СОГЛАСОВАНО

Руководитель ГЦИ СИ Зам. генерального директора

«Ростест-Москва»

А.С. Евдокимов

2009 г.

Счетчики газа ультразвуковые ГУВР-011

Внесены в Государственный реестр средств измерений

Регистрационный № 43618 -{0

Взамен

MOCKBE

Выпускаются по техническим условиям ТУ У 33.2-24487975-024:2009. АО «Тахион» Украина, г. Харьков, ТУ 4213-83603664-001-2009. ООО «Росэнергоучет» г.Белгород.

НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ

Счетчики газа ультразвуковые ГУВР-011 (далее - счетчики) предназначены для измерения в рабочих условиях объемного расхода и объема природного газа и других газов, которые транспортируются по трубопроводам круглого сечения.

Счетчики применяются для учета газа, в том числе коммерческого, на газораспределительных пунктах, промышленных объектах, объектах энергетики и предприятиях коммунального хозяйства.

ОПИСАНИЕ

Принцип действия счетчиков основан на преобразовании и обработке электрического сигнала, пропорционального разности времени распространения ультразвукового сигнала, который генерируется и воспринимается преобразователями электроакустическими (далее - ПЭА) по акустическому каналу в прямом и обратном (относительно потска газа) направлении. Полученный сигнал формируется и обрабатывается блоком электронным (далее - БЭ) по заданным алгоритмам.

Конструктивно счетчик состоит из двух или трех составных частей: одной или двух пар ПЭА или же врезных секций (ВС) со встроенными ПЭА; БЭ с жидкокристаллическим индикатором (ЖКИ) и клавиатурой, или (по заказу, для управления технологическими процессами) БЭ без ЖКИ и клавиатуры (далее - герметичный БЭ); блока питания и связи (далее — БПС) со средствами управления и индикации, который может располагаться на расстоянии не более 300 м от БЭ. ПЭА счетчиков, поставляемых без врезных секций, монтируются в измерительные участки трубопроводов. Счетчики, укомплектованные ВС с одной (двумя) парами ПЭА, обеспечивают учет газа в одном (двух) трубопроводах, с врезными ПЭА – в одном или двух трубопроводах.

С выхода БЭ результаты измерений могут быть переданы на внешние регистрирующие приборы в виде частоты следования импульсов, унифицированных сигналов постоянного тока и через интерфейсы RS232 и RS485. Счетчики могут применяться с корректорами, обеспечивающими пересчет измеренного объема газа к стандартным условиям.

Счетчики, использование которых предполагается только в составе информационноизмерительних систем в комплекте с внешними устройствами управления и отображения (ВУУО), по заказу могут комплектоваться БПС без ЖКИ и клавиатуры.

Конструкция счетчиков обеспечивает возможность передачи результатов измерений и служебной информации в ВУУО по стандартным интерфейсам.

Счетчики фиксируют значение накопленного объема, а также периоды нерабочего состояния из-за отсутствия электропитания или отсутствия акустической связи между ПЭА, накапливают их нарастающим итогом и архивируют в энергонезависимой памяти.

Для проверки работоспособности счетчики оборудованы встроенным кварцевым калибратором.

ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Диапазон измерения объемного расхода и значение переходного расхода для счетчиков, укомплектованных врезными секциями, указан в таблице 1, а для счетчиков, ПЭА которых врезаны в трубопроводы с номинальным диаметром (DN) от 200 мм до 1600 мм - в таблице 2.

Таблица 1

DN, mm	Обозначение типоразмера	Значение объемного расхода, м ³ /ч			
		минимальный, Q_{\min}	переходной, Q	максимальный, Q_{max}	
50	G100	1,0	4,7	160	
80	G250	2,7	12,0	400	
100	G400	4,25	18,9	650	
150	G1000	9,6	42,5	1600	
200	G1600	17,0	75,0	2500	
250	G2500	27	120	4000	
300	G4000	38,0	170,0	6500	
400	G6500	70,0	340	10000	

Таблица 2

Название параметра	Значение, м ³ /ч.
минимальный расход, Q_{\min}	$4,24\cdot10^{-6}(DN)^2$
максимальный расход, Q_{max}	$140 \cdot Q_{min}$
переходной расход, Q_{t}	$5 \cdot Q_{min}$

Пределы допустимой относительной погрешности счетчиков при измерении объемного расхода и объема газа приведены в таблице 3.

Таблица 3

Диапазон	Пределы допустимой относительной погрешности, %			
объемного	с врезної	і секцией		MIN TIBA AETT KIM
расхода	две пары ПЭА	одна пара ПЭА	две пары ПЭА	одна пара ПЭА
$Q_{min} \leq Q < Q_t$	± 2	± 3	± 4	± 5
$Q_t \leq Q \leq Q_{\text{max}}$	± 1	± 1,5	±2	± 3

Температура измеряемого газа, °Сот минус 25 до 70.

Габаритные размеры и масса составных частей счетчиков указаны в таблице 4.

Таблица 4

Наименование составной части счетчика	Габаритные размеры, мм, не более	Масса, кг, не более
Блок электронный счетчика: – с ЖКИ и клавиатурой – без ЖКИ и клавиатуры	260 × 250 × 110 Ø130 × 140	2,8 2,3
Блок питания и связи	215 × 160 × 105	2,5

Преобразователь	электроакустический	Ø37 × 160	0,45
врезной			

Рабочие условия эксплуатации:

диапазон температур окружающего воздуха, °С;

- БЭ и БПС с ЖКИ и клавиатуройот 5 до 50,
- БЭ и БПС без ЖКИ и клавиатуры..... от минус 25 до 55,

относительная влажность при температуре 35 °C, %,

- БЭ и БПС с ЖКИ и клавиатурой, и БПС без ЖКИ и клавиатуры, не более80
- ПЭА......100

Выходные сигналы:

- частотные форма сигнала «меандр» с изменением частоты в диапазоне от 0 до $1000~\Gamma \mu$;
 - токовые электрический ток силой от 4 до 20 мА.

Степень защиты корпусов составных частей счетчиков от проникновения воды, пыли и твердых частиц по ГОСТ 14254:

- БЭ с ЖКИ и клавиатурой, БПС − IP56
- ПЭА, БЭ без ЖКИ и клавиатуры IP67.

Электропитание счетчиков осуществляется от однофазной сети переменного тока напряжением от 187 В до 242 В при частоте (50 \pm 1) Γ ц.

Мощность, потребляемая от сети переменного тока 220 В,:

Срок службы - не менее 15 лет.

ЗНАК УТВЕРЖДЕНИЯ ТИПА

Знак утверждения типа наносится на титульные листы эксплуатационной документации счетчика типографским способом.

КОМПЛЕКТНОСТЬ

Счетчик газа ультразвуковой ГУВР-011, паспорт, руководство по эксплуатации, методика поверки.

ПОВЕРКА

Поверка проводится в соответствии с документом «Счетчики газа ультразвуковые ГУВР-011. Методика поверки», утвержденным ГЦИ СИ Φ ГУ «Ростест-Москва» в декабре 2009 года.

Основные средства поверки: установка поверочная для счётчиков газа, пределы допускаемой относительной погрешности не более $\pm 0,30$ %; рулетка измерительная кл.3; толщиномер ультразвуковой, погрешность измерений $\pm 0,1$ мм; нутромер типа НМ ГОСТ 10; частотомер электронно-счётный 43-63.

Межповерочный интервал – 2 года.

НОРМАТИВНЫЕ И ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

ТУ У 33.2-24487975-024:2009. «Счетчики газа ультразвуковые ГУВР-011. Технические условия».

ТУ 4213-83603664-001-2009 «Счетчики газа ультразвуковые ГУВР-011. Технические условия».

ЗАКЛЮЧЕНИЕ

Тип счетчиков газа ультразвуковых ГУВР-011 утвержден с техническими и метрологическими характеристиками, приведёнными в настоящем описании типа, метрологически обеспечен при выпуске из производства и в эксплуатации.

Сертификат соответствия № РОСС UA.ME92.B01952

Изготовитель:

АО «ТАХИОН» Украина 61202, г.Харьков, пр.Победы, 686

ООО «Росэнергоучет» Россия, 308013 г.Белгород, ул. Зеленая поляна, 2а

Директор АО «ТАХИОН»

Директор ООО «Росэнергоучет»

