ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии и мощности ООО «Барнаульский Водоканал», г. Барнаул

Внесена в Государственный реестр средств измерений. Регистрационный № 45333-10

Изготовлена по проектной документации РЭС.425210.063 ООО «Регион Энерго Сервис», г. Москва, зав. №1.

НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии и мощности ООО «Барнаульский Водоканал», г. Барнаул (далее АИИС) предназначена для измерения активной и реактивной электрической энергии, средней активной и реактивной и реактивной электрической мощности, измерения времени в координированной шкале времени.

Область применения – коммерческий учет электрической энергии, потребляемой ООО «Барнаульский Водоканал».

ОПИСАНИЕ

АИИС КУЭ представляет собой многофункциональную, многоуровневую систему с централизованным управлением и распределенной функцией измерений.

АИИС КУЭ выполняет следующие функции:

- измерение 30-минутных приращений активной и реактивной электроэнергии:
- периодический и по запросу автоматический сбор привязанных к единому календарному времени результатов измерений приращений электроэнергии с заданной дискретностью учета (30 мин);
- хранение результатов измерений в специализированной базе данных, отвечающей требованию повышенной защищенности от потери информации (резервирование баз данных) и от несанкционированного доступа;
- передача в организации—участники оптового рынка электроэнергии результатов измерений;
- предоставление по запросу контрольного доступа к результатам измерений, данных о состоянии объектов и средств измерений со стороны сервера организаций—участников оптового рынка электроэнергии;

- обеспечение защиты оборудования, программного обеспечения и данных от несанкционированного доступа на физическом и программном уровне (установка паролей и т.п.);
- диагностика и мониторинг функционирования технических и программных средств АИИС КУЭ;
- конфигурирование и настройка параметров АИИС КУЭ;
- измерение времени.

АИИС имеет двухуровневую структуру:

- 1-й уровень информационно-измерительные комплексы точек измерений (ИИК ТИ);
- 2-й уровень информационно-вычислительный комплекс (ИВК) с функцией сбора информации от ИИК ТИ.

ИИК ТИ включают в себя:

- трансформаторы тока (ТТ);
- трансформаторами напряжения (ТН);
- счётчики электроэнергии МТ (Г.р. №32930-08, модификация МТ831-Т1A32R46S43-E12-V22-M3KOZ4) и СЭТ-4ТМ.03 (Госреестр СИ № 27524-04, модификация СЭТ-4ТМ.03.01);
- вторичные измерительные цепи ТТ и ТН.

ТТ и ТН, входящие в состав ИИК ТИ, выполняют функции масштабного преобразования тока и напряжения для каждого присоединения, в которых они используются.

Принцип действия счетчиков МТ основан на преобразовании входных сигналов тока и напряжения с использованием трех трансформаторов тока с линейными характеристиками и трех высокоточных делителей напряжения со схемами защиты от бросков напряжения и высокочастотных помех. Линейный режим работы трансформаторов тока обеспечивается электронной схемой компенсации гистерезиса.

Сигналы от трансформаторов тока и делителей напряжения поступают на многоканальный 16-разрядный аналогово—цифровой преобразователь (АЦП) с фильтрами для защиты от наложения сигналов, обеспечивающий период преобразования 250 мкс. Результаты преобразования передаются по шине SPI в цифровой сигнальный процессор (ЦСП). ЦСП вычисляет соответствующие значения энергии, мощности, параметров качества электрической энергии и передает их по шине SPI в устройство управления тарифами, а также управляет работой светодиодных индикаторов.

В счетчиках типа СЭТ-4ТМ.03 осуществляется вычисление активной мощности путем интегрирования на временном интервале 20 мс мгновенных значений электрической энергии; полной мощности путем перемножения среднеквадратичных значений тока и фазного напряжения и реактивной мощности из измеренных значений активной и полной мощности. Вычисленные значения мощности преобразуются в частоту следования импульсов телеметрии, число которых подсчитывается на интервале времени 30 минут и сохраняется во внутренних регистрах счетчика.

Измерения выполняются счётчиками автоматически, просмотр результатов измерений на дисплее возможен как в режиме автоматической прокрутки, так и в ручном режиме. Счетчики электрической энергии по истечении каждого получасового интервала осуществляют привязку результатов измерения к времени в шкале UTC(SU) с учетом поясного времени.

ИВК осуществляет сбор, первичную обработку и хранение результатов измерений и служебной информации ИИК.

ИВК АИИС построен на базе программно-технического комплекса (ПТК) «ЭКОМ» (Госреестр СИ № 19542-05), в качестве аппаратной части использован сервер DEPO Storm 1250Q1 (сервер АИИС) и УСПД «ЭКОМ-3000» (Госреестр СИ № 17049-09), а в качестве

программного обеспечения - пакет программ «Энергосфера» из состава ПТК «ЭКОМ». В состав ИВК входят также два автоматизированных рабочих места.

ИВК выполняет функции устройства сбора и передачи данных, управляет работой ИИК ТИ, ведет календарь и шкалу времени. УСПД «ЭКОМ-3000» автоматически выполняет синхронизацию шкалы времени своих часов с координированной шкалой времени посредством приема и обработки сигналов GPS.

Сервер сбора данных ПТК «ЭКОМ» принимает измерительную информацию от УСПД и производит передачу полученной информации в ОАО «АТС», ОАО «Алтайэнергосбыт», филиал ОАО «СО ЕЭС» Алтайское РДУ, филиал ОАО «МРСК Сибири» - «Алтайэнерго», ОАО «Барнаульская горэлектросеть».

Передача шкалы времени UTC(SU) часам счетчиков электрической энергии, которые используются в ИК №№1÷14, 29, 30 (счетчики типа СЭТ-4ТМ.03) происходит по окончании суток принудительно во время сеанса связи со счетчиком. Передача шкалы времени UTC(SU) часам счетчиков электрической энергии, которые используются в ИК №№15÷28 (счетчики типа МТ) происходит во время сеанса опроса счетчиков при условии, что поправка счетчика относительно шкалы часов УСПД превышает ±1 с.

Информационные каналы связи внутри АИИС построены посредством:

- шины интерфейса RS-485 для соединения счетчиков в пределах подстанции и подключения к каналообразующему оборудованию для дальнейшей передачи данных в УСПЛ;
- сети связи GSM в качестве основного канала связи передачи данных от ИИК измерительных каналов №№1÷30 в ИВК через встроенный в счетчик GSM-модем (ТИ №№15÷28) и через сотовый модем Siemens TC-35i (ТИ №№1÷14, 28, 29);
- сети связи GPRS в качестве резервного канала связи передачи данных от ИИК измерительных каналов №№1÷30 в ИВК через PGC-02;
- телефонной сети общего пользования (ТФСОП) для прямого доступа к УСПД со стороны внешних систем, в том числе OAO «АТС» через модем Zyxel U-336S.
- ЛВС IEEE 802.3 для связи между блоками ИВК и подключения к глобальной сети Internet.

Информационные каналы для связи АИИС с внешними системами построены посредством:

- глобальной информационной сети с присоединением через интерфейс IEEE 802.3 для передачи данных внешним системам, в т. ч. ОАО «АТС» по основному каналу связи;
- сети связи GPRS качестве резервного канала связи передачи данных от сервера ИВК во внешние системы через модем Siemens ES75.

Результаты измерений автоматически передаются по протоколу SMTP (спецификация RFC 821) в формате XML 1.0 по программно-задаваемым адресам, в т.ч. в ОАО «АТС» и филиал ОАО «СО-ЦДУ ЕЭС». Результаты измерений защищены электронной цифровой подписью.

Перечень ИК и состав ИИК ТИ приведен в таблице 1; состав ИВК АИИС приведен в таблице 2; перечень программных средств ИВК приведен в таблице 3.

успд,	тип, зав. акт. №		1,0	1,0	1,0	1,0	1,0	0, 68228	0; 001 •	1,0 38B. M	0; '40-6	0,1 0,1	0, ω.q.	1,000 T,000, T	0, 0, 006-M	ЭКО) 10) ,	1,0		1,0	1,0
	Кл. т.		0,5s	0,5s	0,5s	0,5s	0,5s	0,5s	0,5s	0,5s	0,5s	0,5s	0,5s	0,5s	0,5s	0,5s	0,5s	0,5s		0,5s	0,5s 0,5s
гии	3ab. №	0109058040	0109058180	0109058205	0110053115	0109050077	0110053081	0109058187	0110050102	0110050182	0109058122	0101070374	0109055129	0109050064	0109058159	35633979	35633994	35633969		35633989	35633989 35633966
Счетчики электрической энергии	Тип, модель	C9T-4TM.03.01	C9T-4TM.03.01	C3T-4TM.03.01	C3T-4TM.03.01	C3T-4TM.03.01	C3T-4TM.03.01	C3T-4TM.03.01	C3T-4TM.03.01	C3T-4TM.03.01	C3T-4TM.03.01	C3T-4TM.03.01	C3T-4TM.03.01	C9T-4TM.03.01	C3T-4TM.03.01	MT831-T1A32R46S43-E12- V22-M3K0Z4	MT831-T1A32R46S43-E12- V22-M3K0Z4	MT831-T1A32R46S43-E12-	t70XICINI-77 A	MT831-T1A32R46S43-E12- V22-M3K0Z4	MT831-T1A32R46S43-E12- V22-M3K0Z4 MT831-T1A32R46S43-E12- V22-M3K0Z4
	Кл. т.	0,5	0,5	0,5	0,5	0,5	0,5	0,5	5,0	0,5	0,5	0,5	5,0	0,5	0,5	0,5	0,5	0,5		0,5	0,5
жения	К-т тр-и	001/0009	6000/100	001/0009	6000/100	001/0009	6000/100	6000/100	6000/100	001/0009	001/0009	000/100	6000/100	6000/100	6000/100	001/0009	6000/100	001/0009		6000/100	6000/100
рматоры напряжения	Зав. № К-т тр-и	1602	1602	1602	1595	1595	1595	1091	1601	1601	1091	1596	1596	1596	1596	1625	10041	2800		0087	
Трансформатор	Тип 3	HAMMT-10	HAMMT-10	HAMMT-10	HAMMT-10	HAMMT-10	HAMMT-10	HAMMT-10	HAMMT-10	HAMMT-10	HAMMT-10	HAMMT-10 1	HAMMT-10	HAMMT-10	HAMMT-10 1	HTMH-6-66	НТМИ-6-66	HAMMT-10 0		HAMMT-10 0	10
<u>. </u>	Кл. т.	0,5	0,5	0,5 I	0,5	0,5	0,5	0,5	0,5 I	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5		0,5 I	
	К-т тр- и	200/5	100/5	300/5	200/5	100/5	300/5	200/5	200/5	200/5	20/2	20/2	200/5	200/5	200/5	200/5	200/5	200/5		\$/009	600/5
ры тока	3ab. Ne	1945	1830	1980	1900	1828	1820	19998	20001	19992	16929	16915 16946	20007	20069	20005	14849	14851	3157 5236		10369	10369 10502 28179 16560
Трансформаторы тока	Тип	TIUI-10c	THJI-10c	TIII-10c	TTLI-10c	TILI-10c	TIUI-10c	TJIK-10 TJIK-10	TJIK-10 TJIK-10	TJIK-10 TJIK-10	TJIK-10 TJIK-10	TJIK-10 TJIK-10	TJIK-10 TJIK-10	TJIK-10	ТЛК-10 ТЛК-10	TOJI-10-IM	TOJI-10-IM TOJI-10-IM	TILII-10У3		THOJI-10 THOJI-10	TTIOJI-10 TTIOJI-10 TTIJI-10
Наименование Трансформаторы	присоединения	ГПП-21, Л-21-8	ГПП-21, Л-21-3	ГПП-21, Л-21-9	ГПП-21, Л-21-15	ГПП-21, Л-21-20	ГПП-21, Л-21-14	ГПП-9, Л-9-9	ГПП-9, Л-9-11	ГПП-9, Л-9-13	ГПП-9, Л-9-10	ГПП-9, Л-9-21	ППІ-9, Л-9-26	ППП-9, Л-9-28	ГПП-9, Л-9-31	ГПП-16, Л-16-11	ППІ-16, Л-16-12	ГПП-19, Л-19-2 ПН-1		ГШІ-19, Л-19-3 ВС-1	
	MK		2 I	8 I	4	S I	9	7 I		6	01	11	12	13 I	41 I	15 I	16 I	17 I		18 I	

BCero JINCTOB 9			ōΝ	.EI	38	Ԡ0	-6t	·0L	58Z Mē1	[.q	I 00	'«(000	E-J	AI C	ЭKC	g»		
pcero 7	1,0		1,0		1,0		1,0		1,0		1,0		1,0			1,0		1,0	
	0,5s		0,5s		0,5s		0,5s		0,58		0,5s		0,5s			0,5s		0,5s	
	35633992		35633984		35633998		35633976		35633990		35633993		35633977			0109050128		0109057130	
	MT831-T1A32R46S43-E12-	V22-M3K0Z4	MT831-T1A32R46S43-E12-	V22-M3K0Z4	MT831-T1A32R46S43-E12-	V22-M3K0Z4	MT831-T1A32R46S43-E12-	V22-M3K0Z4	MT831-T1A32R46S43-E12-	V22-M3K0Z4	MT831-T1A32R46S43-E12-	V22-M3K0Z4	MT831-T1A32R46S43-E12-	V22-M3K0Z4		C9T-4TM.03.01		CЭT-4TM.03.01	
	0,5		0,5		5,0		5,0		0,5	i	0,5		0,5			0,5		0,5	
	6000/100 0,5		6000/100		001/0009		001/0009		001/0009		001/0009		001/0009			5'0 001/00001		10000/100 0,5	
	9010		4119		10320		2715		630		630		0726			1606		1607	
	HAMMT-10		99-9-ИМІН		нтми-6-66		нтми-6		нтми-6		HTMH-6	:	HAMMT-10			HAMMT-10		HAMMT-10	
	200/5 0,5		0,5		0,5		0,5		0,5	0,58	0,5		0,58		0,58	0,5		0,5	
	200/5		400/5	_	400/5		200/5		150/5		200/5		300/5			200/5		200/5	
	4201	4225	28531	43011	57462	57452	5952	24137	9105	793	6507	466	3306	3352	-	02337	02335	02297	02293
	ТПЛ-110	TILII-10	01-I/III	TILIIM-10	TBJIM-10	TBJIM-10	ТПОЛ-10	ТПФМ-10	TILII-10У3	ТПЛ-10-М	TTLJI-10	TILJI-10	TIII-10-M	TIIJI-10-M		TJIM-10	TJIM-10	TJIM-10	TJIM-10
	ГПП-19, Л-19-5 ПН-2 ГПЛ-10		ГПП-1, Л-1-Н-2		ГПП-1, Л-1-Н-1		ГПП-1, Л-1-10		ГПП-1, Л-1-21		ГПП-1, Л-1-23		ГПП-6, Л-6-2			ГПП-8, Л-8-17		ГПП-8, Л-8-28	
	22		23		24		22		56		27		78			59		30	

Таблица 2. Связующие элементы АИИС

Наименование, тип	Назначение	Кол- во, шт.
GSM модем Siemens TC-35i	Связующий компонент для связи ИИК с УСПД по основному каналу связи.	
GPRS модем PGC-02	Связующий компонент для связи ИИК с УСПД по резервному каналу связи.	7
Модем Zyxel U-336S	Связующий компонент для прямого доступа к УСПД «ЭКОМ-3000» со стороны внешних систем.	1

Таблица 3. Перечень программных средств ИВК.

ПО	Общесистемное	Пользовательское	Специализированное
APM	Microsoft Windows XP Professional	Microsoft Office 2003	ПО «Энергосфера» (клиент-ская часть)
Сервер БД	Microsoft Windows Server 2003, Microsoft SQL Server	Нет	ПО «Энергосфера» (серверная часть) «КриптоПро CSP»

Структура АИИС допускает изменение количества измерительных каналов с ИИК ТИ, аналогичными указанным в таблице 1, а также с ИИК ТИ отличными по составу от указанных в таблице 1, но совместимыми с измерительными каналами АИИС по электрическим, информационным и конструктивным параметрам.

ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Количество измерительных каналов.	. 30.
Границы допускаемой относительной погрешности измерительных каналов АИИС при доверительной вероятности P=0,95 при измерении активной и реактивной электрической энергии и активной и реактивной средней мощности в рабочих условиях применения приведены в таблице 4.	
Предельное значение поправки часов счетчиков электрической энергии относительно шкалы времени UTC не более, с	. ± 5.
Переход с летнего на зимнее время	. автоматический.
Период измерений активной и реактивной средней электрической мощности и приращений электрической энергии, минут	. 30.
Период сбора данных со счетчиков электрической энергии	. 30;
Формирование XML-файла для передачи внешним организациям	. автоматическое.
Формирование базы данных с результатами измерений с указанием времени проведения измерений и времени поступления результатов измерений в базу	
данных	
Глубина хранения результатов измерений в базе данных не менее, лет	. 3,5.
Ведение журналов событий ИВК и ИИК ТИ	. автоматическое.
Рабочие условия применения технических средств АИИС:	
температура окружающего воздуха, °Счастота сети, Гц	. от 49,5 до 50,5;
индукция внешнего магнитного поля, мТл	. не оолее 0,05.
Допускаемые значения информативных параметров входного сигнала: ток для ИК №28, % от Іном	
ток для ИК кроме №28, % от Іном	. от 5 до 120;

напряжение, % от Uном	от 90 до 110;
коэффициент мощности, соs ф (при измерении активной электрической энергии и мощности)	0,5 инд1,0-0,5 емк.;
коэффициент реактивной мощности, sin ф (при измерении реактивной электрической энергии и мощности)	0,5 инд1,0-0,5 емк.
Сведения о программном обеспечении АИИС: Наименование Версия программного обеспечения Способ защиты программного обеспечения - система разграничени операционной системы.	v6.3;
Показатели надежности: Средняя наработка на отказ, часов Коэффициент готовности	

Таблица 4. Границы допускаемой относительной погрешности измерений активной (δ_W^A) и реактивной (δ_W^P) энергии ИК АИИС для значений тока 2, 5, 20, $100 \div 120$ % от номинального и значений коэффициента мощности 0,5, 0,8, 0,865 и 1.

<i>I</i> , % от	205.00		2 №1÷14	ИК №№ 1	5÷27, 29, 30	ИК №28		
$I_{\scriptscriptstyle extsf{HOM}}$	cos φ	$\delta_{w}^{A},\pm\%$	δ_W^P ,±%	δ_{W}^{A} ,±%	δ_W^P ,±%	δ_{w}^{A} ,±%	$\delta_W^P,\pm\%$	
2	0,5	_	_	_		4,8	2,5	
2	0,8	_	_	_	_	2,6	4	
2	0,865	_	_	_		2,3	4,9	
2	1	_	_	_		1,7	_	
5	0,5	5,6	3,4	5,4	2,8	3	1,9	
5	0,8	3,2	5,1	2,9	4,5	1,7	2,7	
5	0,865	2,9	6,1	2,6	5,5	1,6	3,2	
5	1	2	_	1,9	_	1,3	_	
20	0,5	3,2	2,2	3	1,9	2,3	1,7	
20	0,8	2	2,9	1,7	2,7	1,4	2,2	
20	0,865	1,9	3,4	1,6	3,2	1,3	2,5	
20	1	1,4	_	1,3	_	1,1	_	
100÷120	0,5	2,5	2	2,3	1,7	2,3	1,7	
100÷120	0,8	1,8	2,4	1,4	2,2	1,4	2,2	
100÷120	0,865	1,7	2,7	1,3	2,5	1,3	2,5	
100÷120	1	1,2	_	1,1	_	1,1	_	

ЗНАК УТВЕРЖДЕНИЯ ТИПА

Знак утверждения типа наносится на титульный лист формуляра РЭС.425210.063 «Система автоматизированная информационно-измерительная коммерческого учета электроэнергии и мощности ООО «Барнаульский Водоканал», г. Барнаул. ФО».

КОМПЛЕКТНОСТЬ

В комплект АИИС входят технические средства и документация, указанные в таблице 5.

Таблица 5

Технические средства ИИК ТИ в соответствии с таблицей 1

Связующие элементы АИИС в соответствии с таблицей 2

Документация

РЭС.425210.063 «Система автоматизированная информационно-измерительная коммерческого учета электроэнергии и мощности ООО «Барнаульский Водоканал», г. Барнаул. Технорабочий проект

РЭС.425210.063. ФО«Система автоматизированная информационно-измерительная коммерческого учета электроэнергии и мощности ООО «Барнаульский Водоканал», г. Барнаул. Формуляр»

РЭС.425210.063 Д1 «Система автоматизированная информационно-измерительная коммерческого учета электроэнергии и мощности ООО «Барнаульский Водоканал», г. Барнаул. Методика поверки»

ПОВЕРКА

Поверка измерительных каналов АИИС проводится в соответствии с документом РЭС.425210.063 Д1 «Система автоматизированная информационно-измерительная коммерческого учета электроэнергии и мощности ООО «Барнаульский Водоканал», г. Барнаул. Методика поверки», утвержденной ГЦИ СИ СНИИМ «21» сентября 2010 г.

Межповерочный интервал - 4 года.

Основное поверочное оборудование: миллитесламетр портативный ТП2-2У-01, мультиметр APPA-109, вольтамперфазометр «Парма ВАФ-А», измеритель комплексных сопротивлений электрических цепей «Вымпел», часы «Электроника-65».

Поверка измерительных компонентов АИИС проводится в соответствии со следующими нормативными документами по поверке:

- измерительные трансформаторы тока по ГОСТ 8.217-2003 «Государственная система обеспечения единства измерений. Трансформаторы тока. Методика поверки»;
- измерительные трансформаторы напряжения по ГОСТ 8.216-88 «Государственная система обеспечения единства измерений. Трансформаторы напряжения. Методика поверки»;
- счетчики электрической энергии MT в соответствии с документом «Счетчики статические трехфазные переменного тока активной и реактивной энергии MT. Методика поверки» (утв. СНИИМ в июне 2008 г.);
- счетчики электрической энергии СЭТ-4ТМ.03 в соответствии с документом ИГЛШ.411152.124 РЭ1;
- УСПД «ЭКОМ-3000» по методике поверки ПБКМ.421459.003 МП, утвержденной Φ ГУП «ВНИИМС»;
- ПТК «ЭКОМ» по методике поверки ПБКМ.421459.004 МП, утвержденной ФГУП «ВНИИМС»;

НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

- 1. ГОСТ Р 8.596-2002.... Метрологическое обеспечение измерительных систем. Основные положения
- 2. ГОСТ Р 52323-05..... Статические счетчики активной энергии классов точности 0,2S и 0,5S
- 3. ГОСТ Р 52425-05..... Статические счетчики реактивной энергии
- 4. ГОСТ 26035-83...... Счетчики электрической энергии переменного тока электронные. Общие технические условия
- 5. ГОСТ 7746-2001..... Трансформаторы тока. Общие технические условия
- 6. ГОСТ 1983-2001..... Трансформаторы напряжения. Общие технические условия

ЗАКЛЮЧЕНИЕ

Тип «Система автоматизированная информационно-измерительная коммерческого учета электроэнергии и мощности ООО «Барнаульский Водоканал», г. Барнаул» утвержден с техническими и метрологическими характеристиками, приведенными в настоящем описании типа, метрологически обеспечен в эксплуатации согласно государственным поверочным схемам.

ИЗГОТОВИТЕЛЬ: ООО «Регион Энерго Сервис», адрес: 119602, г. Москва, ул. Никулинская, дом 5, корпус 1, коттедж 4.

Технический директор ЗАО «РегионЭнергоСервис»

/Ткаченко В.В.