Приложение к свидетельству №40145об утверждении типа

Подлежит публиканиетв измерений

в открытой печати

СОГЛАСОВАНО

Руководитель ГЦИ СИ,

Зам. генерального директора

ФГУ «Тест-С.-Петербург»

А.И. Рагулин

2010 г.

Система автоматизированная информационноизмерительная коммерческого учета электрической энергии и мощности (АИИС КУЭ) Торгово-развлекательного центра ЗАО «ДОРИНДА» Внесена в Государственный реестр средств измерений Регистрационный № ५५ 656 - 10

Изготовлена ЗАО «ОВ» для коммерческого учета электроэнергии и мощности на объектах Торгово-развлекательного центра ЗАО «ДОРИНДА» расположенного по адресу: г. Санкт-Петербург, ул. Малая Балканская, д. 27, лит. А по проектной документации ЗАО «ОВ», г. Санкт-Петербург.

Заводской номер 001.

### НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ

Система автоматизированная информационно-измерительная коммерческого учета электрической энергии и мощности Торгово-развлекательного центра ЗАО «ДОРИНДА» (далее АИИС КУЭ Торгово-развлекательного центра ЗАО «ДОРИНДА») предназначена для измерения активной и реактивной электрической энергии и мощности, выработанной и потребленной за установленные интервалы времени отдельными технологическими объектами Торгово-развлекательного центра ЗАО «ДОРИНДА», сбора, обработки и хранения полученной информации. Выходные данные системы могут быть использованы для коммерческих расчетов на розничном рынке электрической энергии.

## ОПИСАНИЕ

АИИС КУЭ представляет собой многофункциональную, многоуровневую систему с централизованным управлением и распределенной функцией измерения.

АИИС КУЭ решает следующие задачи:

- измерение 30-минутных приращений активной и реактивной электроэнергии;
- периодический (1 раз в сутки) и/или по запросу автоматический сбор привязанных к единому календарному времени результатов измерений приращений электроэнергии с заданной дискретностью учета (30 мин);
- хранение результатов измерений в специализированной базе данных, отвечающей требованию повышенной защищенности от потери информации (резервирование баз данных) и от несанкционированного доступа;

- предоставление по запросу контрольного доступа к результатам измерений данных о состоянии средств измерений со стороны организаций-участников розничного рынка электроэнергии;
- обеспечение защиты оборудования, программного обеспечения и данных от несанкционированного доступа на физическом и программном уровне (установка паролей и т.п.);
- диагностика и мониторинг функционирования технических и программных средств АИИС КУЭ;
- конфигурирование и настройка параметров АИИС КУЭ;
- ведение единого времени в АИИС КУЭ (коррекция времени).

АИИС КУЭ включает в себя следующие уровни:

1-й уровень — трансформаторы тока (ТТ) типа ТШП-0,66 У3, 800/5, класс точности 0,5S по ГОСТ 7746 и счетчики активной и реактивной электроэнергии типа «Альфа A1800» A1805RAL-P4G-DW-4, 380 В / 5 (10) А, класса точности 0,5S по ГОСТ Р 52323-2005 для активной электроэнергии и класса точности 1,0 по ГОСТ 26035-83 для реактивной энергии, установленные на объектах, указанных в табл. 1 (4 точки измерения).

2-й уровень – информационно-вычислительный комплекс (ИВК), включающий в себя каналообразующую аппаратуру, сервер баз данных (СБД) Торгово-развлекательного центра ЗАО «ДОРИНДА» и ОАО «Петербургская сбытовая компания» с программным обеспечением (ПО).

В качестве первичных преобразователей тока в ИК использованы измерительные трансформаторы тока (ТТ) типа ТШП-0,66 У3, 800/5, класс точности 0,5S, Госреестр СИ № 15173-06.

Измерение электрической энергии выполняется путем интегрирования по времени мощности контролируемого присоединения (объекта учета) при помощи многофункциональных микропроцессорных счетчиков электрической энергии типа «Альфа A1800» A1805RAL-P4G-DW-4, 380 B / 5 (10) A, Госреестр СИ № 31857-06, класс точности 0,5S активная энергия и класс точности 1 реактивная энергия.

Первичные фазные токи и напряжения трансформируются измерительными трансформаторами в аналоговые сигналы низкого уровня, которые по проводным линиям связи поступают на соответствующие входы электронного счетчика электрической энергии.

Счетчик производит измерение действующих (среднеквадратических) значений напряжения и тока и рассчитывает полную мощность.

Измерение активной мощности счетчиком выполняется путем перемножения мгновенных значений сигналов напряжения и тока и интегрирования полученных значений мгновенной мощности по периоду основной частоты сигналов.

Реактивная мощность вычисляется по значениям активной и полной мощности.

Средняя активная (реактивная) электрическая мощность вычисляется как среднее значение мощности на интервале времени усреднения 30 мин.

Цифровой сигнал с выходов счетчиков по проводным линиям поступает на верхний уровень системы.

На верхнем — втором уровне системы выполняется последующее формирование и хранение поступающей информации, оформление справочных и отчетных документов. Передача информации в организации-участники розничного рынка электроэнергии осуществляется от счетчиков электрической энергии по коммутируемым телефонным линиям телефонной сети общего пользования (ТФОП) и сети стандарта GSM.

Для защиты информационных и измерительных каналов АИИС КУЭ от несанкционированных вмешательств, предусмотрена механическая и программная защита. Все кабели, приходящие на счетчик от измерительных трансформаторов и сигнальные кабели от счетчика, кроссируются в пломбируемом отсеке счетчика.

Коррекция хода системных часов АИИС КУЭ производится от системных часов СБД ОАО «Петербургская сбытовая компания» в ходе опроса счетчиков. Коррекция выполняется автоматически, если расхождение часов сервера коммерческого учета ОАО «Петербургская сбытовая компания» и часов счетчиков АИИС КУЭ Торгово-развлекательного центра ЗАО «ДОРИНДА», превосходит 2 с. Факт каждой коррекции регистрируется в Журнале событий счетчиков АИИС КУЭ. Погрешность системного времени находится в пределах ±5 с. Журналы событий счетчиков электроэнергии отражают: время (дата, часы, минуты) коррекции часов и расхождение времени в секундах корректируемого и корректирующего устройств в момент непосредственно предшествующий корректировке.

## ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Состав измерительных каналов приведен в табл. 1.

Таблица 1

| Наименование    | Состав изм                                                                                                                                | иерительного канала                                                                                                                                                                                                                                    | Вид            |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| объекта         | TT                                                                                                                                        | Счетчик                                                                                                                                                                                                                                                | электроэнергии |
| ГРЩ-1<br>Ввод-1 | ТШП-0,66 У3; 800/5<br>класс точности 0,5S<br>ГОСТ 7746-2001<br>Госреестр СИ № 15173-06<br>зав.№ 9019576<br>зав.№ 9019575<br>зав.№ 9019571 | «Альфа А 1800» А1805RAL-P4G-DW-4; I <sub>ном</sub> (I <sub>макс</sub> ) = 5 (10) A; U <sub>ном</sub> = 380 B; класс точности: по активной энергии — 0,5S ГОСТ Р 52323-2005; по реактивной — 1,0 ГОСТ 26035-83; Госреестр СИ № 31857-06 зав.№ 01193111  |                |
| ГРЩ-1<br>Ввод-2 | ТШП-0,66 У3; 800/5<br>класс точности 0,5S<br>ГОСТ 7746-2001<br>Госреестр СИ № 15173-06<br>зав.№ 9019569<br>зав.№ 9019574<br>зав.№ 9019577 | «Альфа А 1800» А1805RAL-P4G-DW-4; І <sub>ном</sub> (І <sub>макс</sub> ) = 5 (10) А; U <sub>ном</sub> = 380 В; класс точности: по активной энергии — 0,5S ГОСТ Р 52323-2005; по реактивной — 1,0 ГОСТ 26035-83; Госреестр СИ № 31857-06 зав.№ 01193123  | Активная       |
| ГРЩ-2<br>Ввод-1 | ТШП-0,66 У3; 800/5<br>класс точности 0,5S<br>ГОСТ 7746-2001<br>Госреестр СИ № 15173-06<br>зав.№ 9019578<br>зав.№ 9019568<br>зав.№ 9019572 | «Альфа А 1800» А1805RAL-P4G-DW-4; І <sub>ном</sub> (І <sub>макс</sub> ) = 5 (10) А;  U <sub>ном</sub> = 380 В; класс точности: по активной энергии — 0,5S ГОСТ Р 52323-2005; по реактивной — 1,0 ГОСТ 26035-83; Госреестр СИ № 31857-06 зав.№ 01193127 | реактивная     |
| ГРЩ-2<br>Ввод-2 | ТШП-0,66 У3; 800/5<br>класс точности 0,5S<br>ГОСТ 7746-2001<br>Госреестр СИ № 15173-06<br>зав.№ 9019573<br>зав.№ 9019580<br>зав.№ 9019567 | «Альфа А 1800» А1805RAL-P4G-DW-4; Іном (Імакс) = 5 (10) А; Uном = 380 В; класс точности: по активной энергии — 0,5S ГОСТ Р 52323-2005; по реактивной — 1,0 ГОСТ 26035-83; Госреестр СИ № 31857-06 зав.№ 01193129                                       |                |

# Примечание:

Допускается замена измерительных трансформаторов и счетчиков на аналогичные утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в табл. 1. Замена оформляется актом. Акт хранится совместно с настоящим описанием типа АИИС КУЭ как его неотъемлемая часть.

Пределы допускаемых относительных погрешностей измерения активной и реактивной электрической энергии и мощности, %, для рабочих условий эксплуатации АИИС КУЭ Торгово-развлекательного центра ЗАО «ДОРИНДА» приведены в табл. 2.

Таблица 2

|      | Наименование<br>присоединения                                | Значение<br>соѕф | $1\% \le I/I_{\rm H} < 5\%$ | $5\% \le I/I_{\text{H}} < 20\%$ | $20\% \le I/I_{\text{H}} < 100\%$ | 100% ≤ I/I <sub>H</sub> ≤ 120% |  |  |  |
|------|--------------------------------------------------------------|------------------|-----------------------------|---------------------------------|-----------------------------------|--------------------------------|--|--|--|
|      | Активная электрическая энергия                               |                  |                             |                                 |                                   |                                |  |  |  |
| 1    | ГРЩ-1 Ввод-1<br>ГРЩ-1 Ввод-2<br>ГРЩ-2 Ввод-1<br>ГРЩ-2 Ввод-2 | 1,0              | ± 2,3                       | ± 1,6                           | ± 1,4                             | ± 1,4                          |  |  |  |
| 2    | ГРЩ-1 Ввод-1<br>ГРЩ-1 Ввод-2<br>ГРЩ-2 Ввод-1<br>ГРЩ-2 Ввод-2 | 0,8              | ± 3,2                       | ± 2,1                           | ± 1,7                             | ± 1,7                          |  |  |  |
| 3    | ГРЩ-1 Ввод-1<br>ГРЩ-1 Ввод-2<br>ГРЩ-2 Ввод-1<br>ГРЩ-2 Ввод-2 | 0,5              | ± 5,5                       | ± 3,1                           | ± 2,3                             | ± 2,3                          |  |  |  |
| <br> | Реактивная электрическая энергия                             |                  |                             |                                 |                                   |                                |  |  |  |
| 4    | ГРЩ-1 Ввод-1<br>ГРЩ-1 Ввод-2<br>ГРЩ-2 Ввод-1<br>ГРЩ-2 Ввод-2 | 0,8              | ± 8,6                       | ± 3,5                           | ± 2,3                             | ± 2,2                          |  |  |  |
| 5    | ГРЩ-1 Ввод-1<br>ГРЩ-1 Ввод-2<br>ГРЩ-2 Ввод-1<br>ГРЩ-2 Ввод-2 | 0,5              | ± 6,1                       | ± 2,6                           | ± 1,9                             | ± 1,9                          |  |  |  |

Примечание:

В качестве характеристик основной погрешности указаны пределы допускаемой относительной погрешности измерений при доверительной вероятности 0.95.

## Рабочие условия:

параметры сети:

- напряжение (80 ÷ 120)% U<sub>ном</sub>;
- ток: (1-120)% I<sub>ном</sub>;
- $-\cos\varphi = 0.5 1;$
- допускаемая температура окружающей среды для измерительных трансформаторов и счетчиков от 15 до 30 °C.

Надежность применяемых в системе компонентов:

- $-\,$  электросчётчик среднее время наработки на отказ не менее: T=120000 ч. Средний срок службы 30 лет;
  - ТТ средний срок службы: 30 лет.

## Надежность системных решений:

- резервирование каналов связи: информация о результатах измерений может передаваться в организации-участники розничного рынка электроэнергии по коммутируемой телефонной линии сети стандарта GSM;
- регистрация событий:
  - в журнале событий счётчика;
  - параметрирования;
  - пропадания напряжения;
  - коррекции времени в счетчике.

# Защищённость применяемых компонентов:

- механическая защита от несанкционированного доступа и пломбирование:
  - электросчётчика;
  - промежуточных клеммников вторичных цепей напряжения;
  - испытательной коробки;
- защита информации на программном уровне:
  - установка пароля на счетчик.

# Глубина хранения информации:

• электросчетчик – тридцатиминутный профиль нагрузки в двух направлениях не менее 35 суток.

### ЗНАК УТВЕРЖДЕНИЯ ТИПА

Знак утверждения типа наносится на титульных листах эксплуатационной документации на систему автоматизированную информационно-измерительную коммерческого учета электрической энергии и мощности АИИС КУЭ Торгово-развлекательного центра ЗАО «ДОРИНДА» типографским способом.

#### КОМПЛЕКТНОСТЬ

# Комплектность АИИС КУЭ Торгово-развлекательного центра ЗАО «ДОРИНДА»

| Наименование<br>Трансформатор тока ТШП-0,66 У3 |   |                                                                           |
|------------------------------------------------|---|---------------------------------------------------------------------------|
|                                                |   | Счетчик электрической энергии электронный «Альфа A1800» A1805RAL-P4G-DW-4 |
| Многоканальное устройство связи МУС Е200-1     | 1 |                                                                           |
| Модем Zyxel U-336E plus                        | 1 |                                                                           |
| Сотовый модем Siemens MC 35i                   | 1 |                                                                           |
| Методика выполнения измерений                  | 1 |                                                                           |
| Методика поверки                               | 1 |                                                                           |
| Паспорт                                        | 1 |                                                                           |

#### ПОВЕРКА

Поверка проводится в соответствии с документом «Система автоматизированная информационно-измерительная коммерческого учета электрической энергии и мощности (АИИС КУЭ) на предприятии Торгово-развлекательного центра ЗАО «ДОРИНДА». Методика поверки», утвержденным ГЦИ СИ Тест-С.-Петербург в июне 2010 г.

Основное оборудование, необходимое для поверки:

- средства поверки измерительных трансформаторов тока по ГОСТ 8.217-2003;
- средства поверки счетчиков электрической энергии по документу МП-2203-0042-2006 «Счетчик электрической энергии трехфазный многофункциональный Альфа А1800.
   Методика поверки», утвержденному ГЦИ СИ ВНИИМ им. Д.И. Менделеева 19 мая 2006 г.;
- переносной компьютер с ПО и оптический преобразователь для работы со счетчиками системы;
- радиочасы МИР РЧ-01.

Межповерочный интервал – 4 года.

# НОРМАТИВНЫЕ И ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

ГОСТ 22261-94 «Средства измерений электрических и магнитных величин. Общие технические условия».

ГОСТ Р 8.596-2002 «ГСИ. Метрологическое обеспечение измерительных систем. Основные положения».

ГОСТ 7746-01 «Трансформаторы тока. Общие технические условия».

ГОСТ 26035-83 «Счетчики электрической энергии переменного тока электронные. Общие технические условия».

ГОСТ Р 52323-2005 (МЭК 62053-22:2003) «Аппаратура для измерения электрической энергии переменного тока. Частные требования. Часть 22. Статические счетчики активной энергии классов точности 0,2S и 0,5S».

Техническая документация на систему коммерческого учета электрической энергии и мощности автоматизированную АИИС КУЭ Торгово-развлекательного центра ЗАО «ДОРИНДА».

### **ЗАКЛЮЧЕНИЕ**

Тип системы автоматизированной информационно-измерительной коммерческого учета электрической энергии и мощности (АИИС КУЭ) Торгово-развлекательного центра ЗАО «ДОРИНДА» утвержден с техническими и метрологическими характеристиками, приведёнными в настоящем описании типа, и метрологически обеспечен при выпуске из производства и в эксплуатации согласно государственным поверочным схемам.

Изготовитель: ЗАО «ОВ»

Адрес: 198095, г. Санкт-Петербург, ул. Маршала Говорова, д. 40, офис 1.

тел. (812) 252-47-53, факс (812) 252-47-53.

Генеральный директор ЗАО «ОВ»



Технический директор 3AO «ОВЛ.В. Ломако Виноградов К.А.