Приложение к свидетельству
№_____ об утверждении типа средств измерений

СОГЛАСОВАНО

Начальник ГЦИ СИ «Воентест» 32 ГНИИИ МО РФ

С.И. Донченко

2009 r.

Комплекс измерительно-вычислительный сверхширокополосный автоматизированный ТМСА-18Д019

Внесен Сохидар енный реестр средств измерений Регистрационный № 43 190-09

Взамен №

Изготовлен в соответствии с технической документацией изготовителя. Заводской номер 019.

Назначение и область применения

Комплекс измерительно-вычислительный сверхширокополосный автоматизированный ТМСА-18Д019 (далее – комплекс) предназначен для измерений диаграмм направленности антенн (ДНА), коэффициентов усиления (КУ) и поляризационных характеристик антенн в дальней зоне в дециметровом и сантиметровом диапазоне длин волн электромагнитного излучения и применяется в области обороны и безопасности при исследованиях радиотехнических характеристик антенных устройств.

Описание

Принцип действия комплекса основан на измерении временного отклика на выходе антенны при воздействии на нее сверхширокополосного импульсного сигнала пикосекундной длительности и последующем переходе в частотную область.

Функционально и конструктивно комплекс состоит из стробоскопического преобразователя ТМR8120, генераторов видеоимпульсных сигналов пикосекундной длительности, трехкоординатного опорно-поворотного устройства (ОПУ) на основе позиционера AL – 4573-1, комплекта антенн с СВЧ переходами и кабельными сборками, усилителя сверхширокополосного ТМУ 1-18, управляющей ПЭВМ со специализированным программным обеспечением и набором интерфейсных кабелей. Генераторы импульсов используются в качестве источников сверхширокополосного сигнала, а стробоскопический преобразователь - в качестве приемника сигнала. ОПУ предназначено для позиционирования антенн и их вращения при измерении диаграмм направленности антенн. Управление работой стробоскопического преобразователя и ОПУ, регистрация результатов измерений и их обработка с целью определения радиотехнических характеристик антенн осуществляется при помощи управляющей ПЭВМ. Комплекс имеет два канала измерений. Стробоскопический преобразователь, генераторы видеоимпульсов и усилитель ТМУ 1-18 размещены в передвижной аппаратурной стойке.

В качестве излучающих и эталонных антенн и используются широкополосные антенны дециметрового и сантиметрового диапазонов длин волн типа Пб-33 и Пб-23М.

Комплекс обеспечивает измерения:

(КУ антенн методами трех антенн и замещения; амплитудных и фазовых ДНА;

поляризационных характеристик антенн.

По условиям эксплуатации комплекс относится к группе 1.1 по ГОСТ РВ 20.39.304-98.

Основные технические характеристики приведены в таблице 1.

Таблица 1

Наименование характеристики	Номер канала	
	«1»	«2»
Диапазон рабочих частот, ГГц	от 0,1 до 18	
Пределы допускаемой относительной погрешности измерений частоты, %		
Динамический диапазон стробоскопического преобразователя при ко-		
личестве N усреднений сигнала, дБ, не менее:		
N = 16	65	64
N = 64	71	70
N = 256	76	75
Энергетический потенциал комплекса (без использования усилителя		
ТМУ 1-18) при 128 усреднениях сигнала для рабочих частот, дБ, не ме-		
нее:		
НЧ генератор импульсов		
от 0,1 до 1 ГГц	98	98
от 1 до 2 ГГц	78	79
ВЧ генератор импульсов		
от 1 до 3 ГГц	80	80
от 3 до 10 ГГц	66	67
от 10 до 18 ГГц	52	54
Пределы допускаемой случайной составляющей погрешности (при до-		
верительной вероятности 0,95) измерений амплитудного спектра сигна-		
ла при амплитуде входного сигнала (при 128 усреднениях), дБ:		
1 B	0,1	0,1
0,1 B	0,2	0,2
0,01 B	1,6	1,5
Пределы допускаемой погрешности измерений отношений уровней		
спектральных составляющих сигналов, дБ, на уровне:		
минус 3 дБ	$\pm 0,1$	$\pm 0,1$
минус 10 дБ	$\pm 0,2$	$\pm 0,2$
минус 20 дБ	±0,4	$\pm 0,3$
минус 40 дБ	± 1,3	± 1,2
Пределы допускаемой погрешности измерений КУ методом замещения		
(КСВН антенн не более 1,5; уровень ортогональной составляющей по-		
ляризации поля излучения не более минус 20 дБ) при погрешности КУ		
эталонной антенны, дБ:		
± 0,5 дБ	± 0,9	$\pm 0,9$
$\pm 0.8 \text{ дБ}$	± 1,1	± 1,1
± 1,0 дБ	± 1,4	± 1,3
Пределы допускаемой погрешности измерений уровней диаграмм на-		
правленности (при обеспечении условия временной селекции переотра-		
женных сигналов), дБ, на уровне:		
минус 3 дБ	±0,2	$\pm 0,2$
минус 10 дБ	± 0,3	$\pm 0,3$
минус 20 дБ	±0,6	$\pm 0,5$
минус 40 дБ	± 2,3	± 2,2

Наименование характеристики	Номер канала	
	«1»	«2»
Пределы допускаемой погрешности измерений уровней поляризацион-		
ных диаграмм (в линейно поляризованном поле, при обеспечении усло-		
вия временной селекции переотраженных сигналов), дБ, на уровне:		
минус 3 дБ	± 0,2	± 0,2
минус 10 дБ	± 0,3	± 0,3
минус 20 дБ	± 0,7	±0,6
минус 40 дБ	± 3,1	± 3,0
Коэффициент усиления усилителя сверхширокополосного ТМУ 1-18 в		
диапазоне частот от 1 до 18 ГГц, дБ, не менее	35	
Диапазон изменения угла поворота ОПУ в азимутальной плоскости	от 0 до 360°	
Диапазон изменения угла поворота ОПУ по крену	от 0 до 360°	
Диапазон изменения угла поворота ОПУ в угломестной плоскости	от минус 90 до	
	9	0°
Минимальная дискретность угла поворота ОПУ в азимутальной плоско-		
СТИ	4'	
Масса аппаратурной стойки, кг, не более	60	
Масса ОПУ, кг, не более	350	
Габаритные размеры (длина × ширина × высота), мм		
аппаратурная стойка	600×550×860	
ОПУ	2200×1000×1800	
Потребляемая мощность, В.А, не более	3000	

Рабочие условия эксплуатации:

температура воздуха, °С	от 15 до 25;
относительная влажность при температуре 25 °C, %, не более	70;
атмосферное давление, мм рт.ст	от 630 до 795.

Знак утверждения типа

Знак утверждения типа наносится на лицевую панель стробоскопического преобразователя в виде наклейки и на титульный лист формуляра методом компьютерной графики.

Комплектность

В комплект поставки входят: комплекс измерительно-вычислительный сверхшироко-полосный автоматизированный ТМСА-18Д019, комплект эксплуатационной документации, методика поверки.

Поверка

Поверка комплекса осуществляется в соответствии с документом «Комплекс сверхширокополосный измерительно-вычислительный автоматизированный ТМСА-18Д019. Методика поверки», утвержденным начальником ГЦИ СИ «Воентест» 32 ГНИИИ МО РФ в октябре 2009 г. и входящим в комплект поставки.

Средства поверки: генератор сигналов СВЧ SMR40 (диапазон частот от 10 МГц до 40 ГГц, выходная мощность до 0,1 Вт, нестабильность частоты \pm 10⁻⁸), делитель напряжения ДН-1 из состава генератора испытательных импульсов И1-15 (диапазон частот от 0 до 7 ГГц, пределы допускаемой относительной погрешности установки ослабления \pm 0,3 дБ), аттенюатор волноводный поляризационный Д3-32A (диапазон частот от 6,85 до 9,93 ГГц, ослабление

от 0 до 70 дБ, КСВН не более 1,2), аттенюатор волноводный поляризационный Д3-33A (диапазон частот от 8,24 до 12,05 ГГц, ослабление от 0 до 70 дБ, КСВН не более 1,2), аттенюатор волноводный поляризационный Д3-34A (диапазон частот от 12,05 до 17,44 ГГц, ослабление от 0 до 70 дБ, КСВН не более 1,2), аттенюатор волноводный поляризационный Д3-35A (диапазон частот от 17,44 до 25,86 ГГц, ослабление от 0 до 70 дБ, КСВН не более 1,2).

Межповерочный интервал – 2 года.

Нормативные и технические документы

ГОСТ РВ 20.39.304-98.

Техническая документация изготовителя.

Заключение

Тип комплекса измерительно-вычислительного сверхширокополосного автоматизированного ТМСА-18Д019 утвержден с техническими и метрологическими характеристиками, приведенными в настоящем описании типа, метрологически обеспечен в эксплуатации.

Изготовитель

ООО «НПП «ТРИМ СШП» 195197, г.Санкт-Петербург, Кондратьевский проспект, д.40, корп.14, литера А, офис 11H.

Генеральный директор OOO «НПП «ТРИМ СШП»

П.В. Миляев