Приложение к **сониссаниву** ипа СРЕДСТВИ МЕРЕНИЙ № 40839об утверждении типа

№ 40839об утверждении типа средств измерений



Рабочий эталон объемного расхода жидкого кислорода ЭРУЖК Внесен в Государственный реестр средств измерений Регистрационный номер Чらんパー化

Изготовлен по техническому заданию на ОКР "Криоген-Э". Зав. № 1К

## НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ

Рабочий эталон объемного расхода жидкого кислорода ЭРУЖК (далее ЭРУЖК) предназначен для воспроизведения, хранения и передачи размера единицы объемного расхода жидкого кислорода (азота) рабочим средствам измерений при их поверке, калибровке, настройке и испытаниях.

Область применения — метрологическое обеспечение производства, ремонта расходомеров, счётчиков, преобразователей объёма/расхода жидкостей, а также их периодической поверки в процессе эксплуатации.

### ОПИСАНИЕ

ЭРУЖК состоит из нескольких частей: пневмогидросистемы (ПГС), информационно-измерительной системы (ИИС), системы единого времени СЕВ-01 и системы управления (СУ).

ПГС состоит из мерника, оснащенного двойным дискретным уровнемером (2х32 сигнализатора уровня, равномерно расположенных по высоте мерника) и термоштаногой с 10 платиновыми термопреобразователями сопротивления, равномерно распределенными по высоте; двумя приемными криогенными баками объемом 2х22 м³; расходомерными трубопроводами Ду50 (Ду100) и Ду150 мм, размещенными между коллектором слива жидкости из мерника и коллектором слива жидкости в приемные баки; системой наддува мерника и приемных баков инертными газами (азот, гелий). Трубопроводы оснащены на входе блоками контрольных турбинных расходомеров с ячеистыми формирователями потока и испытательными (мерными) участками для установки калибруемых рабочих расходомеров.

При открытых запорных органах системы наддува мерника и расходомерной магистрали величина расхода криогенной жидкости определяется разностью давлений в газовых подушках мерника и приемных баков и сопротивлением дроссельной шайбы (набора дроссельных шайб) на выходе из расходомерного трубопровода. Требуемое давление и расход газа наддува мерника определяется расчетно-экспериментальным методом.

В связи со специфическими свойствами криогенных жидкостей, сложными процессами тепломассообмена рабочей жидкости с газом наддува и металлоконструкциями пневмогидросхемы, возможностью деформаций элементов гидравлического тракта при захолаживании до температуры 77 К, создающих негерметичности в гидравлическом тракте, для повышения надежности и достоверности результатов измерений контролируются параметры жидко-

сти и газа наддува, обеспечивающие получение необходимых данных для расчетного определения параметров процесса и вспомогательных параметров, характеризующих условия работы (захолаживание криогенных систем, контроль утечек и т. д.).

Измерения выполняются многоканальной автоматизированной ИИС, оснащенной модулями приема аналоговых, частотных и дискретных сигналов, рабочим программным обеспечением для проведения прямых и косвенных измерений, а также специальным программным обеспечением расчета калибровочных характеристик расходомеров и показателей точности.

Синхронизация данных измерений и точное измерение длительности зачетных интервалов осуществляется системой единого времени СЕВ-01.

СУ обеспечивает выдачу команд на дискретные исполнительные органы и управление регуляторами расхода газа наддува.

По результатам измерений оформляется протокол и свидетельство о поверке (калибровке) расходомеров с указанием калибровочной характеристики и показателей точности на жидком кислороде (азоте).

## ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

| Наименование характеристики                 | Значение характеристики          |       |       |
|---------------------------------------------|----------------------------------|-------|-------|
| Диапазон воспроизводимых объемных расхо-    |                                  |       |       |
| дов, л/с                                    | 0,515                            | 550   | 25120 |
| Диаметр условного прохода расходомерного    |                                  |       |       |
| участка, мм                                 | 2050                             | 60100 | 150   |
| Количество одновременно калибруемых расхо-  |                                  |       |       |
| домеров, шт                                 | 25                               | 23    | 13    |
| Рабочий объем мерника, дм <sup>3</sup>      |                                  | 10000 |       |
| Пределы допускаемой относительной погреш-   |                                  |       |       |
| ности измерений рабочего объема мерника, %  | ±0,08                            |       |       |
| Пределы погрешности определения среднего    |                                  |       |       |
| объемного расхода на каждой ступени калиб-  | ±0,15 0,25                       |       |       |
| ровки, %                                    |                                  |       |       |
| Пределы погрешности определения калибро-    |                                  |       |       |
| вочной характеристики расходомера, %        | ±0,120,20                        |       |       |
| Максимальное отклонение среднего расхода на |                                  |       |       |
| ступени от расчетного, %                    | ±5                               |       |       |
| Максимальное отклонение текущего расхода от |                                  |       |       |
| средней величины за время проливки для каж- |                                  |       |       |
| дой ступени, %                              | ±3,0                             |       |       |
| Минимальная длительность зачетного интерва- |                                  |       |       |
| ла времени проливки, с                      | ≥40                              |       |       |
| Погрешность измерения времени калибровки, с | ±0,008                           |       |       |
| Диапазон абсолютных температур жидкости на  | 9093 (для О2)                    |       |       |
| зачетном интервале калибровки, К            | 7780 (для N <sub>2</sub> )       |       |       |
| Диапазон абсолютных давлений жидкости на    |                                  |       |       |
| зачетном интервале калибровки, МПа          | 0,31,0                           |       |       |
| Пределы абсолютной погрешности измерений    | ±0,08 К в мернике                |       |       |
| температуры, К                              | ±0,15 К в расходном трубопроводе |       |       |
| Предел абсолютной погрешности измерения     |                                  |       |       |
| давления, МПа                               | ≤ 0,015                          |       |       |
|                                             |                                  |       |       |

1

| Наименование характеристики                  | Значение характеристики |
|----------------------------------------------|-------------------------|
| Предел абсолютной погрешности измерения      |                         |
| частоты сигнала расходомеров, Гц             | ≤0,01                   |
| Количество ступеней калибровки, шт:          |                         |
| - при калибровке в узком диапазоне Qн ± 20 % | 3                       |
| - с шагом 2030 % от Qн                       | 35                      |
| Размеры прямых участков трубопроводов без    |                         |
| формирователей потока:                       |                         |
| - до калибруемого расходомера                | 10 Ду                   |
| - после калибруемого расходомера             | 5 Ду                    |
| Объем сливаемой за зачетный интервал времени |                         |
| жидкости, дм <sup>3</sup>                    | ≥4500,0                 |

## Условия эксплуатации:

- ПГС эксплуатируется в промышленных отсеках жидкого кислорода (азота) при следующих условиях окружающей среды:
  - температура от 0 до 35 °C;
  - давление окружающей среды от 625 до 800 мм рт. ст.;
  - относительная влажность до 95 % при температуре 20 °C;
- ИИС, СУ и СЕВ-01 эксплуатируются в промышленных помещениях при следующих условиях:
  - температура окружающей среды от 5 до 30 °C;
  - давление окружающей среды от 625 до 800 мм рт. ст.;
  - относительная влажность воздуха при температуре 25 °C не более 80 %.

# ЗНАК УТВЕРЖДЕНИЯ ТИПА

Знак утверждения типа наносится типографским способом на титульный лист руководства по эксплуатации и формуляр.

#### КОМПЛЕКТНОСТЬ

| No   | Наименование                                               | Кол.,  |
|------|------------------------------------------------------------|--------|
| п/п  |                                                            | ШТ     |
| 1    | Рабочий эталон объемного расхода жидкого кислорода ЭРУЖК в |        |
|      | составе:                                                   | 1      |
| 1.1. | - пневмогидросистема ПГС                                   | 1      |
| 1.2. | - информационно- измерительная система ИИС                 | 1      |
| 1.3. | - система единого времени СЕВ-01                           | 1      |
| 1.4. | - система управления СУ                                    | 1      |
| 2    | Руководство по эксплуатации РЭ.37.106.28300.00.00          | 1 экз. |
| 3    | Формуляр 37.106.28300.00.00 ФО                             | 1 экз. |
| 4    | Методика поверки МП 37.106.28300-01-2010                   | 1 экз. |
| 5    | Руководство оператора РО 37.106.28300-02-2010              | 1 экз. |

# 1 Составные части изделия

- 1.1 Система воспроизведения и передачи единицы расхода 6.00237.0000 ПГЗ
- 1.1.1 Информационно-измерительная система 6.00234.00.00 Э1
- 1.1.2 Система управления 10.В2.70007.00.00-01 Э1

| 1.1.3 | Система единого времени СЕВ-01 ТО.106В.051.00                        | 1 |
|-------|----------------------------------------------------------------------|---|
| 1.2   | Система наддува 06.В2000.1300.00 ПГ6                                 | 1 |
| 1.3   | Система заправки (слива) жидкого кислорода (азота) Г6.314.260000     | 1 |
| 1.4   | Система отбора проб и термостатирования жидкого кислорода (азота)    |   |
|       | 06.Β200013.00.00 ΠΓ6                                                 | 1 |
| 1.5   | Система контроля концентрации $O_2$ и $N_2$ в воздушной среде 334051 | 1 |
| 2     | Сборочные единицы                                                    |   |
| 2.1   | Расходный резервуар №17 8615 (мерник)                                | 1 |
| 2.2   | Приемный резервуар РЦВ 22/10 КС 3326.00.000-01                       | 2 |
| 2.3   | Расходомерный участок Г6.28309.00.00                                 | 1 |
| 2.4   | Расходомерный участок Г6.28310.00.00                                 | 1 |
| 2.5   | Расходомерный участок Г6.28311.00.00                                 | 1 |
| 2.6   | Расходомерный участок Г6.30835.00.00                                 | 1 |
| 2.7   | Расходомерный участок Г6.31066.00.00                                 | 1 |
| 2.8   | Дискретный уровнемер УДЕ Г19.22841.00.00                             | 1 |

### ПОВЕРКА

Поверка ЭРУЖК проводится в соответствии с методикой "ГСИ. Рабочий эталон объемного расхода жидкого кислорода ЭРУЖК. Методика поверки. МП 37.106.28300-01-2010, утвержденной ГЦИ СИ ФГУП "ВНИИМС" в августе 2010 г.

Основное поверочное оборудование:

- гири ГО-20, кл. М1, 4 разряд;
- набор гирь Г-2-210, кл. F1;
- лабораторный термометр ТМ6-1 с ценой деления 0,2 °C, ГОСТ 112-78
- весы рычажные 11У014, относительная погрешность  $\pm 0,05$  %;
- весы лабораторные GR-120, кл. специальный;
- манометр образцовый МО, диапазон 0...1,0 МПа, кл. точности 0,15;
- датчик перепада давления «Метран», кл.0,5 на диапазон ±0,1 МПа;
- эталонные катушки сопротивления P3030 1; 10; 10<sup>2</sup> Ом, кл.0,002, II р.;
- многозначные меры сопротивления P3026/1, диапазон  $10^{-2} \div 10^{5}$  Ом,  $\kappa$ л.0,002, III p;
- магазин сопротивления P4831, диапазон 10<sup>-2</sup>÷10<sup>6</sup> Ом, кл.0,02;
- вольтметр универсальный B7-64/1, диапазон измерений  $U_{=}=0\div1250$  B, погрешность (ppm от  $U_x+$  ед.мл.разр.),  $U_{\sim}=1$ мB÷750 B, погрешность (% от  $U_x+$  ед.мл.разр.),  $R=0\div$

200 МОм, погрешность 100 ppm +3;

- генератор низкочастотный  $\Gamma$ 3-110, диапазон част.  $10^{-2} \div 2 \cdot 10^6 \Gamma$ ц с дискретностью 0,01  $\Gamma$ ц;  $U = 0 \div 6B$ , относительная погрешность  $\pm 3 \cdot 10^{-7}$ .

Межповерочный интервал – 1 год.

## НОРМАТИВНЫЕ И ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

ГОСТ 8.400 "ГСИ. Мерники металлические образцовые. Методика поверки". ГОСТ Р 8.596 "ГСИ. Метрологическое обеспечение измерительных систем. Основные положения".

ГОСТ 29329 "Весы для статического взвешивания. Общие технические требования".

Локальная поверочная схема для средств измерений объемного расхода жидкости.

Техническая документация на ЭРУЖК.

## **ЗАКЛЮЧЕНИЕ**

Тип рабочего эталона объемного расхода жидкого кислорода ЭРУЖК утвержден с техническими и метрологическими характеристиками, приведенными в настоящем описании типа, и метрологически обеспечен в эксплуатации

Изготовитель: ФКП "НИЦ РКП", Россия.

Московская обл., Сергиево-Посадский район, г. Пересвет, ул. Бабушкина, д.9.

Тел.: 8-(495) 786-2270, (496) 546-3321 Факс: 8-(496) 546-7698, (495) 221-6282(83),

E-mail: mail@nic-rkp.ru

Генеральный директор (

Г.Г. Сайдов