-2} \cdot U_{\text{пред.}})$
	$100~\mathrm{мB}$	0,001 мВ	от 65 Гц до 1 кГц	$\pm (0.1 \cdot 10^{-2} \cdot U_{\text{изм.}} + 0.1 \cdot 10^{-2} \cdot U_{\text{пред.}})$
			от 1 кГц до 5 кГц	$\pm (5.0 \cdot 10^{-2} \cdot U_{\text{изм.}} + 0.5 \cdot 10^{-2} \cdot U_{\text{пред.}})$
30M			от 10 Гц до 45 Гц	$\pm (0.1 \cdot 10^{-2} \cdot U_{\text{изм.}} + 0.1 \cdot 10^{-2} \cdot U_{\text{пред.}})$
50171			от 45 Гц до 65 Гц	$\pm (0.08 \cdot 10^{-2} \cdot U_{\text{изм.}} + 0.06 \cdot 10^{-2} \cdot U_{\text{пред.}})$
	1 B	0,01 мВ	от 65 Гц до 1 кГц	$\pm (0.1 \cdot 10^{-2} \cdot U_{\text{изм.}} + 0.1 \cdot 10^{-2} \cdot U_{\text{пред.}})$
	112	, MID	от 1 кГц до 10 кГц	$\pm (0.2 \cdot 10^{-2} \cdot U_{\text{изм.}} + 0.1 \cdot 10^{-2} \cdot U_{\text{пред.}})$
			от 10 кГц до 50 кГц	$\pm (5.0 \cdot 10^{-2} \cdot U_{\text{изм.}} + 0.5 \cdot 10^{-2} \cdot U_{\text{пред.}})$
			OT TO KE II IIO JU KE II	(J,O 1O Oизм. + O,J 1O Oпред.)

1	2	3	4	5
			от 10 Гц до 45 Гц	$\pm (0.1 \cdot 10^{-2} \cdot U_{\text{изм.}} + 0.1 \cdot 10^{-2} \cdot U_{\text{пред.}})$
			от 45 Гц до 65 Гц	$\pm (0.08 \cdot 10^{-2} \cdot U_{\text{изм.}} + 0.06 \cdot 10^{-2} \cdot U_{\text{пред.}})$
	10 B	0,1 мВ	от 65 Гц до 1 кГц	$\pm (0.1 \cdot 10^{-2} \cdot U_{\text{изм.}} + 0.1 \cdot 10^{-2} \cdot U_{\text{пред.}})$
	TOB	0,1 MD	от 1 кГц до 10 кГц	$\pm (0.2 \cdot 10^{-2} \cdot U_{\text{изм.}} + 0.1 \cdot 10^{-2} \cdot U_{\text{пред.}})$
			от 10 кГц до 50 кГц	$\pm (1,0.10^{-2} \cdot U_{изм.} + 0,1.10^{-2} \cdot U_{пред.})$
			от 50 кГц до 100 кГц	$\pm (3.0 \cdot 10^{-2} \cdot U_{\text{изм.}} + 0.1 \cdot 10^{-2} \cdot U_{\text{пред.}})$
		1,0 мВ	от 10 Гц до 45 Гц	$\pm (0,1\cdot10^{-2}\cdot U_{\text{изм.}} + 0,1\cdot10^{-2}\cdot U_{\text{пред.}})$
30M	100 B		от 45 Гц до 65 Гц	$\pm (0.08 \cdot 10^{-2} \cdot U_{\text{изм.}} + 0.06 \cdot 10^{-2} \cdot U_{\text{пред.}})$
30141			от 65 Гц до 1 кГц	$\pm (0,1\cdot10^{-2}\cdot U_{\text{изм.}} + 0,1\cdot10^{-2}\cdot U_{\text{пред.}})$
			от 1 кГц до 10 кГц	$\pm (0.2 \cdot 10^{-2} \cdot U_{\text{изм.}} + 0.1 \cdot 10^{-2} \cdot U_{\text{пред.}})$
			от 10 кГц до 50 кГц	$\pm (1.0 \cdot 10^{-2} \cdot U_{\text{изм.}} + 0.1 \cdot 10^{-2} \cdot U_{\text{пред.}})$
			от 50 кГц до 100 кГц	$\pm (3.0 \cdot 10^{-2} \cdot U_{\text{изм.}} + 0.1 \cdot 10^{-2} \cdot U_{\text{пред.}})$
			от 10 Гц до 45 Гц	$\pm (0.2 \cdot 10^{-2} \cdot U_{\text{изм.}} + 0.1 \cdot 10^{-2} \cdot U_{\text{пред.}})$
	600 B	10 мВ	от 45 Гц до 65 Гц	$\pm (0.08\cdot10^{-2}\cdot U_{\text{изм.}} + 0.06\cdot10^{-2}\cdot U_{\text{пред.}})$
	000 В		от 65 Гц до 1 кГц	$\pm (0.2 \cdot 10^{-2} \cdot U_{\text{изм.}} + 0.1 \cdot 10^{-2} \cdot U_{\text{пред.}})$
			от 1 кГц до 10 кГц	$\pm (3.0 \cdot 10^{-2} \cdot U_{\text{изм.}} + 0.1 \cdot 10^{-2} \cdot U_{\text{пред.}})$

Примечания

- 1. $U_{\text{изм.}}$ измеренное значение напряжения переменного тока;
- 2. Uпред. верхнее граничное значение диапазона измерения напряжения.

Таблица 4 — Основные метрологические характеристики мультиметров при измерении силы постоянного тока

Тип мультиметра	Пределы измерений	Разрешение	Пределы допускаемой абсолютной погрешности измерений
1	2	3	4
	600 мкА	10 нА	$\pm (0,5\cdot 10^{-2}\cdot I_{изм.} + 5 ед.мл.р.)$
	6 мА	100 нА	$\pm (0,5\cdot10^{-2}\cdot I_{\text{изм.}} + 5 \text{ ед.мл.р.})$
EXTRA	60 мА	1 мкА	$\pm (0,1\cdot10^{-2}\cdot I_{\text{изм.}} + 5 \text{ ед.мл.р.})$
EATRA	600 мА	10 мкА	$\pm (0,2\cdot10^{-2}\cdot I_{\text{изм.}} + 5 \text{ ед.мл.р.})$
	6 A	100 мкА	$\pm (0.9 \cdot 10^{-2} \cdot I_{\text{изм.}} + 10 \text{ ед.мл.р.})$
	10 A	1 мА	$\pm (0.9 \cdot 10^{-2} \cdot I_{\text{изм.}} + 10 \text{ ед.мл.р.})$
	60 мА	1 мкА	$\pm (0,1\cdot10^{-2}\cdot I_{\text{изм.}} + 5 \text{ ед.мл.р.})$
ETECH	600 мА	10 мкА	$\pm (0,2\cdot10^{-2}\cdot I_{\text{изм.}} + 5 \text{ ед.мл.р.})$
ETECH	6 A	100 мкА	$\pm (0.9 \cdot 10^{-2} \cdot I_{\text{изм.}} + 10 \text{ ед.мл.р.})$
	10 A	1 мА	$\pm (0.9 \cdot 10^{-2} \cdot I_{\text{изм.}} + 10 \text{ ед.мл.р.})$
ESPECIAL	6 A	100 мкА	$\pm (0.9 \cdot 10^{-2} \cdot I_{\text{изм.}} + 10 \text{ ед.мл.р.})$
ESPECIAL	10 A	1 мА	$\pm (0.9 \cdot 10^{-2} \cdot I_{\text{изм.}} + 10 \text{ ед.мл.р.})$
	100 мкА	10 нА	$\pm (0.5 \cdot 10^{-2} \cdot I_{\text{изм.}} + 5 \text{ ед.мл.р.})$
	1 мА	100 нА	$\pm (0.5 \cdot 10^{-2} \cdot I_{\text{изм.}} + 3 \text{ ед.мл.р.})$
N TD A	10 мА	1 мкА	$\pm (0.5 \cdot 10^{-2} \cdot I_{\text{изм.}} + 3 \text{ ед.мл.р.})$
X-TRA	100 мА	10 мкА	$\pm (0.5 \cdot 10^{-2} \cdot I_{\text{изм.}} + 3 \text{ ед.мл.р.})$
	1 A	100 мкА	$\pm (0.9 \cdot 10^{-2} \cdot I_{\text{изм.}} + 10 \text{ ед.мл.р.})$
	10 A	1 мА	$\pm (0.9 \cdot 10^{-2} \cdot I_{\text{изм.}} + 10 \text{ ед.мл.р.})$

1	2	3	4
	100 мкА	10 нА	$\pm (0.5 \cdot 10^{-2} \cdot I_{\text{изм.}} + 5 \text{ ед.мл.р.})$
	1 мА	100 нА	$\pm (0.5 \cdot 10^{-2} \cdot I_{изм.} + 3 \text{ ед.мл.р.})$
OUTDOOR	10 мА	1 мкА	$\pm (0.5 \cdot 10^{-2} \cdot I_{\text{изм.}} + 3 \text{ ед.мл.р.})$
OOTDOOK	100 мА	10 мкА	$\pm (0.5 \cdot 10^{-2} \cdot I_{\text{изм.}} + 3 \text{ ед.мл.р.})$
	1 A	100 мкА	$\pm (0.9 \cdot 10^{-2} \cdot I_{\text{изм.}} + 10 \text{ ед.мл.р.})$
	10 A	1 mA	$\pm (0.9 \cdot 10^{-2} \cdot I_{\text{изм.}} + 10 \text{ ед.мл.р.})$
	10 мА	1 мкА	$\pm (0,1\cdot10^{-2}\cdot I_{\text{изм.}} + 5 \text{ ед.мл.р.})$
TECH	100 мА	10 мкА	$\pm (0,1\cdot10^{-2}\cdot I_{\text{изм.}} + 5 \text{ ед.мл.р.})$
TECH	1 A	100 мкА	$\pm (0.9 \cdot 10^{-2} \cdot I_{\text{изм.}} + 10 \text{ ед.мл.р.})$
	10 A	1 мА	$\pm (0.9 \cdot 10^{-2} \cdot I_{\text{изм.}} + 10 \text{ ед.мл.р.})$
DDO	1 A	100 мкА	$\pm (0.9 \cdot 10^{-2} \cdot I_{\text{изм.}} + 10 \text{ ед.мл.р.})$
PRO	10 A	1 мА	$\pm (0.9 \cdot 10^{-2} \cdot I_{\text{изм.}} + 10 \text{ ед.мл.р.})$
	300 мкА	100 нА	$\pm (0.5 \cdot 10^{-2} \cdot I_{\text{изм.}} + 5 \text{ ед.мл.р.})$
	3 мА	1 мкА	$\pm (0.2 \cdot 10^{-2} \cdot I_{\text{изм.}} + 3 \text{ ед.мл.р.})$
ISO	30 мА	10 мкА	$\pm (0,510^{-2} \cdot I_{\text{изм.}} + 3 \text{ ед.мл.р.})$
150	300 мА	100 мкА	$\pm (0.2 \cdot 10^{-2} \cdot I_{\text{изм}} + 3 \text{ ед.мл.р.})$
	3 A	1 мА	$\pm (1,0.10^{-2} \cdot I_{\text{изм.}} + 5 \text{ ед.мл.р.})$
	10 A	10 мА	$\pm (1,0.10^{-2} \cdot I_{изм.} + 5 \text{ ед.мл.р.})$
	300 мкА	100 нА	$\pm (0.5 \cdot 10^{-2} \cdot I_{изм.} + 5 \text{ ед.мл.р.})$
	3 мА	1 мкА	$\pm (0.5 \cdot 10^{-2} \cdot I_{\text{изм.}} + 3 \text{ ед.мл.р.})$
T-COM	30 мА	10 мкА	$\pm (0,510^{-2} \cdot I_{изм.} + 3 \text{ ед.мл.р.})$
	300 мА	100 мкА	$\pm (0.5 \cdot 10^{-2} \cdot I_{\text{изм.}} + 3 \text{ ед.мл.р.})$
	1 A	1 мА	$\pm (0.5 \cdot 10^{-2} \cdot I_{\text{изм.}} + 5 \text{ ед.мл.р.})$
	60 мА	10 мкА	$\pm (1,0.10^{-2} \cdot I_{\text{изм.}} + 5 \text{ ед.мл.р.})$
2	600 мА	100 мкА	$\pm (1,0.10^{-2} \cdot I_{\text{изм.}} + 5 \text{ ед.мл.р.})$
_	6 A	1 mA	$\pm (1,0.10^{-2} \cdot I_{изм.} + 5 \text{ ед.мл.р.})$
	10 A	10 мА	$\pm (1,0.10^{-2}\cdot I_{\text{изм.}} + 5 \text{ ед.мл.р.})$
	100 мкА	100 пА	$\pm (0.02 \cdot 10^{-2} \cdot I_{\text{изм.}} + 0.002 \cdot 10^{-2} \cdot I_{\text{пред.}})$
30M	1 MA	1 нА	$\pm (0.02 \cdot 10^{-2} \cdot I_{\text{изм.}} + 0.002 \cdot 10^{-2} \cdot I_{\text{пред.}})$
	10 MA	10 нА	$\pm (0.02 \cdot 10^{-2} \cdot I_{\text{изм.}} + 0.002 \cdot 10^{-2} \cdot I_{\text{пред.}})$
	100 мА	100 нА	$\pm (0.02 \cdot 10^{-2} \cdot I_{\text{изм.}} + 0.002 \cdot 10^{-2} \cdot I_{\text{пред.}})$

<u>Примечания</u>

- 1. $I_{\text{изм.}}$ измеренное значение силы постоянного тока;
- 2. $I_{\text{пред.}}$ верхнее граничное значение диапазона измерения силы постоянного тока.

Таблица 5 — Основные метрологические характеристики мультиметров при измерении силы переменного тока

Тип мульти- метра	Пределы измерений	Разре- шение	Частотный диапазон	Пределы допускаемой абсолютной погрешности измерений
1	2	3	4	5
	600 мкА	10 нА	от 10 Гц до 6 кГц	$\pm (1,0.10^{-2} \cdot I_{изм.} + 10 \text{ ед.мл.р.})$
	6 мА	100 нА		$\pm (1,0.10^{-2} \cdot I_{изм.} + 10 $ ед.мл.р.)
EXTRA	60 мА	1 мкА		$\pm (1,0.10^{-2} \cdot I_{\text{изм.}} + 10 \text{ ед.мл.р.})$
EXIKA	600 мА	10 мкА		$\pm (1,0.10^{-2} \cdot I_{\text{изм.}} + 10 \text{ ед.мл.р.})$
	6 A	100 мкА		$\pm (1,0.10^{-2} \cdot I_{\text{изм.}} + 10 \text{ ед.мл.р.})$
	10 A	1 мА		$\pm (1,5\cdot 10^{-2}\cdot I_{\text{изм.}} + 10 \text{ ед.мл.р.})$

Продолжени	е таблицы 5			
1	2	3	4	5
	60 мА	1 мкА		$\pm (1,0.10^{-2} \cdot I_{\text{изм.}} + 10 \text{ ед.мл.р.})$
ETECH	600 мА	10 мкА	от 10 Гц до 6 кГц	$\pm (1,0.10^{-2} \cdot I_{\text{изм.}} + 10 \text{ ед.мл.р.})$
	6 A	100 мкА	от тот ц до о кг ц	$\pm (1,0.10^{-2} \cdot I_{\text{изм.}} + 10 \text{ ед.мл.р.})$
	10 A	1 мА		$\pm (1,5.10^{-2} \cdot I_{изм.} + 10 \text{ ед.мл.р.})$
ESPECIAL	6 A	100 мкА	от 10 Гц до 6 кГц	$\pm (1,0.10^{-2} \cdot I_{\text{изм.}} + 10 \text{ ед.мл.р.})$
Lot Lente	10 A	1 мА	оттотцдооктц	$\pm (1,5.10^{-2} \cdot I_{\text{изм.}} + 10 \text{ ед.мл.р.})$
	100 мкА	10 нА		$\pm (1,5.10^{-2} \cdot I_{\text{изм.}} + 10 \text{ ед.мл.р.})$
	1 мА	100 нА		$\pm (1,5\cdot10^{-2}\cdot I_{\text{изм.}} + 10 \text{ ед.мл.р.})$
X-TRA	10 мА	1 мкА	от 10 Гц до 30 кГц	$\pm (1,5.10^{-2} \cdot I_{изм.} + 10 $ ед.мл.р.)
A HOI	100 мА	10 мкА	or for a go so king	$\pm (1,5.10^{-2} \cdot I_{\text{изм.}} + 10 \text{ ед.мл.р.})$
	1 A	100 мкА		$\pm (1,5\cdot10^{-2}\cdot I_{изм.} + 10 $ ед.мл.р.)
	10 A	1 мА		$\pm (1,5.10^{-2} \cdot I_{\text{изм.}} + 10 \text{ ед.мл.р.})$
	100 мкА	10 нА		$\pm (1,5.10^{-2} \cdot I_{изм.} + 10 \text{ ед.мл.р.})$
	1 мА	100 нА		$\pm (1,5.10^{-2} \cdot I_{изм.} + 10 \text{ ед.мл.р.})$
OUTDOOR	10 мА	1 мкА	от 10 Гц до 30 кГц	$\pm (1,5\cdot10^{-2}\cdot I_{изм.} + 10 $ ед.мл.р.)
OUTDOOR	100 мА	10 мкА	от тот ц до зо кг ц	$\pm (1,5.10^{-2} \cdot I_{изм.} + 10 \text{ ед.мл.р.})$
	1 A	100 мкА		$\pm (1,5 \cdot 10^{-2} \cdot I_{\text{изм.}} + 10 \text{ ед.мл.р.})$
	10 A	1 мА		$\pm (1,5\cdot 10^{-2}\cdot I_{\text{изм.}} + 10 \text{ ед.мл.р.})$
	10 мА	1 мкА		± (0,01·I _{изм.} + 10 ед.мл.р.)
TROIT	100 мА	10 мкА	10 5 20 5	$\pm (0.01 \cdot I_{\text{изм.}} + 10 \text{ ед.мл.р.})$
TECH	1 A	100 мкА	от 10 Гц до 30 кГц	± (0,01·I _{изм.} + 10 ед.мл.р.)
	10 A	1 мА		$\pm (0.01 \cdot I_{\text{изм.}} + 10 \text{ ед.мл.р.})$
DD O	1 A	100 мкА	от 10 Гц до 30 кГц	$\pm (1.5 \cdot 10^{-2} \cdot I_{\text{изм}} + 10 \text{ ед.мл.р.})$
PRO	10 A	1 мА		$\pm (1,5\cdot10^{-2}\cdot I_{\text{изм.}} + 10 \text{ ед.мл.р.})$
	300 мкА	100 нА		$\pm (1,5.10^{-2} \cdot I_{\text{изм.}} + 5 \text{ ед.мл.р.})$
	3 мА	1 мкА		$\pm (1,5\cdot10^{-2}\cdot I_{\text{изм.}} + 5 \text{ ед.мл.р.})$
ISO	30 мА	10 мкА	от 10 Гц до 3 кГц	$\pm (1,5.10^{-2} \cdot I_{\text{изм.}} + 5 \text{ ед.мл.р.})$
150	300 мА	100 мкА		$\pm (1,5\cdot10^{-2}\cdot I_{изм.} + 5 \text{ ед.мл.р.})$
	3 A	1 мА		$\pm (1,5\cdot10^{-2}\cdot I_{изм.} + 5 \text{ ед.мл.р.})$
	10 A	10 мА		$\pm (1,5\cdot10^{-2}\cdot I_{\text{изм.}} + 5 \text{ ед.мл.р.})$
	300 мкА	100 нА		$\pm (1,5\cdot10^{-2}\cdot I_{изм.} + 5 \text{ ед.мл.р.})$
	3 мА	1 мкА		$\pm (1,5\cdot10^{-2}\cdot I_{\text{изм.}} + 5 \text{ ед.мл.р.})$
T-COM	30 мА	10 мкА	от 10 Гц до 30 кГц	$\pm (1.5 \cdot 10^{-2} \cdot I_{изм.} + 5 \text{ ед.мл.р.})$
	300 мА	100 мкА		$\pm (1,5\cdot10^{-2}\cdot I_{\text{изм.}} + 5 \text{ ед.мл.р.})$
	1 A	1 мА		$\pm (1,5\cdot 10^{-2}\cdot I_{\text{изм.}} + 5 \text{ ед.мл.р.})$
	60 мА	10 мкА		$\pm (1,5\cdot10^{-2}\cdot I_{изм.} + 5 \text{ ед.мл.р.})$
2	600 мА	100 мкА	от 10 Гц до 1 кГц	$\pm (1,5\cdot10^{-2}\cdot I_{\text{изм.}} + 5 \text{ ед.мл.р.})$
	6 A	1 MA		$\pm (1.5 \cdot 10^{-2} \cdot I_{\text{изм.}} + 5 \text{ ед.мл.р.})$
	10 A	10 мА	100	$\pm (1,5\cdot10^{-2}\cdot I_{изм.} + 5 ед.мл.р.)$
			от 10 Гц до 45 Гц	$\pm (0.1 \cdot 10^{-2} \cdot I_{\text{изм.}} + 0.1 \cdot 10^{-2} \cdot I_{\text{пред.}})$
	100 мкА	1 нА	от 45 Гц до 65 Гц	$\pm (0.08 \cdot 10^{-2} \cdot I_{\text{изм.}} + 0.06 \cdot 10^{-2} \cdot I_{\text{пред.}})$
			от 65 Гц до 1 кГц	$\pm (0.1 \cdot 10^{-2} \cdot I_{\text{изм.}} + 0.1 \cdot 10^{-2} \cdot I_{\text{пред.}})$
30M			от 1 кГц до 5 кГц	$\pm (0.2 \cdot 10^{-2} \cdot I_{\text{изм.}} + 0.1 \cdot 10^{-2} \cdot I_{\text{пред.}})$
			от 10 Гц до 45 Гц	$\pm (0.1 \cdot 10^{-2} \cdot I_{\text{изм.}} + 0.1 \cdot 10^{-2} \cdot I_{\text{пред.}})$
	1 M A	10 нА	от 45 Гц до 65 Гц	$\pm (0.08 \cdot 10^{-2} \cdot I_{\text{ИЗМ.}} + 0.06 \cdot 10^{-2} \cdot I_{\text{пред.}})$
			от 65 Гц до 1 кГц	$\pm (0.1 \cdot 10^{-2} \cdot I_{\text{изм.}} + 0.1 \cdot 10^{-2} \cdot I_{\text{пред.}})$
			от 1 кГц до 5 <mark>кГц</mark>	$\pm (0.2 \cdot 10^{-2} \cdot I_{\text{изм.}} + 0.1 \cdot 10^{-2} \cdot I_{\text{пред.}})$

1	2	3	4	5
			от 10 Гц до 45 Гц	$\pm (0.1 \cdot 10^{-2} \cdot I_{\text{изм.}} + 0.1 \cdot 10^{-2} \cdot I_{\text{пред.}})$
	30M 100 mA	100 нА	от 45 Гц до 65 Гц	$\pm (0.08 \cdot 10^{-2} \cdot I_{\text{изм.}} + 0.06 \cdot 10^{-2} \cdot I_{\text{пред.}})$
		100 HA	от 65 Гц до 1 кГц	$\pm (0.1 \cdot 10^{-2} \cdot I_{\text{изм}} + 0.1 \cdot 10^{-2} \cdot I_{\text{пред}})$
30M			от 1 кГц до 5 кГц	$\pm (0.2 \cdot 10^{-2} \cdot I_{\text{изм.}} + 0.1 \cdot 10^{-2} \cdot I_{\text{пред.}})$
30111		1 vers A	от 10 Гц до 45 Гц	$\pm (0.1 \cdot 10^{-2} \cdot I_{\text{изм.}} + 0.1 \cdot 10^{-2} \cdot I_{\text{пред.}})$
			от 45 Гц до 65 Гц	$\pm (0.08 \cdot 10^{-2} \cdot I_{\text{изм.}} + 0.06 \cdot 10^{-2} \cdot I_{\text{пред.}})$
100 1	TOOMA	1мкА	от 65 Гц до 1 кГц	$\pm (0.1 \cdot 10^{-2} \cdot I_{\text{изм.}} + 0.1 \cdot 10^{-2} \cdot I_{\text{пред.}})$
			от 1 кГц до 5 кГц	$\pm (0.2 \cdot 10^{-2} \cdot I_{\text{изм.}} + 0.1 \cdot 10^{-2} \cdot I_{\text{пред.}})$

Примечания

- 1. І_{изм.} измеренное значение силы переменного тока;
- 2. Іпред. верхнее граничное значение диапазона измерения силы переменного тока.

Таблица 6 — Основные метрологические характеристики мультиметров при измерении электрического сопротивления

Тип мультиметра	Пределы измерений	Разрешение	Пределы допускаемой абсолютной погрешности измерений
1	2	3	4
	600 Ом	10 мОм	$\pm (0,1\cdot10^{-2}\cdot R_{изм.} + 5 \text{ ед.мл.р.})$
	6 кОм	100 мОм	$\pm (0.1 \cdot 10^{-2} \cdot R_{\text{изм.}} + 5 \text{ ед.мл.р.})$
EXTRA	60 кОм	1 Ом	$\pm (0,1.10^{-2} \cdot R_{\text{изм.}} + 5 \text{ ед.мл.р.})$
EXIKA	600 кОм	10 Ом	$\pm (0.2 \cdot 10^{-2} \cdot R_{\text{изм.}} + 5 \text{ ед.мл.р.})$
	6 МОм	100 Ом	$\pm (0,5\cdot10^{-2}\cdot R_{\text{изм.}} + 5 \text{ ед.мл.р.})$
	60 МОм	1 кОм	$\pm (5,0.10^{-2} \cdot R_{изм.} + 10 \text{ ед.мл.р.})$
	600 Ом	10 мОм	$\pm (0,1\cdot 10^{-2}\cdot R_{\text{изм.}} + 5 \text{ ед.мл.р.})$
	6 кОм	100 мОм	$\pm (0,1\cdot10^{-2}\cdot R_{\text{изм.}} + 5 \text{ ед.мл.р.})$
ETECH	60 кОм	1 Ом	$\pm (0,1\cdot10^{-2}\cdot R_{\text{изм.}} + 5 \text{ ед.мл.р.})$
ETECH	600 кОм	10 Ом	$\pm (0.2 \cdot 10^{-2} \cdot R_{\text{изм.}} + 5 \text{ ед.мл.р.})$
	6 МОм	100 Ом	$\pm (0.5 \cdot 10^{-2} \cdot R_{\text{изм.}} + 5 \text{ ед.мл.р.})$
	60 МОм	1 кОм	$\pm (5,0.10^{-2} \cdot R_{изм.} + 10 \text{ ед.мл.р.})$
	600 Ом	10 мОм	$\pm (0,1\cdot10^{-2}\cdot R_{\text{изм.}} + 5 \text{ ед.мл.р.})$
	6 кОм	100 мОм	$\pm (0,1\cdot10^{-2}\cdot R_{изм.} + 5 ед.мл.р.)$
ESPECIAL	60 кОм	1 Ом	$\pm (0,1\cdot10^{-2}\cdot R_{\text{изм.}} + 5 \text{ ед.мл.р.})$
ESI ECIAL	600 кОм	10 Ом	$\pm (0.2 \cdot 10^{-2} \cdot R_{\text{изм.}} + 5 \text{ ед.мл.р.})$
	6 МОм	100 Ом	$\pm (0.5 \cdot 10^{-2} \cdot R_{\text{изм.}} + 5 \text{ ед.мл.р.})$
	60 МОм	1 кОм	$\pm (5,0.10^{-2} \cdot R_{изм.} + 10 \text{ ед.мл.р.})$
	600 Ом	10 мОм	$\pm (0,1\cdot10^{-2}\cdot R_{\text{изм.}} + 5 \text{ ед.мл.р.})$
	6 кОм	100 мОм	$\pm (0,1\cdot10^{-2}\cdot R_{\text{изм.}} + 5 \text{ ед.мл.р.})$
EBASE -	60 кОм	1 Ом	$\pm (0,1\cdot10^{-2}\cdot R_{\text{изм.}} + 5 \text{ ед.мл.р.})$
LDASL	600 кОм	10 Ом	$\pm (0.2 \cdot 10^{-2} \cdot R_{\text{изм.}} + 5 \text{ ед.мл.р.})$
	6 МОм	100 Ом	$\pm (0.5 \cdot 10^{-2} \cdot R_{\text{изм.}} + 5 \text{ ед.мл.р.})$
	60 МОм	1 кОм	$\pm (5,0.10^{-2} \cdot R_{изм.} + 10 \text{ ед.мл.р.})$
	100 Ом	10 мОм	$\pm (0,2\cdot10^{-2}\cdot R_{изм.} + 5 \text{ ед.мл.р.})$
	1 кОм	100 мОм	$\pm (0.2 \cdot 10^{-2} \cdot R_{\text{изм.}} + 5 \text{ ед.мл.р.})$
	10 кОм	1 Ом	$\pm (0,2.10^{-2} \cdot R_{\text{изм.}} + 5 \text{ ед.мл.р.})$
X-TRA	100 кОм	10 Ом	$\pm (0.2 \cdot 10^{-2} \cdot R_{\text{изм.}} + 5 \text{ ед.мл.р.})$
	1 МОм	100 Ом	$\pm (0,2\cdot10^{-2}\cdot R_{\text{изм.}} + 5 \text{ ед.мл.р.})$
	10 МОм	1 кОм	$\pm (0,5.10^{-2} \cdot R_{изм.} + 10 \text{ ед.мл.р.})$
	40 МОм	10 кОм	$\pm (2,0.10^{-2} \cdot R_{изм.} + 10 \text{ ед.мл.р.})$

Продолжение табл	<u>ицы о</u>	3	4
	100 Ом	10 мОм	$\pm (0,2\cdot 10^{-2}\cdot R_{_{ИЗМ.}} + 5 \text{ ед.мл.р.})$
	1 кОм	100 мОм	$\pm (0.2 \cdot 10^{-2} \cdot R_{\text{изм.}} + 5 \text{ ед.мл.р.})$
	10 кОм	1 Ом	$\pm (0.2 \cdot 10^{-2} \cdot R_{\text{изм.}} + 5 \text{ ед.мл.р.})$
OUTDOOR	100 кОм	10 Ом	$\pm (0.2 \cdot 10^{-2} \cdot R_{\text{изм.}} + 5 \text{ ед.мл.р.})$
	1 МОм	100 Ом	$\pm (0.2 \cdot 10^{-2} \cdot R_{\text{изм.}} + 5 \text{ ед.мл.р.})$
	10 МОм	1 кОм	$\pm (0.5 \cdot 10^{-2} \cdot R_{изм.} + 10 \text{ ед.мл.р.})$
	40 МОм	10 кОм	$\pm (2.0\cdot10^{-2}\cdot R_{\text{изм.}} + 10 \text{ ед.мл.р.})$
	100 Ом	10 мОм	$\pm (0.2 \cdot 10^{-2} \cdot R_{\text{изм.}} + 5 \text{ ед.мл.р.})$
	1 кОм	100 мОм	$\pm (0.2 \cdot 10^{-2} \cdot R_{\text{изм.}} + 5 \text{ ед.мл.р.})$
	10 кОм	1 Ом	$\pm (0.2 \cdot 10^{-2} \cdot R_{\text{изм.}} + 5 \text{ ед.мл.р.})$
TECH	100 кОм	10 Ом	$\pm (0.2 \cdot 10^{-2} \cdot R_{\text{изм.}} + 5 \text{ ед.мл.р.})$
	1 МОм	100 Ом	$\pm (0.2 \cdot 10^{-2} \cdot R_{\text{изм.}} + 5 \text{ ед.мл.р.})$
	10 МОм	1 кОм	$\pm (0.5 \cdot 10^{-2} \cdot R_{изм.} + 10 \text{ ед.мл.р.})$
	40 МОм	10 кОм	$\pm (2.0\cdot10^{-2}\cdot R_{\text{изм.}} + 10 \text{ ед.мл.р.})$
	100 Ом	10 мОм	$\pm (0.2 \cdot 10^{-2} \cdot R_{\text{изм.}} + 5 \text{ ед.мл.р.})$
	1 кОм	100 мОм	$\pm (0.2 \cdot 10^{-2} \cdot R_{\text{изм.}} + 5 \text{ ед.мл.р.})$
77.0	10 кОм	1 Ом	$\pm (0.2 \cdot 10^{-2} \cdot R_{\text{изм.}} + 5 \text{ ед.мл.р.})$
PRO	100 кОм	10 Ом	$\pm (0.2 \cdot 10^{-2} \cdot R_{изм.} + 5 \text{ ед.мл.р.})$
	1 MOM	100 Ом	$\pm (0.2 \cdot 10^{-2} \cdot R_{\text{изм.}} + 5 \text{ ед.мл.р.})$
	10 MOM	1 кОм	$\pm (0.5 \cdot 10^{-2} \cdot R_{\text{изм.}} + 10 \text{ ед.мл.р.})$ $\pm (2.0 \cdot 10^{-2} \cdot R_{\text{изм.}} + 10 \text{ ед.мл.р.})$
	40 МОм	10 кОм	$\pm (2.0\cdot10^{-2}\cdot R_{\text{изм.}} + 10 \text{ ед.мл.р.})$
	100 Ом 1 кОм	10 мОм 100 мОм	$\pm (0.2 \cdot 10^{-2} \cdot R_{\text{изм.}} + 5 \text{ ед.мл.р.})$ $\pm (0.2 \cdot 10^{-2} \cdot R_{\text{изм.}} + 5 \text{ ед.мл.р.})$
	1 ком 10 кОм	1 Om	$\pm (0.2 \cdot 10^{-2} \cdot R_{\text{изм.}} + 5 \cdot \text{сд.мл.р.})$ $\pm (0.2 \cdot 10^{-2} \cdot R_{\text{изм.}} + 5 \cdot \text{ед.мл.р.})$
BASE	100 кОм	10 Ом	$\pm (0.2 \cdot 10^{-2} \cdot R_{\text{изм.}} + 5 \text{ ед.мл.р.})$ $\pm (0.2 \cdot 10^{-2} \cdot R_{\text{изм.}} + 5 \text{ ед.мл.р.})$
D/ ISL	1 MOM	100 Ом	$\pm (0.2 \cdot 10^{-2} \cdot R_{\text{изм.}} + 5 \text{ ед.мл.р.})$
	10 МОм	1 кОм	$\pm (0.5 \cdot 10^{-2} \cdot R_{изм.} + 10 \text{ ед.мл.р.})$
	40 МОм	10 кОм	$\pm (2,0.10^{-2} \cdot R_{\text{изм.}} + 10 \text{ ед.мл.р.})$
	300 Ом	100 мОм	$\pm (0.5 \cdot 10^{-2} \cdot R_{\text{изм.}} + 3 \text{ ед.мл.р.})$
	3 кОм	1 Ом	$\pm (0.5 \cdot 10^{-2} \cdot R_{\text{изм}} + 1 \text{ ед.мл.р.})$
100	30 кОм	10 Ом	$\pm (0.5 \cdot 10^{-2} \cdot R_{\text{изм.}} + 1 \text{ ед.мл.р.})$
ISO	300 кОм	100 Ом	$\pm (0.5 \cdot 10^{-2} \cdot R_{\text{изм.}} + 1 \text{ ед.мл.р.})$
	3 МОм	1 кОм	$\pm (0.5 \cdot 10^{-2} \cdot R_{\text{изм.}} + 1 \text{ ед.мл.р.})$
	30 МОм	10 кОм	$\pm (2,0.10^{-2} \cdot R_{изм.} + 5 \text{ ед.мл.р.})$
	300 Ом	100 мОм	$\pm (0.5 \cdot 10^{-2} \cdot R_{\text{изм.}} + 3 \text{ ед.мл.р.})$
	3 кОм	1 Ом	$\pm (0.5 \cdot 10^{-2} \cdot R_{\text{изм.}} + 1 \text{ ед.мл.р.})$
T-COM	30 кОм	10 Ом	$\pm (0.5 \cdot 10^{-2} \cdot R_{\text{изм.}} + 1 \text{ ед.мл.р.})$
1-COM	300 кОм	100 Ом	$\pm (0.5 \cdot 10^{-2} \cdot R_{\text{изм.}} + 1 \text{ ед.мл.р.})$
	3 МОм	1 кОм	$\pm (0.5 \cdot 10^{-2} \cdot R_{изм.} + 1 \text{ ед.мл.р.})$
	30 МОм	10 кОм	$\pm (2,0\cdot10^{-2}\cdot R_{изм.} + 5 ед.мл.р.)$
	600 Ом	100 мОм	$\pm (1,0.10^{-2} \cdot R_{изм} + 5 \text{ ед.мл.р.})$
	6 кОм	1 Ом	$\pm (0.7 \cdot 10^{-2} \cdot R_{изм.} + 3 \text{ ед.мл.р.})$
2	60 кОм	10 Ом	$\pm (0.7 \cdot 10^{-2} \cdot R_{изм.} + 3 \text{ ед.мл.р.})$
	600 кОм	100 Ом	$\pm (0.7 \cdot 10^{-2} \cdot R_{\text{изм.}} + 3 \text{ ед.мл.р.})$
	6 MOM	1 кОм	$\pm (0.7 \cdot 10^{-2} \cdot R_{\text{изм.}} + 3 \text{ ед.мл.р.})$
	40 МОм	10 кОм	$\pm (2.0 \cdot 10^{-2} \cdot R_{\text{изм.}} + 3 \text{ ед.мл.р.})$

1	2	3	4
	Четырехпр	оходная схема под	ключения, тестовый ток 1 А
	3 мОм	0,001 мОм	$\pm (1,0.10^{-2} \cdot R_{изм.} + 10 \text{ ед.мл.р.})$
	30 мОм	0,001 мОм	$\pm (0.5 \cdot 10^{-2} \cdot R_{изм.} + 10 \text{ ед.мл.р.})$
	300 мОм	0,01 мОм	$\pm (0.5 \cdot 10^{-2} \cdot R_{\text{изм.}} + 10 \text{ ед.мл.р.})$
	Четырехпроход	ная схема подключ	ения, тестовый ток менее 200 мА
	30 мОм	0,01 мОм	$\pm (0.25 \cdot 10^{-2} \cdot R_{\text{изм.}} + 10 \text{ ед.мл.р.})$
	300 мОм	0,01 мОм	$\pm (0.25 \cdot 10^{-2} \cdot R_{\text{изм.}} + 10 \text{ ед.мл.р.})$
271	3 Ом	0,1 мОм	$\pm (0.25 \cdot 10^{-2} \cdot R_{\text{изм.}} + 10 \text{ ед.мл.р.})$
2/1	30 Ом	1,0 мОм	$\pm (0.25 \cdot 10^{-2} \cdot R_{\text{изм.}} + 10 \text{ ед.мл.р.})$
	Двухпроводн	ная схема подключе	ения, тестовый ток менее 1 мА
	300 Ом	10 мОм	$\pm (0,1\cdot10^{-2}\cdot R_{\text{изм.}} + 10 \text{ ед.мл.р.})$
	3 кОм	100 мОм	$\pm (0,1\cdot10^{-2}\cdot R_{изм.} + 5 ед.мл.р.)$
	30 кОм	1 Ом	$\pm (0,1\cdot10^{-2}\cdot R_{изм.} + 5 \text{ ед.мл.р.})$
	300 кОм	10 Ом	$\pm (0,1\cdot10^{-2}\cdot R_{изм.} + 5 ед.мл.р.)$
	3 МОм	100 Ом	$\pm (0,1\cdot10^{-2}\cdot R_{\text{изм.}} + 5 \text{ ед.мл.р.})$
	30 МОм	1 кОм	$\pm (1,5\cdot10^{-2}\cdot R_{\text{изм.}} + 10 \text{ ед.мл.р.})$
	30 мОм	0,01 мОм	$\pm (2,0.10^{-2} \cdot R_{изм.} + 20 \text{ ед.мл.р.})$
27Ex	300 мОм	0,01 мОм	$\pm (1,0.10^{-2} \cdot R_{\text{изм.}} + 20 \text{ ед.мл.р.})$
ZIEX	3 Ом	0,1 мОм	$\pm (1,0.10^{-2} \cdot R_{изм.} + 10 \text{ ед.мл.р.})$
	30 Ом	1,0 мОм	$\pm (1,0.10^{-2} \cdot R_{изм.} + 10 \text{ ед.мл.р.})$
	100 Ом	0,1 мОм	$\pm (0.005 \cdot 10^{-2} \cdot R_{\text{изм.}} + 0.001 \cdot 10^{-2} \cdot R_{\text{пред.}})$
	1 кОм	1 мОм	$\pm (0.005 \cdot 10^{-2} \cdot R_{\text{изм.}} + 0.001 \cdot 10^{-2} \cdot R_{\text{пред.}})$
30M	10 кОм	10 мОм	$\pm (0.005 \cdot 10^{-2} \cdot R_{\text{изм.}} + 0.001 \cdot 10^{-2} \cdot R_{\text{пред.}})$
30171	100 кОм	0,1 Ом	$\pm (0.005 \cdot 10^{-2} \cdot R_{\text{изм.}} + 0.001 \cdot 10^{-2} \cdot R_{\text{пред.}})$
	1 МОм	1 Ом	$\pm (0.05 \cdot 10^{-2} \cdot R_{\text{изм.}} + 0.002 \cdot 10^{-2} \cdot R_{\text{пред.}})$
	10 МОм	10 Ом	$\pm (0.5 \cdot 10^{-2} \cdot R_{\text{изм.}} + 0.02 \cdot 10^{-2} \cdot R_{\text{пред.}})$

Примечания

- 1. $R_{\mbox{\tiny H3M.}}$ измеренное значение сопротивления;
- 2. R_{пред.} верхнее граничное значение диапазона измерения сопротивления.

Таблица 7 — Основные метрологические характеристики мультиметров при измерении электрической емкости

Тип мультиметра	Пределы измерений	Разрешение	Пределы допускаемой абсолютной погрещности измерений
1	2	3	4
	60 нФ	10 пФ	$\pm (1,0.10^{-2} \cdot C_{изм.} + 10 \text{ ед.мл.р.})$
	600 нФ	100 пФ	$\pm (1,0.10^{-2} \cdot C_{изм.} + 6 ед.мл.р.)$
EXTRA	6 мкФ	1 нФ	$\pm (1,0.10^{-2} \cdot C_{\text{изм.}} + 6 \text{ ед.мл.р.})$
	60 мкФ	10 нФ	$\pm (1,0.10^{-2}\cdot C_{\text{изм.}} + 6 \text{ ед.мл.р.})$
	600 мкФ	100 нФ	$\pm (5,0.10^{-2}\cdot C_{\text{изм.}} + 6 \text{ ед.мл.р.})$
	60 нФ	10 пФ	$\pm (1,0.10^{-2} \cdot C_{изм.} + 10 \text{ ед.мл.р.})$
	600 нФ	100 пФ	$\pm (1,0.10^{-2} \cdot C_{\text{изм.}} + 6 \text{ ед.мл.р.})$
ETECH	6 мкФ	1 нФ	$\pm (1.0\cdot10^{-2}\cdot C_{изм.} + 6 ед.мл.р.)$
	60 мкФ	10 нФ	$\pm (1,0.10^{-2} \cdot C_{\text{изм.}} + 6 \text{ ед.мл.р.})$
	600 мкФ	100 нФ	$\pm (5,0.10^{-2}\cdot C_{\text{изм.}} + 6 \text{ ед.мл.р.})$

1	2	3	4
	10 нФ	10 пФ	$\pm (1,0.10^{-2} \cdot C_{изм.} + 6 ед.мл.р.)$
X-TRA	100 нФ	100 пФ	$\pm (1,0.10^{-2} \cdot C_{изм.} + 6 ед.мл.р.)$
	1 мкФ	1 нФ	$\pm (1,0.10^{-2} \cdot C_{\text{изм.}} + 6 \text{ ед.мл.р.})$
A-TKA	10 мкФ	10 нФ	$\pm (1,0.10^{-2} \cdot C_{\text{изм.}} + 6 \text{ ед.мл.р.})$
	100 мкФ	100 нФ	$\pm (5.0\cdot10^{-2}\cdot C_{\text{изм.}} + 6 \text{ ед.мл.р.})$
	1000 мкФ	1 мкФ	$\pm (5,0.10^{-2} \cdot C_{изм.} + 6 ед.мл.р.)$
	10 нФ	10 пФ	$\pm (1.0 \cdot 10^{-2} \cdot C_{\text{изм.}} + 6 \text{ ед.мл.р.})$
	100 нФ	100 пФ	$\pm (1,0.10^{-2} \cdot C_{\text{изм.}} + 6 \text{ ед.мл.р.})$
OUTDOOR	1 мкФ	1 нФ	$\pm (1,0.10^{-2} \cdot C_{\text{изм.}} + 6 \text{ ед.мл.р.})$
OUTDOOK	10 мкФ	10 нФ	$\pm (1.0 \cdot 10^{-2} \cdot C_{\text{изм.}} + 6 \text{ ед.мл.р.})$
	100 мкФ	100 нФ	$\pm (5,0.10^{-2} \cdot C_{изм.} + 6 ед.мл.р.)$
	1000 мкФ	1 мкФ	$\pm (5,0.10^{-2} \cdot C_{\text{изм.}} + 6 \text{ ед.мл.р.})$
	10 нФ	10 пФ	$\pm (1.0 \cdot 10^{-2} \cdot C_{\text{изм.}} + 6 \text{ ед.мл.р.})$
	100 нФ	100 пФ	$\pm (1,0.10^{-2} \cdot C_{\text{изм.}} + 6 \text{ ед.мл.р.})$
TECH	1 мкФ	1 нФ	$\pm (1,0.10^{-2} \cdot C_{изм.} + 6 \text{ ед.мл.р.})$
ILCII	10 мкФ	10 нФ	$\pm (1.0\cdot10^{-2}\cdot C_{\text{изм.}} + 6 \text{ ед.мл.р.})$
	100 мкФ	100 нФ	$\pm (5,0.10^{-2} \cdot C_{\text{изм.}} + 6 \text{ ед.мл.р.})$
	1000 мкФ	1 мкФ	$\pm (5,0.10^{-2} \cdot C_{\text{изм.}} + 6 \text{ ед.мл.р.})$
	30 нФ	10 пФ	$\pm (1,0.10^{-2} \cdot C_{\text{изм.}} + 6 \text{ ед.мл.р.})$
	300 нФ	100 пФ	$\pm (1,0.10^{-2} \cdot C_{\text{изм.}} + 6 \text{ ед.мл.р.})$
ISO	3 мкФ	1 нФ	$\pm (1,0.10^{-2} \cdot C_{\text{изм.}} + 6 \text{ ед.мл.р.})$
	30 мкФ	10 нФ	$\pm (1,0.10^{-2} \cdot C_{изм.} + 6 ед.мл.р.)$
	300 мкФ	100 нФ	$\pm (5,0.10^{-2} \cdot C_{изм.} + 6 ед.мл.р.)$
	30 нФ	10 пФ	$\pm (1,0.10^{-2} \cdot C_{изм.} + 6 ед.мл.р.)$
	300 нФ	100 пФ	$\pm (1,0.10^{-2} \cdot C_{\text{изм.}} + 6 \text{ ед.мл.р.})$
T-COM	3 мкФ	1 нФ	$\pm (1,0.10^{-2} \cdot C_{изм.} + 6 ед.мл.р.)$
	30 мкФ	10 нФ	$\pm (1,0.10^{-2} \cdot C_{\text{изм.}} + 6 \text{ ед.мл.р.})$
	300 мкФ	100 нФ	$\pm (5,0.10^{-2} \cdot C_{\text{изм.}} + 6 \text{ ед.мл.р.})$

Таблица 8 – Основные метрологические характеристики мультиметров при измерении частоты напряжения переменного тока

Тип мультиметра	Пределы измерений	Разрешение	Пределы допускаемой абсолютной погрешности измерений
1	2	3	4
	600 Гц	0,01 Гц	$\pm (0.05 \cdot 10^{-2} \cdot f_{\text{изм.}} + 5 \text{ ед.мл.р.})$
EXTRA	300 кГц	10,0 Гц	$\pm (0.05 \cdot 10^{-2} \cdot f_{\text{изм.}} + 5 \text{ ед.мл.р.})$
	1,0 МГц	100,0 Гц	$\pm (0.05\cdot10^{-2}\cdot f_{\text{изм.}} + 5 \text{ ед.мл.р.})$
ETECH	600 Гц	0,01 Гц	$\pm (0.05 \cdot 10^{-2} \cdot f_{\text{изм.}} + 5 \text{ ед.мл.р.})$
ETECH	300 кГц	10,0 Гц	$\pm (0.05 \cdot 10^{-2} \cdot f_{\text{изм.}} + 5 \text{ ед.мл.р.})$
ESPECIAL	600 Гц	0,01 Гц	$\pm (0.05 \cdot 10^{-2} \cdot f_{\text{изм.}} + 5 \text{ ед.мл.р.})$
ESPECIAL	300 кГц	10,0 Гц	$\pm (0.05 \cdot 10^{-2} \cdot f_{\text{изм.}} + 5 \text{ ед.мл.р.})$
EBASE	600 Гц	0,01 Гц	$\pm (0.05\cdot10^{-2}\cdot f_{\text{изм.}} + 5 \text{ ед.мл.р.})$
EDASE	300 кГц	10,0 Гц	$\pm (0,05\cdot10^{-2}\cdot f_{\text{изм.}} + 5 \text{ ед.мл.р.})$
X-TRA	100 Гц	0,01 Гц	$\pm (0.05 \cdot 10^{-2} \cdot f_{\text{изм.}} + 3 \text{ ед.мл.р.})$
A-IKA	1 МГц	100,0 Гц	$\pm (0.05 \cdot 10^{-2} \cdot f_{\text{изм.}} + 3 \text{ ед.мл.р.})$

⁻ С_{изм.} - измеренное значение емкости.

1	2	3	4		
OUTDOOR	100 Гц	0,01 Гц	$\pm (0.05 \cdot 10^{-2} \cdot f_{\text{изм.}} + 3 \text{ ед.мл.р.})$		
OUTDOOK	1 МГц	100,0 Гц	$\pm (0.05 \cdot 10^{-2} \cdot f_{\text{изм.}} + 3 \text{ ед.мл.р.})$		
TECH	100 кГц	0,01 Гц	$\pm (0.05 \cdot 10^{-2} \cdot f_{\text{изм.}} + 3 \text{ ед.мл.р.})$		
PRO	100 кГц	0,01 Гц	$\pm (0.05 \cdot 10^{-2} \cdot f_{\text{изм.}} + 3 \text{ ед.мл.р.})$		
BASE	100 кГц	0,01 Гц	$\pm (0.05 \cdot 10^{-2} \cdot f_{\text{изм.}} + 3 \text{ ед.мл.р.})$		
ISO	300 кГц	0,1 Гц	$\pm (0.5 \cdot 10^{-2} \cdot f_{\text{изм.}} + 1 \text{ ед.мл.р.})$		
	300 Гц	0,1 Гц	$\pm (0.5 \cdot 10^{-2} \cdot f_{\text{изм.}} + 1 \text{ ед.мл.р.})$		
T-COM	3 кГц	1,0 Гц	$\pm (0,5\cdot 10^{-2}\cdot f_{\text{изм.}} + 1 \text{ ед.мл.р.})$		
1-COM	30 кГц	10,0 Гц	$\pm (0.5 \cdot 10^{-2} \cdot f_{изм.} + 1 \text{ ед.мл.р.})$		
	300 кГц	100,0 Гц	$\pm (0.5 \cdot 10^{-2} \cdot f_{\text{изм.}} + 1 \text{ ед.мл.р.})$		
2	100 Гц	0,1 Гц	$\pm (0,1.10^{-2} \cdot f_{\text{изм.}} + 2 \text{ ед.мл.р.})$		
	1 кГц	1,0 Гц	$\pm (0,1\cdot10^{-2}\cdot f_{\text{изм.}} + 2 \text{ ед.мл.р.})$		
27I	300 Гц	0,01 Гц	$\pm (1,0.10^{-2} \cdot f_{изм.} + 1 \text{ ед.мл.р.})$		
271	3 кГц	0,1 Гц	$\pm (1,0.10^{-2} \cdot f_{изм.} + 1 \text{ ед.мл.р.})$		
30M	100 кГц	0,1 Гц	$\pm 0.05 \cdot 10^{-2} \cdot f_{\text{изм.}}$		
<u>Тримечание</u>					
f измеранное значение настоти					

- f_{изм.} - измеренное значение частоты.

Таблица 9 – Основные метрологические характеристики мультиметров при измерении частоты силы переменного тока

Тип мультиметра	Пределы измерений	Разрешение	Предел допускаемой абсолютной погрешности измерений
1	2	3	4
EXTRA	6,0 кГц	0,1 Гц	$\pm (0.05 \cdot 10^{-2} \cdot f_{\text{изм.}} + 5 \text{ ед.мл.р.})$
ETECH	6,0 кГц	0,1 Гц	$\pm (0.05 \cdot 10^{-2} \cdot f_{изм.} + 5 \text{ ед.мл.р.})$
ESPECIAL	6,0 кГц	0,1 Гц	$\pm (0.05 \cdot 10^{-2} \cdot f_{\text{изм.}} + 5 \text{ ед.мл.р.})$
EBASE	6,0 кГц	0,1 Гц	$\pm (0.05 \cdot 10^{-2} \cdot f_{\text{изм.}} + 5 \text{ ед.мл.р.})$
X-TRA	1,0 кГц	0,1 Гц	$\pm (0.05 \cdot 10^{-2} \cdot f_{\text{изм.}} + 3 \text{ ед.мл.р.})$
A-11A	30,0 кГц	10,0 Гц	$\pm (0.05 \cdot 10^{-2} \cdot f_{\text{изм}} + 3 \text{ ед.мл.р.})$
OUTDOOR	1,0 кГц	0,1 Гц	$\pm (0.05\cdot10^{-2}\cdot f_{изм.} + 3 ед.мл.р.)$
OUTDOOK	30,0 кГц	10,0 Гц	$\pm (0.05\cdot10^{-2}\cdot f_{изм.} + 3 ед.мл.р.)$
TECH	1,0 кГц	0,1 Гц	$\pm (0.05 \cdot 10^{-2} \cdot f_{изм.} + 3 ед.мл.р.)$
TECH	30,0 кГц	10,0 Гц	$\pm (0.05 \cdot 10^{-2} \cdot f_{\text{изм.}} + 3 \text{ ед.мл.р.})$
PRO	1,0 кГц	0,1 Гц	$\pm (0.05 \cdot 10^{-2} \cdot f_{\text{изм.}} + 3 \text{ ед.мл.р.})$
TRO	30,0 кГц	10,0 Гц	$\pm (0.05\cdot 10^{-2}\cdot f_{изм.} + 3 \text{ ед.мл.р.})$
ISO	3,0 кГц	100,0 Гц	$\pm (0.5 \cdot 10^{-2} \cdot f_{изм.} + 1 \text{ ед.мл.р.})$
	300 Гц	0,1 Гц	$\pm (0.5 \cdot 10^{-2} \cdot f_{\text{изм.}} + 1 \text{ ед.мл.р.})$
T-COM	3 кГц	1,0 Гц	$\pm (0,5.10^{-2} \cdot f_{изм.} + 1 \text{ ед.мл.р.})$
	30 кГц	10,0 Гц	$\pm (0,5\cdot 10^{-2}\cdot f_{изм.} + 1 \text{ ед.мл.р.})$

Примечание

- $f_{\text{изм.}}$ - измеренное значение частоты.

Таблица 10 - Метрологические характеристики мультиметров при измерении температуры

(при помощи термопары)

Тип мульти- метра	Тип термопары	Диапазоны воспроизведений, °С	Разреше- ние, °С	Пределы допускаемой абсолютной погрешности, °C
1	2	3	4	°C 5
EXTRA	К	от минус 250,0 до 1372,0	0,1	$\pm (1,0.10^{-2}.t_{\text{изм.}} + 5 \text{ ед.мл.р.})$
ETECH	К	от минус 250,0 до 1372,0	0,1	$\pm (1,0.10^{-2} \cdot t_{\text{изм.}} + 5 \text{ ед.мл.р.})$
ESPECIAL	К	от минус 250,0 до 1372,0	0,1	$\pm (1,0.10^{-2} \cdot t_{_{\text{ИЗМ.}}} + 5 \text{ ед.мл.р.})$
EBASE	К	от минус 250,0 до 1372,0	0,1	$\pm (1,0.10^{-2} \cdot t_{_{\text{ИЗМ.}}} + 5 \text{ ед.мл.р.})$
X-TRA	К	от минус 250,0 до 1372,0	0,1	$\pm (1,0.10^{-2} \cdot t_{_{\text{ИЗМ.}}} + 5 \text{ ед.мл.р.})$
OUTDOOR	К	от минус 250,0 до 1372,0	0,1	$\pm (1,0.10^{-2} \cdot t_{изм.} + 5 \text{ ед.мл.р.})$
TECH	К	от минус 250,0 до 1372,0	0,1	$\pm (1,0.10^{-2} \cdot t_{изм.} + 5 \text{ ед.мл.р.})$
PRO	К	от минус 250,0 до 1372,0	0,1	$\pm (1,0.10^{-2} \cdot t_{\text{изм.}} + 5 \text{ ед.мл.р.})$
BASE	К	от минус 250,0 до 1372,0	0,1	$\pm (1,0.10^{-2} \cdot t_{изм.} + 5 \text{ ед.мл.р.})$
2	К	от минус 50,0 до 400,0	0,1	$\pm (1,0.10^{-2} \cdot t_{изм.} + 5 \text{ ед.мл.р.})$
ISO	К	от минус 250,0 до 1372,0	0,1	$\pm (1,0.10^{-2} \cdot t_{\text{изм.}} + 5 \text{ ед.мл.р.})$
30M	J	от минус 210,0 до 1200,0	0,1	$\pm (0,7\cdot10^{-2}\cdot t_{_{\text{ИЗМ.}}} + 0,3 \text{ ед.мл.р.})$
30141	К	от минус 250,0 до 1372,0	0,1	$\pm (0,7\cdot10^{-2}\cdot t_{изм.} + 0,3 \text{ ед.мл.р.})$

Примечания

1. t_{изм.} - измеренное значение температуры;

2. погрещность термопары не учитывается.

Таблица 11 - Метрологические характеристики мультиметров при измерении температуры

(при помощи термометра сопротивления)

Тип мульти- метра	Тип термометра сопротивления	Диапазоны воспроизведений, °С	Разреше- ние, °С	Пределы допускаемой абсолютной погрешности, °C
1	2	3	4	5
EXTRA	Pt100	от минус 200,0 до 850,0	0,1	$\pm (0,3\cdot10^{-2}\cdot t_{_{\text{ИЗМ.}}} + 15 \text{ ед.мл.р.})$
LATRA	Pt1000	от минус 150,0 до 850,0	0,1	$\pm (0,3.10^{-2} \cdot t_{изм.} + 15 \text{ ед.мл.р.})$
ETECH	Pt100	от минус 200,0 до 850,0	0,1	$\pm (0,3\cdot10^{-2}\cdot t_{_{\text{ИЗМ.}}} + 15 \text{ ед.мл.р.})$
LILCH	Pt1000	от минус 150,0 до 850,0	0,1	$\pm (0,3\cdot10^{-2}\cdot t_{_{\text{ИЗМ.}}} + 15 \text{ ед.мл.р.})$

<u>Продолжение т</u>	2	3	4	5
<u> </u>		от минус 200,0		
ESPECIAL	Pt100	до 850,0	0,1	$\pm (0,3\cdot10^{-2}\cdot t_{_{\text{ИЗМ.}}} + 15 \text{ ед.мл.р.})$
Bor Bon 15	Pt1000	от минус 150,0 до 850,0	0,1	$\pm (0,3\cdot10^{-2}\cdot t_{_{\text{ИЗМ.}}} + 15 \text{ ед.мл.р.})$
EBASE	Pt100	от минус 200,0 до 850,0	0,1	$\pm (0,3\cdot10^{-2}\cdot t_{_{\text{ИЗМ.}}} + 15 \text{ ед.мл.р.})$
LDASL	Pt1000	от минус 150,0 до 850,0	0,1	$\pm (0,3\cdot10^{-2}\cdot t_{_{\text{ИЗМ.}}} + 15 \text{ ед.мл.р.})$
X-TRA	Pt100	от минус 200,0 до 850,0	0,1	$\pm (0,3\cdot10^{-2}\cdot t_{_{\text{ИЗМ.}}} + 15 \text{ ед.мл.р.})$
A-TRA	Pt1000	от минус 150,0 до 850,0	0,1	$\pm (0,3\cdot10^{-2}\cdot t_{_{\text{ИЗМ.}}} + 15 \text{ ед.мл.р.})$
OUTDOOR -	Pt100	от минус 200,0 до 850,0	0,1	$\pm (0,3\cdot10^{-2}\cdot t_{_{\text{ИЗМ.}}} + 15 \text{ ед.мл.р.})$
OUTDOOK	Pt1000	от минус 150,0 до 850,0	0,1	$\pm (0,3\cdot10^{-2}\cdot t_{_{\text{ИЗМ.}}} + 15 \text{ ед.мл.р.})$
ISO -	Pt100	от минус 200,0 до 850,0	0,1	$\pm (0,5\cdot10^{-2}\cdot t_{_{\text{ИЗМ.}}} + 15 \text{ ед.мл.р.})$
150	Pt1000	от минус 150,0 до 1200,0	0,1	$\pm (0.5 \cdot 10^{-2} \cdot t_{\text{изм.}} + 15 \text{ ед.мл.р.})$
	Pt100	от минус 200,0 до 200,0	0,1	$\pm (2,0.10^{-2} \cdot t_{\text{изм.}} + 5 \text{ ед.мл.р.})$
T-COM		от 200,0 до 850,0	0,1	$\pm (1,0.10^{-2} \cdot t_{\text{изм.}} + 5 \text{ ед.мл.р.})$
1-COM	Pt1000	от минус 150,0 до 200,0	0,1	$\pm (2,0.10^{-2} \cdot t_{\text{изм.}} + 5 \text{ ед.мл.р.})$
		от 200,0 до 850	0,1	$\pm (1,0.10^{-2}.t_{\text{изм.}} + 5 \text{ ед.мл.р.})$
	Pt100	от минус 200,0 до 100,0	0,1	$\pm (1,0.10^{-2} \cdot t_{\text{изм.}} + 5 \text{ ед.мл.р.})$
		от 100 до 600	0,1	$\pm (0.5 \cdot 10^{-2} \cdot t_{\text{изм.}} + 5 \text{ ед.мл.р.})$
27I	Pt1000	от минус 200,0 до 100,0	0,1	$\pm (1,0.10^{-2} \cdot t_{изм.} + 5 \text{ ед.мл.р.})$
2/1		от 100 до 600	0,1	$\pm (0,5\cdot10^{-2}\cdot t_{\text{изм.}} + 5 \text{ ед.мл.р.})$
	Ni100	от минус 60,0 до 180,0	0,1	$\pm (0.5 \cdot 10^{-2} \cdot t_{\text{изм.}} + 5 \text{ ед.мл.р.})$
	Ni1000	от минус 60,0 до 180,0	0,1	$\pm (0,5\cdot10^{-2}\cdot t_{изм.} + 5 \text{ ед.мл.р.})$
2014	Pt100	от минус 200,0 до 850,0	0,1	$\pm (0.05 \cdot 10^{-2} \cdot t_{\text{изм.}} + 0.08 \text{ ед.мл.р.})$
30M	Pt1000	от минус 200,0 до 850,0	0,1	$\pm (0.05 \cdot 10^{-2} \cdot t_{изм.} + 0.08 eg.мл.р.)$

Примечания

^{1.} t_{изм.} - измеренное значение температуры;

^{2.} погрешность термометра сопротивления не учитывается.

Таблица 12 – Основные метрологические характеристики мультиметров при измере-

нии сопротивления изоляции

Тип Диапазоны (пределы) мультиметра измерений		Разреше- ние	Пределы допускаемой абсолютной погрешности измерений	
1	2	3	4	
	от 5 кОм до 310 кОм	0,1 кОм	$\pm (3,0\cdot 10^{-2}\cdot R_{_{ИЗМ.}} + 5 \text{ ед.мл.р.})$	
	от 280 кОм до 3,1 МОм	1,0 кОм	$\pm (3.0 \cdot 10^{-2} \cdot R_{\text{изм.}} + 5 \text{ ед.мл.р.})$	
	от 2,8 МОм до 31 МОм	10,0 кОм	$\pm (5,0.10^{-2} \cdot R_{\text{изм.}} + 5 \text{ ед.мл.р.})$	
ISO	от 28,0 МОм до 310,0 МОм	100,0 кОм	$\pm (5,0.10^{-2} \cdot R_{изм.} + 5 \text{ ед.мл.р.})$	
	от 280 МОм до 3100 МОм	1,0 МОм	$\pm (5,0.10^{-2} \cdot R_{изм.} + 5 \text{ ед.мл.р.})$	
	Испытательное напряжение 100 B			
	от 5 кОм до 310 кОм	0,1 кОм	$\pm (3,0.10^{-2} \cdot R_{изм.} + 5 \text{ ед.мл.р.})$	
T-COM	от 280 кОм до 3,1 МОм	1,0 кОм	$\pm (3,0.10^{-2} \cdot R_{\text{изм.}} + 5 \text{ ед.мл.р.})$	
1-CON	от 2,8 МОм до 31 МОм	10,0 кОм	$\pm (3.0\cdot10^{-2}\cdot R_{изм.} + 5 ед.мл.р.)$	
	от 28,0 МОм до 310,0 МОм	100,0 кОм	$\pm (5,0.10^{-2} \cdot R_{\text{изм.}} + 5 \text{ ед.мл.р.})$	
	30,0 МОм	10,0 кОм	$\pm (2,0.10^{-2} \cdot R_{изм.} + 10 \text{ ед.мл.р.})$	
27 I	300,0 МОм	100,0 кОм	$\pm (2,0.10^{-2} \cdot R_{изм.} + 10 \text{ ед.мл.р.})$	
	3000 МОм	1,0 МОм	$\pm (3,0.10^{-2} \cdot R_{изм.} + 10 \text{ ед.мл.р.})$	

Примечания

- 1. R_{изм.} значение электрического сопротивления, измеренное мультиметром;
- 2. значение испытательного напряжения ($U_{\text{исп.}}$) в зависимости от измеряемого сопротивления для мультиметров типа METRAHIT ISO:
 - U_{исп.} = 50 В при R_{изм.} < 50 кОм;
 - U_{исп.}= 100 В при R_{изм.} < 100 кОм;
 - U_{исп.}= 250 В при R_{изм.} < 250 кОм;
 - U_{исп.}= 500 В при R_{изм.} < 500 кОм;
 - $U_{\text{исп.}} = 1000 \text{ B}$ при $R_{\text{изм.}} < 1000 \text{ кОм.}$

Таблица 13 – Габаритные размеры и масса мультиметров

Модификация	Длина, мм	Ширина, мм	Высота, мм	Масса, кг
1	2	3	4	5
EXTRA, ETECH, ESPECIAL, EBASE	200	87	45	0,350
X-TRA, OUTDOOR, TECH, PRO, BASE	200	87	45	0,350
ISO	200	87	45	0,350
T-COM	200	87	45	0,350
2	195	84	35	0,350
27I	195	84	35	0,350
27EX	195	84	35	0.380
30M	195	84	35	0.380

Таблица 14 – Условия хранения и эксплуатации

,	Условия :		Условия эксплуатации	
Модификация	Температура, °С	Относительная влажность, %	Температура, °С	Относительная влажность, %
1	2	3	4	5
EXTRA, ETECH, ESPECIAL, EBASE	от минус 25 до 75	от 0 до 75	от минус 10 до 50	до 75
X-TRA, OUTDOOR, TECH, PRO, BASE	от минус 25 до 75	от 0 до 75	от минус 10 до 50	до 75
ISO	от минус 25 до 75	от 0 до 75	от минус 10 до 50	от 40 до 75
T-COM	от минус 25 до 75	от 0 до 75	от минус 10 до 50	от 40 до 75
2	от минус 25 до 70	от 0 до 75	от минус 10 до 50	от 45 до 75
27I	от минус 25 до 70	от 0 до 75	от минус 10 до 50	до 75
27EX	от минус 25 до 70	от 45 до 90	от 0 до 40	до 75
30M	от минус 25 до 70	от 0 до 75	от минус 5 до 50	до 75

ЗНАК УТВЕРЖДЕНИЯ ТИПА

Знак утверждения типа наносят на титульный лист руководства по эксплуатации типографским способом и на корпус мультиметров методом трафаретной печати со слоем защитного покрытия.

КОМПЛЕКТНОСТЬ

Состав мультиметров цифровых METRAHIT приведен в таблице 15.

Таблина 15

Наименование	Количество	Примечание
1	2	3
Мультиметр	1	_
Комплект соединительных проводов	1	_
Батарея питания	1	_
Руководство по эксплуатации	1	
Методика поверки	1	MΠ – 113/447-2009

ПОВЕРКА

Поверка мультиметров проводится в соответствии с документом "Мультиметры цифровые METRAHIT. Методика поверки" МП - 113/447-2009 утвержденным руководителем ГЦИ СИ ФГУ "Ростест-Москва" в 2009 г. и входящим в комплект поставки.

Средства поверки:

- Калибратор универсальный FLUKE 5520A;
- Магазин мер сопротивлений изоляции OD-2-W4a;
- Магазин мер сопротивлений изоляции OD-2-W4e. Межповерочный интервал: 1 год.

НОРМАТИВНЫЕ И ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия.

Техническая документация фирмы "GMC-I Gossen-Metrawatt GmbH", Германия.

ЗАКЛЮЧЕНИЕ

Тип мультиметров цифровых METRAHIT утвержден с техническими и метрологическими характеристиками, приведенными в настоящем описании типа, метрологически обеспечен при выпуске из производства и в эксплуатации.

ИЗГОТОВИТЕЛЬ

Süd Nestparii: 15

Фирма "GMC-I Gossen-Metrawatt GmbH", Германия. GMC-I Gossen-Matrawatt GmbH

Thomas-Mann-Str. 16-20, 90471 Nürnberg, Germany.

Генеральный директор фирмы "GMC-I Gossen-Metrawatt GmbH"

Marcel Hutka