Приложение к свидетельству
ОПИСАНИЕ ТИПА СРЕДСТВ ИЗМЕРЕНИЙ
№ 1093 об утвержини СУДАРСТВЕННО ОТ НЕСТОИ СРЕДСТВ ИЗМЕРЕНИЙ

СОГЛАСОВАНО УИ «ВНИИМС» В.Н.Яншин 2010г.

Расходомеры-счетчики многофазные FloWatch

Внесены в Государственный реестр средств измерений Регистрационный № <u>45533-40</u> Взамен №

Выпускаются по технической документации фирмы «Pietro Fiorentini S.p.A.», Италия.

НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ

Расходомеры-счетчики многофазные Flo Watch предназначены для измерений объемного расхода и объема жидкой и газовой фаз двухфазного газожидкостного потока нефтяных и газовых скважин, а также для измерений объемной доли воды (обводненности) в жидкой фазе потока при технологическом контроле режимов работы скважин на нефтегазодобывающих предприятиях.

ОПИСАНИЕ

Расходомер-счетчики многофазные FloWatch состоит из:

- ▶ измерительного блока, включающего в себя первичный преобразователь расхода, встроенный электронный блок, преобразователи давления (Госреестр №24116-08, № 25931-06), преобразователь температуры (Госреестр № 42426-09);
- компьютера;
- > комплекта искробезопасных барьеров;
- блока питания.

Принцип действия основан на методе переменного перепада давления с использованием трубы Вентури в качестве первичного преобразователя расхода. На первичном преобразователе расхода установлены также преобразователи температуры, давления и, в зависимости от диапазона измерений, один или два преобразователя перепада давления.

Для смесей, в которых основной составляющей является нефть, содержащая воду и газ используется емкостной датчик, причем емкость, зависящая от диэлектрических свойств смеси, измеряется в горловине трубы Вентури. Для смесей, в которых основной составляющей является вода, содержащая нефть и газ используется четырехэлектродный датчик проводимости. Все электроды вмонтированы в трубу Вентури, а сигналы формируются в электронном блоке.

Измерение расходов и объемов газовой и жидкой фаз потока, связанных с режимом течения, соотношением между количеством газа и жидкости, а также объемной доли воды в жидкой фазе потока проводятся на основе измерений параметров потока газожидкостной среды в трубе Вентури и результатов измерений температуры, давления, перепада давления, получаемых с преобразователей. Результаты измерений выводятся в масштабе реального времени на дисплей и записываются в памяти компьютера.

Компьютер обрабатывает все сигналы, приходящие от измерительного блока, и рассчитывает расходы и объемы нефти, воды и газа, а также передает информацию в систему пользователя.

Интерфейс выполнен по стандарту RS422/ RS485. Для соединения с пользовательской системой сбора информации предусмотрены интерфейсы Ethemet/TCP/IP и RS422/ RS485 MODBUS.

По специальному требованию могут предусматриваться другие интерфейсы, например, аналоговые выходы.

Расходомеры-счетчики многокомпонентные FloWatch могут изготавливаться в стационарном и передвижном вариантах.

ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Наименование параметра	Значение параметра								
Диаметр условного прохода, мм (дюйм)	20 (0,8")	50RB* (2")	50 (2")	75RB* (3")	75 (3")	100 (4")	125 (5")	150 (6")	200 (8")
Максимальный расход жидкой фазы при перепаде давления 0,3МПа,м ³ /ч - при минимальном									
содержании газа	11	28	70	120	160	180	430	620	1100
- при максимальном содержании газа	3,8	9,5	24	40	53	90	140	210	360
Минимальный расход жидкой фазы при перепаде давления 0,002МПа, м ³ /ч - при минимальном содержании газа - при максимальном содержании газа	1 0,8	3 2,3	7	12	16	25	40	60	100
Максимальный расход газовой фазы в рабочих условиях при перепаде давления 0,3 МПа, м ³ /ч	29	78	195	300	425	740	1160	1700	2650
Монтажная длина, не более,	715			825		940	1067	1169	1346
Масса, не более, кг	1	10	140	1:	50	165	185	225	320

^{* -} горловина трубы Вентури уменьшена до 24 мм.

Диапазон объемного содержания газа, %	0 - 25	25-60	60-70	70-85	85-92	92-97	
Относительный объем газовой фазы, %	097						
Относительный объем воды в жидкой фазе, %	0100						
Соленость воды, г/дм ³	0200						
Температура измеряемой среды, °С	0+160						

0,1200		
51		
-40+70		
EEx ia IIB T4		
95242		
24		
500x500x600		
210x400x500		
800x800x2100		

ЗНАК УТВЕРЖДЕНИЯ ТИПА

Знак утверждения типа наносится на шильдик прибора и на титульный лист руководства по эксплуатации.

КОМПЛЕКТНОСТЬ

Наименование	Кол-во	Примечание
1. Измерительный блок в составе:	1	В соответствии с
-		заказом
- первичный преобразователь расхода	1	
- электронный блок	1	
- преобразователь давления	2	
- преобразователь температуры	1	
2. Компьютер	1	
3. Искробезопасные барьеры	1 компл.	
4. Блок питания	1	
5. Программное обеспечение FloWatch	1	
6. Паспорт	1	
7. Руководство по эксплуатации	1	·
8. Методика поверки	1	

ПОВЕРКА

Поверка расходомеров проводится в соответствии с методикой «ГСИ. Расходомеры многофазные FloWatch. Методика поверки», утвержденной «ВНИИМС» в 2010г.

Основное поверочное оборудование:

- поверочная расходомерная установка, относительная погрешность измерений объемного расхода газовой фазы $\pm 0,5\%$, относительная погрешность измерения объемного расхода жидкой фазы $\pm 0,5\%$;
 - термометр по ГОСТ 28498 с ценой деления 0,1 °C;
 - манометр грузопоршневой МП-60 2-го разряда;
 - -манометр образцовый МО, класс точности 1,0.

Межповерочный интервал - 1 год.

НОРМАТИВНЫЕ И ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

ГОСТ Р 52931 «Приборы контроля и регулирования технологических процессов. Общие технические условия».

ГОСТ 8.563.1 «ГСИ. Измерение расхода и количества жидкостей и газов методом переменного перепада давления. Диафрагмы, сопла ИСА 1932 и трубы Вентури, установленные в заполненных трубопроводах круглого сечения. Технические условия».

ГОСТ 21552 «Средства вычислительной техники. Общие технические требования, правила приемки, методы испытаний, маркировка, упаковка, транспортирование, хранение.» Техническая документация фирмы-изготовителя.

ЗАКЛЮЧЕНИЕ

Тип расходомеры-счетчики многофазные FloWatch утвержден с техническими и метрологическими характеристиками, приведенными в настоящем описании типа, метрологически обеспечен при выпуске из производства и в эксплуатации.

Разрешение на применение № PPC 00-28263 от 18.02.2008г. Срок действия до 18.02.2011г.

ИЗГОТОВИТЕЛЬ: фирма «Pietro Fiorentini S.p.A.», Италия.

1-36057 Arcugnano (YI) Italy - Via E. Fermi, 8/10,

Phone:0444-968-511 Fax: 0444-960-468

Представительство в Москве: 103047, Трубная ул., д.12

Тел./Факс: (495) 775-45-31

siorenti;

Исполнительный директор фирмы «Pietro Fiorentini S.p.A.», Италия

Директор Московского представительства фирмы «Pietro Fiorentini S.p.A.», Италия

Нарди Паоло

Владимир Бекиш