ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (мощности) (АИИС КУЭ) ООО «Нижневартовский ГПК» с Изменениями № 1, № 2

Назначение средства измерений

Настоящее описание типа системы автоматизированной информационно-измерительной коммерческого учета электроэнергии (мощности) (АИИС КУЭ) ООО «Нижневартовский ГПК» с Изменениями № 1, № 2 является обязательным дополнением к описаниям типа: системы автоматизированной информационно-измерительной коммерческого учета электроэнергии (мощности) (АИИС КУЭ) ООО «Нижневартовский ГПК», свидетельство об утверждении типа RU.E.34.004.А №40496, регистрационный № 44957-10; системы автоматизированной информационно-измерительной коммерческого учета электроэнергии (мощности) (АИИС КУЭ) ООО «Нижневартовский ГПК» с Изменением № 1, свидетельство об утверждении типа RU.E.34.004.А № 47622, регистрационный № 44957-12 и включает в себя описание дополнительных измерительных каналов, соответствующих точкам измерений 48,49,50,51.

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (мощности) (АИИС КУЭ) ООО «Нижневартовский ГПК» с Изменениями N 1, N 2 (далее - АИИС КУЭ) предназначена для измерения активной и реактивной электроэнергии, по-требленной за установленные интервалы времени, сбора, обработки, хранения и передачи по-лученной информации.

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную, многоуровневую автоматизированную систему с централизованным управлением и распределённой функцией измерений.

АИИС КУЭ включает в себя следующие уровни:

1-й уровень – измерительно-информационные комплексы (ИИК), которые включают в себя трансформаторы тока (далее – ТТ) по ГОСТ 7746-2001, трансформаторы напряжения (далее – ТН) по ГОСТ 1983-2001 и счетчики активной и реактивной электроэнергии по ГОСТ 30206-94 ГОСТ Р 52323-2005 в режиме измерений активной электроэнергии и по ГОСТ 26035-83, ГОСТ Р 52425-2005 в режиме измерений реактивной электроэнергии, вторичные измерительные цепи и технические средства приема-передачи данных. Метрологические и технические характеристики измерительных компонентов АИИС КУЭ приведены в таблице 2.

2-ой уровень – уровень информационно-вычислительного комплекса энергоустановки (ИВКЭ), включающий в себя устройства сбора и передачи данных (УСПД) ЭКОМ-3000 технические средства приема/передачи данных (каналообразующая аппаратура) и программное обеспечение (ПО).

3-ий уровень - информационно-вычислительный комплекс (ИВК) ПС 220/110/10/6 кВ «Мегион», включающий в себя каналообразующую аппаратуру, сервер баз данных, устройства синхронизации системного времени и Π O.

4-ий уровень - информационно-вычислительный комплекс (ИВК) АИИС КУЭ, включающий в себя каналообразующую аппаратуру, сервер баз данных (БД) АИИС КУЭ, устройство синхронизации системного времени, автоматизированные рабочие места персонала (АРМ) и ПО.

Первичные токи и напряжения трансформируются измерительными трансформаторами в аналоговые сигналы низкого уровня, которые по проводным линиям связи поступают на соответствующие входы электронного счетчика электрической энергии. В счетчике мгновенные значения аналоговых сигналов преобразуют в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются мгновенные

значения активной и полной мощности, которые усредняются за период 0,02 с. Средняя за период реактивная мощность вычисляется по средним за период значениям активной и полной мошности.

Электрическая энергия, как интеграл по времени от средней за период 0,02 с мощности, вычисляется для интервалов времени 30 мин.

Средняя активная (реактивная) электрическая мощность вычисляется как среднее значение мощности на интервале времени усреднения 30 мин.

Цифровой сигнал с выходов счетчиков по проводным линиям связи поступает на входы УСПД, где выполняется дальнейшая обработка измерительной информации, вычисление электроэнергии и мощности с учетом коэффициентов трансформации ТТ и ТН, осуществляется ее хранение, накопление и передача накопленных данных на третий уровень системы.

На третьем уровне системы выполняется формирование и хранение поступающей информации, оформление справочных и отчетных документов в ИВК ПС 220/110/10/6 кВ «Мегион» передача информации о результатах измерений, состоянии средств измерений в формате XML-макетов 80020, 80030 в ИВК АИИС КУЭ через канал Internet.

На верхнем — четвертом уровне системы - ИВК АИИС КУЭ выполняется дальнейшая обработка измерительной информации, в частности, формирование и хранение поступающей информации, оформление справочных и отчетных документов. ИВК АИИС КУЭ, с периодичностью раз в сутки или по запросу получает от ИВК ПС 220/110/10/6 кВ «Мегион» и УСПД ПС ГПП-1, ГПП2 данные коммерческого учета для каждого канала учета за сутки. Данные содержат информацию о 30-минутных приращениях активной и реактивной электроэнергии, состоянии средств измерений (журналы событий устройств сбора и передачи данных и счетчиков электроэнергии) на соответствующих АИИС КУЭ.

Измерительная информация записывается в базу данных. АРМ субъекта оптового рынка подключенный к базе данных (ИВК) в автоматическом режиме, с использованием ЭЦП, раз в сутки формирует и отправляет по выделенному каналу связи отчеты в формате XML всем заинтересованным субъектам (ПАК ОАО «АТС», ИВК филиала «СО ЕЭС» Тюменского РДУ, смежным субъектам).

Передача данных в ПАК ОАО «АТС», ИВК филиала «СО ЕЭС» Тюменского РДУ от ИВК ПС 220/110/10/6 кВ «Мегион» и УСПД ПС ГПП-1, ГПП-2 - осуществляется через ИВК АИИС КУЭ.

АИИС КУЭ оснащена системой обеспечения единого времени, состоящей из устройства синхронизации системного времени УССВ на базе приемнока GPS, предназначенных для приема сигналов GPS и выдачи последовательного импульсного временного кода.

Часы УСПД синхронизированы с часами сервера БД, корректировка осуществляется каждые 60 мин.

Часы счетчиков синхронизируются от часов УСПД с периодичностью 1 раз в 30 минут, коррекция часов счетчиков проводится при расхождении часов счетчика и УСПД более чем на ± 2 с. Погрешность часов компонентов АИИС КУЭ не превышает ± 5 с.

Журналы событий счетчиков электроэнергии отражают: время (дата, часы, минуты) коррекции часов и расхождение времени в секундах в момент непосредственно предшествующий корректировке.

Программное обеспечение

В АИИС КУЭ используется ПО ПК «Энергосфера» версии не ниже 6.4, в состав которого входят программы, указанные в таблице 1. ПО ПК «Энергосфера» обеспечивает защиту программного обеспечения и измерительной информации паролями в соответствии с правами доступа. Средством защиты данных при передаче является кодирование данных, обеспечиваемое программными средствами ПО ПК «Энергосфера».

Таблица 1 – Метрологические значимые модули ПО

таолица т тистрологи теские эна нимые модули тто					
Идентификационные признаки	Значение				
Идентификационное наименование ПО	ПК «Энергосфера»				
	expimp.exe, HandInput.exe, PSO.exe,				
	SrvWDT.exe, adcenter.exe, AdmTool.exe				
Номер версии (идентификационный номер)	6.4				
ПО	0.4				
Цифровой идентификатор ПО	9F2AA3085B85BEF746ECD04018227166				
	2F968830F6FF3A22011471D867A07785				
	A121F27F261FF8798132D82DCF761310				
	76AF9C9A4C0A80550B1A1DFD71AED151				
	79FA0D977EB187DE7BA26ABF2AB234E2				
	C1030218FB8CDEA44A86F04AA15D7279				
Алгоритм вычисления цифрового идентифи- катора ПО	MD5				

Метрологические характеристики ИК АИИС КУЭ, указанные в таблице 2, нормированы с учетом ΠO .

Уровень защиты ΠO от непреднамеренных и преднамеренных изменений - «высокий» в соответствии с P 50.2.077-2014.

Метрологические и технические характеристики

Состав дополнительных измерительных каналов АИИС КУЭ и их метрологические характеристики приведены в таблице 2

Таблица 2 – Состав дополнительных измерительных каналов АИИС КУЭ и их основные метрологические характеристики

~	Наименование объекта	Измерительные компоненты					Метрологические характеристики ИК	
Номер ИК		TT	ТН	Счётчик	УСПД	Вид элек- троэнергии	Основ- ная по- греш- ность, %	По- грешнос ть в рабочих услови-
1	2	3	4	5	6	7	8	ях9%
48	ПС 220/110/10/6 кВ Мегион, ОРУ-110 кВ, яч. ОВ-110	ВСТ Кл. т. 0,2S 600/5 Зав. № 8084A-DT-12A; Зав. № 8084A-DT-12A; Зав. № 8084A-DT-12A	НКФ-110-57 Кл. т. 0,5 110000/√3/100/√3 Зав. № 956368; Зав. № 956342; Зав. № 956343 НКФ-110-57 Кл. т. 0,5 110000/√3/100/√3 Зав. № 925810; Зав. № 956361; Зав. № 956327	A1802RALQ- P4GB-DW-4 Кл. т. 0,2S/0,5 Зав. № 01276473	-	активная	±0,8 ±1,8	±1,6 ±2,8
49	ПС ГПП-2 220/110/6/6 кВ, ОРУ-220 кВ, яч. В-220 Васильев	ТG-245 Кл. т. 0,2S 600/5 Зав. № 00027; Зав. № 00026; Зав. № 00023	СРВ 245 Кл. т. 0,5 220000/√3/100/√3 Зав. № 8681090; Зав. № 8681091; Зав. № 8681089	СЭТ-4ТМ.03.01 Кл. т. 0,5S/1,0 Зав. № 11042177	ЭКОМ- 3000 Зав. № 01061179	активная	±1,0 ±2,0	±2,3 ±5,1

Продолжение таблицы 2

1	2	3	4	5	6	7	8	9
50	ТП-8 6/0,4 кВ, 1 с.ш. 0,4 кВ, яч. 5	Т-0,66 УЗ Кл. т. 0,5 100/5 Зав. № 18371; Зав. № 18251; Зав. № 18259	-	СЭТ-4ТМ.03.08 Кл. т. 0,2S/0,5 Зав. № 0106067243	ЭКОМ- 3000 Зав. № 01061176	активная	±0,8 ±2,2	±2,9 ±4,5
51	КТПН 630 6/0,4 кВ, с.ш. 0,4 кВ ООО "ВТК-2"	ТОП-0,66 Кл. т. 0,5 200/5 Зав. № 4053110; Зав. № 4053004; Зав. № 4052998	-	СЭТ-4ТМ.03.08 Кл. т. 0,2S/0,5 Зав. № 08021310168	ЭКОМ- 3000 Зав. № 01061176	активная	±0,8 ±2,2	±2,9 ±4,5

Примечания:

- 1. Характеристики погрешности ИК даны для измерений электроэнергии и средней мощности (получасовой).
- 2. В качестве характеристик относительной погрешности указаны границы интервала, соответствующие вероятности 0,95.
 - 3. Нормальные условия эксплуатации:
- параметры сети: напряжение (0.98-1.02) Uном; ток (1.0-1.2) Іном, частота (50 ± 0.15) Γ II; $\cos i = 0.9$ инд.;
- температура окружающей среды: ТТ и ТН от плюс 15 до плюс 35 °C; счетчиков от плюс 21 до плюс 25 °C; УСПД от плюс 10 до плюс 30 °C; ИВК от плюс 10 до плюс 30 °C;
 - относительная влажность воздуха (70 ± 5) %;
 - атмосферное давление (100 ± 4) кПа;
 - магнитная индукция внешнего происхождения, не более 0,05 мТл.
 - 4. Рабочие условия эксплуатации:
 - а) для ТТ и ТН:
- параметры сети: диапазон первичного напряжения (0.9-1.1) Uн₁; диапазон силы первичного тока (0.02-1.2) Ін₁; коэффициент мощности соѕј (sinj) 0.5-1.0 (0.87-0.5); частота (50 ± 0.4) Γ ц;
 - температура окружающего воздуха от минус 40 до плюс 70 °C.
 - б) для счетчиков электроэнергии:
- параметры сети: диапазон вторичного напряжения (0.9-1.1) UH₂; диапазон силы вторичного тока (0.01-1.2) IH₂; коэффициент мощности cosj (sinj) 0.5-1.0 (0.87-0.5); частота (50 ± 0.4) Γ ц;
 - относительная влажность воздуха (40 60) %;
 - атмосферное давление $(100 \pm 4) \text{ кПа};$
 - температура окружающего воздуха:
 - для счётчиков электроэнергии A1802RALQ-P4GB-DW-4 от минус 40 до плюс 65 °C;
 - для счётчиков электроэнергии СЭТ-4ТМ.03.01 от минус 40 до плюс 60 °C;
 - для счётчиков электроэнергии СЭТ-4ТМ.03.08 от минус 40 до плюс 60 °C;
 - магнитная индукция внешнего происхождения, не более 0,5 мТл.
 - в) для аппаратуры передачи и обработки данных:
 - параметры питающей сети: напряжение (220 ± 10) В; частота (50 ± 1) Гц;
 - температура окружающего воздуха от плюс 10 до плюс 30 °C;
 - относительная влажность воздуха (70 ± 5) %;
 - атмосферное давление (100 \pm 4) кПа.
- 5. Погрешность в рабочих условиях указана для $\cos j = 0.8$ инд и температуры окружающего воздуха в месте расположения счетчиков электроэнергии для ИК № 48-51 от 0 до плюс 40 °C.
- 6. Допускается замена измерительных трансформаторов, счетчиков на аналогичные утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в Таблице 2, УСПД на однотипный утвержденного типа. Замена оформляется актом в установленном на ООО «Нижневартовский ГПК» порядке. Акт хранится совместно с настоящим описанием типа АИИС КУЭ как его неотъемлемая часть.

Параметры надежности применяемых в АИИС КУЭ измерительных компонентов:

- электросчётчик A1802RALQ-P4GB-DW-4 среднее время наработки на отказ не менее T=120000 ч, среднее время восстановления работоспособности t=2 ч;
- электросчётчик СЭТ-4ТМ.03.01 среднее время наработки на отказ не менее T = 90000 ч, среднее время восстановления работоспособности tв = 2 ч;
 - электросчётчик СЭТ-4ТМ.03.08 среднее время наработки на отказ не менее

T = 90000 ч, среднее время восстановления работоспособности tв = 2 ч;

- УСПД ЭКОМ-3000 среднее время наработки на отказ не менее T=75000 ч, среднее время восстановления работоспособности t = 2 ч;
- сервер среднее время наработки на отказ не менее T=70000 ч, среднее время восстановления работоспособности t = 1 ч.

Надежность системных решений:

- защита от кратковременных сбоев питания сервера и УСПД с помощью источника бесперебойного питания;
- резервирование каналов связи: информация о результатах измерений может передаваться в организации—участники оптового рынка электроэнергии с помощью электронной почты и сотовой связи.

В журналах событий фиксируются факты:

- журнал счётчика:
- параметрирования;
- пропадания напряжения;
- коррекции времени в счетчике;
- журнал УСПД:
- параметрирования;
- пропадания напряжения;
- коррекции времени в счетчике и УСПД;
- пропадание и восстановление связи со счетчиком.

Защищённость применяемых компонентов:

- механическая защита от несанкционированного доступа и пломбирование:
- электросчётчика;
- промежуточных клеммников вторичных цепей напряжения;
- испытательной коробки;
- УСПД;
- сервера;
- защита на программном уровне информации при хранении, передаче, параметрировании:
 - электросчетчика;
 - УСПД;
 - сервера.

Возможность коррекции времени в:

- электросчетчиках (функция автоматизирована);
- УСПД (функция автоматизирована);
- ИВК (функция автоматизирована).

Возможность сбора информации:

- о результатах измерений (функция автоматизирована).

Цикличность:

- измерений 30 мин (функция автоматизирована);
- сбора 30 мин (функция автоматизирована).

Глубина хранения информации:

- электросчетчик тридцатиминутный профиль нагрузки в двух направлениях не менее 35 суток; сохранение информации при отключении питания не менее 10 лет;
- УСПД суточные данные о тридцатиминутных приращениях электроэнергии по каждому каналу и электроэнергии, потребленной за месяц, по каждому каналу не менее 35 суток; сохранение информации при отключении питания не менее 10 лет;
- Сервер БД хранение результатов измерений, состояний средств измерений не менее 3,5 лет (функция автоматизирована).

Знак утверждения типа

Знак утверждения типа наносится на титульные листы эксплуатационной документации на систему автоматизированную информационно-измерительную коммерческого учёта электроэнергии АИИС КУЭ типографским способом.

Комплектность средства измерений

В комплект поставки входит техническая документация на систему и на комплектующие средства измерений.

Комплектность АИИС КУЭ представлена в таблице 3.

Таблица 3 - Комплектность АИИС КУЭ

Наименование	Тип	№ Госреестра	Количество, шт.
1	2	3	4
Трансформатор тока	BCT	17869-10	3
Трансформатор тока	TG-245	15651-06	3
Трансформатор тока	Т-0,66 У3	15764-96	6
Трансформатор напряжения	НКФ-110-57	26452-06	6
Трансформатор напряжения	CPB 245	15853-06	3
Счётчик электрической энергии многофункциональный	A1802RALQ- P4GB-DW-4	31857-11	1
Счётчик электрической энергии многофункциональный	СЭТ-4ТМ.03.01	27524-04	1
Счётчик электрической энергии многофункциональный	СЭТ-4ТМ.03.08	27524-04	2
Устройство сбора и передачи данных	ЭКОМ-3000	17049-04	3
Программное обеспечение	ПК «Энергосфера»	-	1
Методика поверки	-	-	1
Паспорт-Формуляр	-	-	1
Руководство по эксплуатации	-	-	1

Поверка

осуществляется по документу МП 44957-15 «Система автоматизированная информационноизмерительная коммерческого учета электроэнергии (мощности) (АИИС КУЭ) ООО «Нижневартовский ГПК» с Изменениями № 1, № 2. Измерительные каналы. Методика поверки», утвержденному ФГУП «ВНИИМС» в июне 2015 г.

Перечень основных средств поверки:

- трансформаторов тока в соответствии с ГОСТ 8.217-2003 «ГСИ. Трансформаторы тока. Методика поверки»;
- -трансформаторов напряжения в соответствии с ГОСТ 8.216-2011 «ГСИ. Трансформаторы напряжения. Методика поверки» и/или МИ 2925-2005 «Измерительные трансформаторы напряжения $35...330/\sqrt{3}$ кВ. Методика поверки на месте эксплуатации с помощью эталонного делителя»;
- по МИ 3195-2009 «ГСИ. Мощность нагрузки трансформаторов напряжения без отключения цепей. Методика выполнения измерений без отключения цепей»;
- -по МИ 3196-2009 «ГСИ. Вторичная нагрузка трансформаторов тока без отключения цепей. Методика выполнения измерений без отключения цепей»;
- счетчиков A1802 по документу «Счетчики электрической энергии трехфазные многофункциональные Альфа A1800. Методика поверки ДЯИМ.411152.018 МП», согласованному с ГЦИ СИ ФГУП «ВНИИМС» в 2011 г.;

- счетчиков СЭТ-4ТМ.03 по документу «Счетчики электрической энергии многофункциональные СЭТ-4ТМ.03. Руководство по эксплуатации. Методика поверки» ИЛГШ.411151.124 РЭ1, согласованному с ГЦИ СИ ФГУ «Нижегородский ЦСМ» 10 сентября 2004 г.;
- -УСПД ЭКОМ-3000 по документу «ГСИ. Программно-технический измерительный комплекс ЭКОМ. Методика поверки. МП-26-262-99», согласованному с УНИИМ декабрь 1999 г.;
- радиочасы МИР РЧ-01, принимающие сигналы спутниковой навигационной системы Global Positioning System (GPS), номер в Государственном реестре средств измерений № 27008-04:
- переносной компьютер с ПО и оптический преобразователь для работы с счетчиками системы и с ПО для работы с радиочасами МИР РЧ-01;
- -термогигрометр CENTER (мод.314): диапазон измерений температуры от минус 20 до плюс 60 °C, дискретность 0,1 °C; диапазон измерений относительной влажности от 10 до 100%, дискретность 0,1%.

Сведения о методиках (методах) измерений

Метод измерений изложен в документе «Методика измерений электрической энергии и мощности с использованием АИИС КУЭ ООО «Нижневартовский ГПК» с Изменениями № 1, № 2, аттестованной ФГУП «ВНИИМС», аттестат об аккредитации № 01.00225-2011 от 29.06.2011 г.

Нормативные и технические документы, устанавливающие требования к АИИС КУЭ

- 1 ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия.
- 2 ГОСТ 34.601-90 Информационная технология. Комплекс стандартов на автоматизированные системы. Автоматизированные системы. Стадии создания.
- 3 ГОСТ Р 8.596-2002 ГСИ. Метрологическое обеспечение измерительных систем. Основные положения.

Изготовитель

Закрытое акционерное общество «Росэнергосервис» (ЗАО «Росэнергосервис»)

ИНН 3328489050

Юридический адрес: 600017, г. Владимир, ул. Сакко и Ванцетти, д.23, оф.9 Почтовый адрес: 600017, г. Владимир, ул. Сакко и Ванцетти, д.23, оф.9

Тел./факс: (4922) 44-87-06/(4922) 33-44-86

Заявитель

Общество с ограниченной ответственностью «Тест-Энерго» (ООО «Тест-Энерго»)

Юридический адрес: 119119, г. Москва, Ленинский пр-т, 42, 1-2-3 Почтовый адрес: 119119, г. Москва, Ленинский пр-т, 42, 25-35

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научно-исследовательский институт метрологической службы» (ФГУП «ВНИИМС»)

Адрес: 119361, г. Москва, ул. Озерная, д. 46 Тел./факс: 8 (495) 437-55-77 / 437-56-66 E-mail: office@vniims.ru, www.vniims.ru

Аттестат аккредитации ФГУП «ВНИИМС» по проведению испытаний средств измерений

М.п.

в целях утверждения типа № 30004-13 от 26.07.2013 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

C.C	<i>ا</i> . ا	олу	оев

« » 2015 г.