Приложение к свидетельству
№ <u>५06५</u> об утверждении типа средств измерений

Мониторы прикроватные "BSM-23**", модификации: BSM-2301K, BSM-2303K, BSM-2351K, BSM-2353K

Внесены в Государственный реестр средств измерений

Регистрационный №<u>Ч5069- 10</u> Взамен №

Выпускаются по технической документации фирмы «NIHON KOHDEN CORPORATION», Япония

НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ

Мониторы прикроватные "BSM-23**",модификации: BSM-2301K, BSM-2303K, BSM-2351K, BSM-2353K (далее — мониторы) предназначены для измерений и регистрации биоэлектрических потенциалов сердца, температуры тела непрерывного неинвазивного определения насыщения (сатурации) кислородом гемоглобина артериальной крови (SpO₂) и частоты пульса (ЧП) и частоты дыхания, определения систолического и диастолического артериального давления (АД), измерение содержания двуокиси углерода и наблюдения на экране монитора электрокардиограммы (ЭКГ), сигнала дыхания, значений или графиков измеряемых параметров состояния пациента и включения тревожной сигнализации при выходе измеряемых параметров за установленные пределы.

Область применения — отделения реанимации и палаты интенсивной терапии, амбулаторные отделения, на постах медицинской сестры клиник, больниц, госпиталей и других лечебно-профилактических учреждений, в машинах скорой помощи.

ОПИСАНИЕ

Функционально мониторы прикроватные построены по модульному типу и конструктивно состоят из системного блока, модуля регистрации и интерфейса, обеспечивающего передачу информации на центральный монитор.

Принцип работы канала артериального давления основан на определение систолического и диастолического артериального давления косвенным осциллометрическим способом;

Принцип работы канала дыхания основан на измерении импеданса между двумя электродами, установленными на грудь пациента.

Принцип работы канала температуры основан на измерение и регистрации температуры тела пациента терморезисторами.

Принцип работы канала электрокардиографии основан на прямом измерении электрического потенциала сердца с помощью электродов, закрепленных на теле пациента.

Принцип работы канала пульсоксиметрии основан на различии спектрального поглощения оксигемоглобина и восстановленного гемоглобина крови на двух длинах волн.

Принцип работы канала капнометрии основан на измерении и регистрации массовой концентрации двуокиси углерода (EtCO₂) в выдыхаемом пациентом воздухе от неинвазивного капнографа. Уровень CO₂ отображается либо в %, либо в мм рт. ст. Уровни других газов измеряются в %.

Экран монитора разделён на несколько областей отображения информации: область графической информации; область информации о пациенте; область числовых значений измеряемых параметров и область системной информации. Монитор имеет несколько видов отображения информации: в виде кривых для параметров ЭКГ, дыхания, пульсоксиметрии, и содержания CO₂; в виде числовых данных: ЧСС, частота дыхания, частота пульса, температура, уровень CO₂, параметры артериального давления. На экране монитора во всех режимах отображаются текущая дата и время. Монитор позволяет в режиме остановки проводить визуальный просмотр элементов ЭКГ.

Модификации мониторов различаются количеством мультипараметрических входов (один или два), размером экрана (8,4 или 10,2 дюйма), потребляемой мощьностью.

ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

- 1. Электрокардиографический канал.
- 1.1. Диапазон измерений входных напряжений: от 0,5 до 5 мВ.
- 1.2. Пределы допускаемой относительной погрешности монитора при измерении напряжений: \pm 5 %.
 - 1.3. Входной импеданс, не менее: 5 МОм.
 - 1.4. Коэффициент ослабления синфазной помехи, не менее: 90 дБ.
 - 1.5. Напряжение внутренних шумов, приведенных ко входу, не более: 30 мкВ.
- 1.6. Пределы допускаемой абсолютной погрешности монитора при измерении частоты сердечных сокращений в диапазоне от 0,12 до 300 мин⁻¹; ± 2 .
 - 2. Канал пульсоксиметрии.
- 2.1. Пределы допускаемой абсолютной погрешности монитора в диапазоне от 50 до 80 % при измерении SpO_2 , %: ± 3 ;
- 2.2. Пределы допускаемой абсолютной погрешности монитора в диапазоне от 80 до 100 % при измерении SpO_2 , %: ± 2 .
 - 2.3. Диапазон измерения частоты пульса, мин⁻¹: от 20 до 250;
- 2.4. Пределы допускаемой абсолютной погрешности измерений частоты пульса: ± 3 мин⁻¹:
 - 3. Канал частоты дыхания (импедансный метод).:
 - 3.1. Диапазон измерений базового импеданса от 0,01 до 2 кОм;
 - 3.2. Диапазон измерений переменной составляющей импеданса от 0,05 до 10 Ом;
 - 3.3. Диапазон измерения частоты дыхания (ЧД) от 0 до 150 мин-¹ при переменной составляющей импеданса не менее 200 МОм;
 - 3.4. Пределы допускаемой абсолютной погрешности монитора при измерении частоты дыхания, мин- 1 : ± 2 .
 - 4. Канал артериального давления.
 - 4.1. Диапазон измерений избыточного давления в компрессионной манжете, кПа (мм рт.ст.): от 0 до 40 (от 0 до 300);
 - 4.2. Пределы допускаемой погрешности монитора при измерении избыточного давления в компрессионной манжете:

- абсолютная в диапазоне от 0 до 26 (от 0 до 200) кПа (мм рт.ст.), кПа (мм рт.ст.): ± 0.39 (± 3):
- абсолютная в диапазоне от 26 до 40 (от 200 до 300) кПа (мм рт.ст.):, ±0,52 (±4).
- 5. Канал термометрии.
- 5.1. Диапазон измерений температуры, °С: от 0 до 45;
- 5.2. Пределы допускаемой абсолютной погрешности монитора при измерении температуры в диапазоне от $0.0 \text{ до } 25.0 \,^{\circ}\text{C}$: ± 0.2 ;
- 5.2. Пределы допускаемой абсолютной погрешности монитора при измерении температуры в диапазоне от 25,0 до 45.0 °C: ± 0.1 ;
- 6. Канал капнометрии.
- 6.1. Пределы допускаемой абсолютной погрешности измерений парциального давления CO_2 в выдыхаемом воздухе в диапазоне от 0 до 5,0 кПа (от 0 до 40 мм рт.ст.): \pm 0,3 кПа (\pm 4 мм рт.ст.);
- 6.2. Пределы допускаемой относительной погрешности измерений парциального давления CO_2 в выдыхаемом воздухе в диапазоне св. 5,2 до 9,2 кПа(св. 40 до 70 мм рт.ст.): \pm 10 %.
- 7. Питание монитора осуществляется:
 - от сети переменного тока частотой (220 \pm 22) В, (50 \pm 1) Γ ц;
 - от аккумулятора (10HR-4/3FAUC-NK): от 10,8 до 15,0 B
- 8. Массо-габаритные характеристики и потребляемая мощность от сети переменного тока приведены в таблице:

Модификация	Масса (без принадлежно- стей), кг	Габаритные размеры, мм	Потребляемая мощность, ВА
BSM-2301K	4,7	253:242:145	70
BSM-2303K	4,7	253.242.145	86
BSM-2351K	4,7	253 242 145	95
BSM-2353K	4,7	253 242 145	95

- 9. Условия эксплуатации:
- диапазон температуры окружающего воздуха: от 10 до 40 °C;
- диапазон относительной влажности воздуха: от 30 до 90 % (без конденсации);
- диапазон атмосферного давления: от 700 до 1060 гПа.
- 10. Средний срок службы: 5 лет.

Знак утверждения типа

Знак утверждения типа наносится на корпус монитора методом сеткографии и на титульный лист эксплуатационной документации.

Комплектность

НАИМЕНОВАНИЕ
1. Системный блок
2. Набор пульсоксиметрических датчиков
3. Набор электродов для ЭКГ
4. Набор дыхательных датчиков
5. Система для измерения капнографии Р903
6. Набор датчиков температуры
7. Комплект датчиков СО2
8. Трансмиттер ZB-900PG
9. Адаптер к трансмиттеру
10. Радиостанция QI-210P
11. Сетевая карта
12. Модуль газовый AG-400RK
13. Линия забора газа V901
14. Набор манжет
15. Набор соединительных кабелей и шлангов
16. Руководство оператора
17. Методика поверки. МП 242-1031- 2010

Поверка

Поверка пульсоксиметрического канала и канала капнометрии проводится в соответствии с документом МП 242-1031- 2010 «Мониторы прикроватные "BSM-23**"». Методика поверки», утвержденным ГЦИ СИ ФГУП "ВНИИМ им. Д. И. Менделеева" в июле 2010г.

Поверка электрокардиографического канала, канала артериального давления, канала измерения температуры тела пациента производится в соответствии с Р 50.2.049-2005 "ГСИ. Мониторы медицинские. Методика поверки".

Основные средства поверки:

Характеристики оборудования
Диапазон размаха напряжения выходного сиг-
нала: от 0,03 мВ до 20 В;
диапазон частот: от 0,01 до 600 Гц
Диапазон измерений: 2,66 - 49,3 кПа
(от 20 до 370 мм рт.ст.), Основная погрешность
измерений: ± 0,8 мм рт.ст
коэффициент сатурации от 35 до 100 % с по-
грешностью ±1 %; частоты пульса от 30 до 250
мин ⁻¹ ; с погрешностью ± 0.5 %.
Параметры эквивалента «кожа-электрод»:
$R1=51 \pm 2,55$ кОм, $C1=0,047; \pm 0,0047$ мк Φ ,
$Rn=100 \pm 5 Om, R3=2,2 MOm$
Диапазон задания частоты следования импуль-
cob: 30 - 200 мин ⁻¹
Основная относительная погрешность задания
частоты импульсов: ± 1,5 %

6. Термометр ртутный эталонный, TP-1, ГрСИ №2850-02	Цена деления 0,01 °C; Погрешность: ± 0,03 °C
7. Преобразователь «напряжения- сопративления» ПНС-ГФ, ТУ 9440-671- 05834388-95, ГрСИ №23213-02	Диапазон установки постоянной составляющей сопротивления: 10-1000 Ом. Погрешность ± 2 % Диапазон установки переменной составляющей сопротивления: 0,005 -10 Ом. Погрешность ± 2 % для значений 0,1; 0,25; 0,5; 1,0 и 10 Ом; ± 5 % для значений 0,005; 0,05 Ом.
8. Поверочное коммутиционное устройство ПКУ-ЭЭГ	1:10000 ΠΓ \pm 0,5 % 22 κΟμ ΠΓ \pm 1 %, 100 Ομ ΠΓ \pm 5 % 3,3 ηΦ ΠΓ \pm 5 %
9. ПЗУ «ЭЭГ-7» с испытательным сигналом ЭЭГ-7	Амплитудные параметры $\Pi\Gamma \pm 3 \%$ Временные параметры $\Pi\Gamma \pm 1 \%$

Межповерочный интервал - 1 год.

Нормативные и технические документы

- 1. ГОСТ P50267.27-94 «Изделия медицинские электрические. Часть 2. Частные требования безопасности к электрокардиографическим мониторам».
- 2. ГОСТ Р 50267.30-99 «Изделия медицинские электрические. Часть 2. Частные требования безопасности к приборам для автоматического контроля давления крови косвенным методом».
- 3. ГОСТ Р ИСО 9919-2007 «Изделия медицинские электрические. Частные требования безопасности и основные характеристики пульсовых оксиметров».
- 4. ГОСТ Р 50444-92 "Приборы, аппараты и оборудование медицинские. Общие технические условия";
- 5. ГОСТ Р 50267.0-92 "Изделия медицинские электрические. Часть І. Общие требования безопасности";
- 6. ГОСТ Р 50267.0.4-99 "Изделия медицинские электрические. Часть І. Общие требования безопасности 4. Требования безопасности к программируемым медицинским электронным системам"
- 7. ГОСТ Р 50267.0.2-2005 "Изделия медицинские электрические. Часть І. Общие требования безопасности 2. Электромагнитная совместимость. Требования и методы испытаний"
- 8. ГОСТ Р 50267.26-95 Изделия медицинские электрические. Часть 2. Частные требования безопасности к электроэнцефалографам"
- 9. ГОСТ Р МЭК 60601-1-1-2007 "Изделия медицинские электрические. Часть І. Общие требования безопасности к медицинским электрическим системам"
 - 10. Техническая документация фирмы «NIHON KOHDEN CORPORATION», Япония

Заключение

Тип мониторов "BSM-23**", модификации: BSM-2301K, BSM-2303K, BSM-2351K, BSM-2353K утвержден с техническими и метрологическими характеристиками, приведенными в настоящем описании типа, и метрологически обеспечен при ввозе в РФ, в процессе эксплуатации и после ремонта.

Мониторы разрешены Федеральной службой по надзору в сфере здравоохранения и социального развития на применение в медицинской практике и имеют сертификаты соответствия ГОСТ Р:

Модификация мониторы	Сертификат соответствия ГОСТ Р	Регистрационное удостоверение
BSM-2301K	РОСС JP. HO03.B03339 от 13.04.2009, ОС ООО «ТЕХНОНЕФТЕГАЗ»	МЗ РФ №2002/110 от 11.03.2002
BSM-2303K	РОСС JP.АЯ46.В14633 от 27.02.2008, выдан ОС промышленной продукции РОСТЕСТ-МОСКВА	ФС 2004/847 от 03.08.2004
BSM-2351K	РОСС JP.АЯ46.В14633 от 27.02.2008, выдан ОС промышленной продукции РОСТЕСТ-МОСКВА	ФС 2005/1092 от 04.08.2005
BSM-2353K	РОСС JP.АЯ46.В14633 от 27.02.2008, выдан ОС промышленной продукции РОСТЕСТ-МОСКВА	ФС 2005/1092 от 04.08.2005

ИЗГОТОВИТЕЛЬ: Фирма «NIHON KOHDEN CORPORATION», Япония Адрес: 1-31-46, Nishiochiai Shinjuku-ku, Tokyo, 161-8560, Japan

ЗАЯВИТЕЛЬ: ЗАО «Бюро экспертизы медицинских изделий», г.Москва Адрес: 117042, г. Москва, ул.Адмирала Лазарева., д.52 к.3

Руководитель отдела Государственных эталонов в области физико-химических измерений ГЦИ СИ ФГУП «ВНИИМ им.Д,И,Менделеева» [©]

Л.А.Конопелько

Ведущий научный сотрудник

ГЦИ СИ ФГУП «ВНИИМ им.Д,И,Менделеева»

В.И.Суворов

медипинск_{их} "Рюбо эксиеблиз

Генеральный директор

ЗАО«Бюро экспертизы медицинских изделим

И.С.Ваняшина