# ОПИСАНИЕ ТИПА ДЛЯ ГОСУДАРСТВЕННОГО РЕЕСТРА СРЕДСТВ ИЗМЕРЕНИЙ

Приложение к свидетельству
№ <u>СИВЫ</u> об утверждении типа
средств измерений



## Датчики горючих и токсичных газов стационарные APEX и Satellite XT

Внесены в Государственный реестр средств измерений Регистрационный N 46107-10 Взамен N \_\_\_\_\_\_

Выпускаются по технической документации фирмы «Honeywell Analytics Ltd.», Великобритания.

#### НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ

Датчики горючих и токсичных газов стационарные APEX и Satellite XT предназначены для непрерывного автоматического измерения объемной доли кислорода, токсичных газов при контроле предельно допустимых концентраций (ПДК) воздуха рабочей зоны в соответствии с ГОСТ 12.1.005, значительного превышения ПДК при аварийных ситуациях, а также довзрывоопасных концентраций горючих газов метана, пропана, бутана, пентана, гексана, этилена и других, во взрывоопасных зонах.

Область применения – контроль загазованности воздуха рабочей зоны в газовой, химической, нефтехимической, пищевой и других отраслях промышленности.

#### ОПИСАНИЕ

Датчики горючих и токсичных газов APEX и Satellite XT представляют собой автоматические стационарные приборы непрерывного действия.

Принцип действия датчиков кислорода и токсичных газов основан на применении химически активных измерительных элементов (электрохимических сенсоров). Принцип действия датчиков горючих газов — термокаталитический.

Каждый датчик состоит из измерительного преобразователя и датчика.

Измерительный преобразователь датчика включает встроенный микропроцессор, в а также интерфейс пользователя, позволяющий отображать результаты о содержании определяемых газов на жидкокристаллическом дисплее и передавать накопленную информацию на персональный компьютер.

На лицевой панели датчиков расположены локальный жидкокристаллический дисплей для отображения измеряемой концентрации, клавиатура для управления опциями датчика. Преобразователь содержит релейные выходы (для датчиков Satellite XT - опция), цифровой выход и унифицированный аналоговый выход — 4-20 мА.

Датчики Satellite XT модификаций 4-20 мА и 4-20 мА/R используют электрохимические датчики для контроля наличия агрессивных и токсичных газов по уровням ПДК (ПДК - предельно допустимая концентрация).

Модели Satellite XT 4-20 mA/C и 4-20 mA/C/R предназначены для контроля наличия горючих газов и паров.

Модели Satellite XT 4-20 mA/R и 4-20 mA/C/R снабжены тремя однополюсными однопозиционными реле для включения внешних устройств сигнализации.

Питание датчиков осуществляется от источника постоянного тока.

Датчики APEX выполнены во взрывобезопасном исполнении с маркировкой взрывозащиты 1 ExdiaIICT4(T5)X и могут эксплуатироваться во взрывоопасных зонах.

#### Основные технические характеристики

1. Основные метрологические характеристики электрохимических датчиков APEX приведены в таблице 1. Основные метрологические характеристики электрохимических датчиков Satellite XT приведены в таблице 2. Основные метрологические характеристики термокаталитических датчиков APEX и Satellite XT приведены в таблице 3.

Таблица1. Основные метрологические характеристики электрохимических датчиков АРЕХ

|                                 |                       |                      | Диапазон<br>показаний              | Диапазон<br>измерений,       | Пределы до погрешност |                   | Время<br>установления          |
|---------------------------------|-----------------------|----------------------|------------------------------------|------------------------------|-----------------------|-------------------|--------------------------------|
| Опред                           | еляемый компо         | рнент                | (номинальный)<br>млн <sup>-1</sup> | млн <sup>-1</sup>            | приведен<br>ной       | относительн<br>ой | показаний Т0,9,<br>с, не более |
| AsH3                            | Arsine                | Арсин                | 0 – 0,20                           | 0 - 0,05<br>0,05-0,20        | ± 20<br>-             | -<br>± 20         | 30                             |
| B2H6                            | Diborane              | Диборан              | 0 – 0,40                           | 0 <b>–</b> 0,10<br>0,10-0,40 | ± 20<br>-             | -<br>± 20         | 30                             |
| NH3                             | Ammonia<br>(50 ppm)   | Аммиак               | 0 - 50                             | 0 - 30<br>30 - 50            | ± 20<br>-             | -<br>± 20         | 90                             |
| NH3                             | Ammonia<br>(100 ppm)  | Аммиак               | 0 - 100                            | 0 - 30<br>30 - 100           | ± 20<br>-             | -<br>± 20         | 90                             |
| NH3                             | Ammonia<br>(400 ppm)  | Аммиак               | 0 - 400                            | 0 - 30<br>30 - 400           | ± 20<br>-             | -<br>± 20         | 90                             |
| NH3                             | Ammonia<br>(1000 ppm) | Аммиак               | 0 - 1000                           | 0 - 300<br>300 -1000         | ± 20<br>-             | -<br>± 20         | 90                             |
| BF3                             | Boron<br>Trifluoride  | Трифторид<br>бора    | 0 – 4,0                            | 0 – 1,0<br>1,0 – 4,0         | ± 20<br>-             | -<br>± 20         | 240                            |
| Br2                             | Bromine               | Бром                 | 0 -0,40                            | 0 <b>–</b> 0,10<br>0,10-0,40 | ± 20<br>-             | -<br>± 20         | 240                            |
| СО                              | Carbon<br>Monoxide    | Оксид<br>углерода    | 0-100                              | 0-20<br>20-100               | ± 15                  | -<br>± 15         | 30                             |
| СО                              | Carbon<br>Monoxide    | Оксид<br>углерода    | 0-200                              | 0-20<br>20-200               | ± 15                  | -<br>± 15         | 30                             |
| СО                              | Carbon<br>Monoxide    | Оксид<br>углерода    | 0-500                              | 0-20<br>20-500               | ± 15                  | -<br>± 15         | 30                             |
| CI2                             | Chlorine              | Хлор                 | 0 – 2,0                            | 0 – 1,0<br>1,0-2,0           | ± 20<br>-             | -<br>± 20         | 90                             |
| CI2                             | Chlorine              | Хлор                 | 0 – 5,0                            | 0 - 1,0<br>1,0-5,0           | ± 20<br>-             | -<br>± 20         | 90                             |
| CI2                             | Chlorine              | Хлор                 | 0 – 15                             | 0 – 5<br>5-15                | ± 20<br>-             | -<br>± 20         | 90                             |
| C <sub>2</sub> H <sub>4</sub> O | Ethylene oxide        | Оксид этилена        | 0-4,0                              | 0 – 1,0<br>1,0-4,0           | ± 20<br>-             | -<br>± 20         | 180                            |
| F2                              | Fluorine              | Фтор                 | 0 - 4,0                            | 0 – 1,0<br>1,0-4,0           | ± 20                  | -<br>± 20         | 180                            |
| H2                              | Hydrogen (1<br>%)     | Водород              | 0- 1000                            | 0- 1000                      | ± 10                  | -                 | 70                             |
| HBr                             | Hydrogen<br>Bromide   | Бромистый<br>водород | 0 – 12,0                           | 0 – 1,0<br>1,0 – 12,0        | ± 20<br>-             | -<br>± 20         | 240                            |
| HCI                             | Hydrogen<br>Chloride  | Хлористый<br>водород | 0 – 20                             | 0 – 10<br>10 – 20            | ± 20<br>-             | -<br>± 20         | 180                            |

| HCN                   | Hydrogen<br>Cyanide         | Цианистый<br>водород             | 0 – 20              | 0 – 10<br>10 – 20           | ± 20<br>- | -<br>± 20 | 30  |
|-----------------------|-----------------------------|----------------------------------|---------------------|-----------------------------|-----------|-----------|-----|
| HF                    | Hydrogen<br>Fluoride        | Фтористый<br>водород             | 0 – 12,0            | 0 - 1,0<br>1,0 - 12,0       | ± 20      | -<br>± 20 | 170 |
| H2S                   | Hydrogen<br>Sulfide         | Сероводоро<br>д                  | 0 - 20              | 0 – 10<br>10 - 20           | ± 20      | -<br>± 20 | 30  |
| H2S                   | Hydrogen<br>Sulfide         | Сероводоро<br>д                  | 0 - 50              | 0 – 10<br>10 - 50           | ± 20<br>- | -<br>± 20 | 30  |
| H2S                   | Hydrogen<br>Sulfide         | Сероводоро<br>д                  | 0 - 100             | 0 – 10<br>10 - 100          | ± 20      | -<br>± 20 | 30  |
| NO                    | Nitric Oxide                | Оксид азота                      | 0 - 100             | 0 – 10<br>10 –100           | ± 20      | -<br>± 20 | 20  |
| NO2                   | Nitrogen<br>Dioxide         | Диоксид<br>азота                 | 0 – 12,0            | 0 - 1,0<br>1,0 -12,0        | ± 20<br>- | -<br>± 20 | 40  |
| O2                    | Oxygen                      | Кислород                         | 0 – 21,0<br>% (об.) | 0 – 5,0<br>5,0–21,0 % (об.) | ± 5       | -<br>±5   | 10  |
| О3                    | Ozone                       | Озон                             | 0 – 0,40            | 0 - 0,10<br>0,10-0,40       | ± 20      | -<br>± 20 | 60  |
| COCI2                 | Phosgene                    | Фосген                           | 0 – 0,40            | 0 - 0,10<br>0,10-0,40       | ± 20      | -<br>± 20 | 30  |
| PH3                   | Phosphine<br>(2 El.)        | Фосфин                           | 0 – 1,20            | 0 - 0,10<br>0,10-1,20       | ± 20      | -<br>± 20 | 30  |
| C₃H <sub>6</sub> O    | Propy<br>lene<br>oxide      | Оксид<br>пропилена               | 0 – 8,0             | 0 – 1,0<br>1,0-4            | ± 20<br>- | -<br>± 20 | 180 |
| SiH4                  | Silane                      | Силан                            | 0 – 20              | 0 – 20                      | ± 20      | -         | 40  |
| S02                   | Sulfur<br>Dioxide           | Диоксид<br>серы                  | 0,8-0               | 0 - 5,0<br>5,0 -8,0         | ± 20      | -<br>± 20 | 35  |
| S02                   | Sulfur<br>Dioxide           | Диоксид<br>серы                  | 0 – 15,0            | 0 - 5,0<br>5,0 -15,0        | ± 20<br>- | -<br>± 20 | 35  |
| SF6<br>(элег<br>аз)   | Sulfur<br>Hexafluoride      | Гексафторид<br>серы              | 0 – 4000            | 0–1000<br>1000-4000         | ± 15<br>- | -<br>± 15 | 240 |
| TEOS                  | Tetraethyl<br>Orthosilicate | Тетраэтилорт<br>осиликат         | 0 – 40              | 0 – 5<br>5-20               | ± 20<br>- | -<br>± 20 | 240 |
| C₄H <sub>8</sub><br>S |                             | Тиофен<br>(тетрагидрот<br>иофен) | 0 - 40              | 0 – 10<br>10- 40            | ± 20<br>- | -<br>± 20 | 240 |

Таблица2. Основные метрологические характеристики электрохимических датчиков Satellite XT (без взрывозащиты)

|        |                    |                    | Диапазон<br>показаний                   | Диапазон<br>измерений, | Пределы до погрешности | •                 | Время<br>установления          |
|--------|--------------------|--------------------|-----------------------------------------|------------------------|------------------------|-------------------|--------------------------------|
| Опреде | ляемый компонент   |                    | (номинальн<br>ый),<br>млн <sup>-1</sup> | млн <sup>-1</sup>      | приведен<br>ной        | относительн<br>ой | показаний Т0,9,<br>с, не более |
| 3MS    | Trimethylsilane    | Триметил-<br>силан | 0 - 20                                  | 0 - 20                 | ± 20                   | -                 | 240                            |
| AsH3   | Arsine (3 El.)     | Арсин              | 0 – 1,00                                | 0 - 0,10<br>0,10-1,00  | ± 20                   | -<br>± 20         | 30                             |
| AsH3   | Arsine (2 El.)     | Арсин              | - « -                                   | - « -                  | - « -                  | - « -             | 30                             |
| AsH3   | Arsine (2 El.)     | Арсин              | 0- 10                                   | 0 - 10                 | ± 20                   | -                 | 30                             |
| B2H6   | Diborane           | Диборан            | 0 – 1,00                                | 0 - 0,10<br>0,10-1,00  | ± 20                   | -<br>± 20         | 30                             |
| Br2    | Bromine            | Бром               | 0 - 5,00                                | 0 - 0,10<br>0,10-5,00  | ± 20                   | -<br>± 20         | 240                            |
| CH3F   | Methyl<br>Fluoride | Метил-<br>фторид   | 0 – 0,500<br>% (об.)                    | 0-0,500<br>% (об.)     | ± 15                   | -                 | 240                            |
| CI2    | Chlorine           | Хлор               | 0 - 5,00                                | 0 - 0,30<br>0,30-5,00  | ± 20<br>-              | -<br>± 20         | 30                             |
| СО     | Carbon<br>Monoxide | Оксид<br>углерода  | 0-500                                   | 0-20<br>20-500         | ± 15<br>-              | ± 15              | 40                             |

| COCI2   | Phosgene                         | Фосген                   | 0 – 1,00  | 0 - 0,10                          | ± 20 | -            | 30  |
|---------|----------------------------------|--------------------------|-----------|-----------------------------------|------|--------------|-----|
|         |                                  |                          |           | 0,10-1,00                         | -    | ± 20         |     |
| DCE 1,2 | Di-chloro-<br>ethylene 1,2       | 1,2 дихлор-<br>этилен    | 0 - 1000  | 0 - 15<br>15 - 1000               | ± 20 | -<br>± 20    | 240 |
| F2      | Fluorine                         | Фтор                     | 0 – 5,00  | 0 - 0,10<br>0,10-5,00             | ± 20 | -<br>± 20    | 180 |
| F2      | Fluorine                         | Фтор                     | 0 - 30    | 0 - 30                            | ± 15 | -            | 180 |
| GeH4    | Germane                          | Гидрид<br>германия       | 0 – 5,0   | 0 - 2,0<br>2,0 - 5,0              | ± 20 | -<br>± 20    | 240 |
| H2      | Hydrogen (1 %)                   | Водород                  | 0- 1,000  | 0- 1,000<br>% (об.)               | ± 10 | -            | 70  |
| H2S     | Hydrogen<br>Sulfide              | Сероводоро               | 0 - 100   | 0 - 10<br>10 - 100                | ± 20 | ± 20         | 30  |
| H2S     | Hydrogen<br>Sulfide (org.)       | Сероводоро               | 0 – 30,0  | 0 - 2,0<br>2,0 - 30,0             | ± 20 | -<br>± 20    | 30  |
| HBr     | Hydrogen<br>Bromide              | Бромистый<br>водород     | 0 – 30,0  | 0 - 1,0<br>1,0 - 30,0             | ± 20 | -<br>± 20    | 240 |
| HCI     | Hydrogen<br>Chloride             | Хлористый<br>водород     | 0 – 30,0  | 0 - 3,0<br>3,0 - 30,0             | ± 20 | -<br>± 20    | 180 |
| HCI     | Hydrogen<br>Chloride<br>(tropic) | - « -                    | 0 – 30,0  | 0 - 3,0<br>3,0 - 30,0             | ± 20 | ± 20<br>± 20 | 180 |
| HCN     | Hydrogen<br>Cyanide              | Цианистый<br>водород     | 0 – 30,0  | 0 - 1,0<br>1,0 - 10,0             | ± 20 | -<br>± 20    | 30  |
| HF      | Hydrogen<br>Fluoride             | Фтористый<br>водород     | 0 – 10,0  | 0 - 1,0<br>1,0 - 10,0             | ± 20 | -<br>± 20    | 170 |
| HMDS    | Hexamethyldisi lazane            | Гексаметил<br>дисилазан  | 0 - 500   | 0 - 20<br>20 - 500                | ± 20 | -            | 240 |
| N2H4    | Hydrazine                        | Гидразин                 | 0 – 1,00  | 0 - 0,1<br>0,1-1,00               | ± 20 | -<br>± 20    | 120 |
| NF3     | Nitrogen<br>Trifluoride          | Трифторид<br>азота       | 0 – 50,0  | 0 - 5,0<br>5,0-50,0               | ± 20 | ± 20         | 170 |
| NH3     | Ammonia (100 ppm)                | Аммиак                   | 0 - 100   | 0 – 30<br>30 – 100                | ± 20 | -<br>± 20    | 60  |
| NH3     | Ammonia<br>(1000 ppm)            | Аммиак                   | 0 - 1000  | 0 – 300<br>300 –1000              | ± 20 | -<br>± 20    | 120 |
| NO      | Nitric Oxide                     | Оксид азота              | 0 - 250   | 0 - 20<br>20 -250                 | ± 20 | -<br>± 20    | 20  |
| NO2     | Nitrogen<br>Dioxide              | Диоксид<br>азота         | 0 – 25,0  | 0 - 1,0<br>1,0 -25,0              | ± 20 | -<br>± 20    | 35  |
| O2      | Oxygen                           | Кислород                 | 0 – 25,0  | 0 - 5,0<br>5,0-25,0<br>% (oб.)    | ± 5  | -<br>±5      | 15  |
| O3      | Ozone                            | Озон                     | 0 – 1,00  | 0 - 0,1<br>0,1-1,00               | ± 20 | ± 20         | 60  |
| О3      | Ozone                            | Озон                     | 0 – 1,00  | 0 - 0,1<br>0,1-1,00               | ± 20 | -<br>± 20    | 60  |
| РН3     | Phosphine (3<br>El.)             | Фосфин                   | 0 – 1,00  | 0 - 0,1<br>0,1-1,00               | ± 20 | ± 20         | 30  |
| PH3     | Phosphine (2<br>El.)             | Фосфин                   | 0 – 1,00  | 0 - 0,1<br>0,1-1,00               | ± 20 | -<br>± 20    | 30  |
| SF6     | Sulfur<br>Hexafluoride           | Гексафтори<br>д серы     | 0 – 0,500 | 0-0,100<br>0,100-0,200<br>% (oб.) | ± 15 | ± 15         | 240 |
| SiH4    | Silane                           | Силан                    | 0 – 50,0  | 0 - 50,0                          | ± 20 | -            | 40  |
| S02     | Sulfur Dioxide                   | Диоксид<br>серы          | 0 – 25,0  | 0 - 5,0<br>5,0 -25,0              | ± 20 | -<br>± 20    | 35  |
| TEOS    | Tetraethyl<br>Orthosilicate      | Тетраэтило<br>ртосиликат | 0 – 100   | 0 - 5<br>5-20                     | ± 20 | -<br>± 20    | 240 |

Таблица3. Основные метрологические характеристики термокаталитических датчиков APEX и Satellite XT для контроля горючих газов

| и па | паров. |           |                      |                                                 |              |                    |                |               |
|------|--------|-----------|----------------------|-------------------------------------------------|--------------|--------------------|----------------|---------------|
|      |        |           |                      |                                                 | Диапазон     |                    | HKIIP, %       | Пределы       |
|      |        |           |                      |                                                 | показаний, % | 1                  | (об.д.) в      | допускаемои   |
| :    |        |           | ,                    |                                                 | HKIIP        | Диапазон измерении | соответствии с | ОСНОВНОЙ      |
|      | APFX   | Satellite | Наименование         | Наименование (пус.)                             | (TET)        | объемной доли      | LOCT P         | абсолютной    |
| 5    | í      | ×         | (англ.)              | (-)(-)(-)(-)(-)(-)(-)(-)(-)(-)(-)(-)(-)(        |              | определяемого      | 51220 10 00    | погрешности,  |
|      |        |           |                      |                                                 |              | компонента, %      | 77-71.00010    | объемная доля |
|      |        |           |                      |                                                 |              |                    |                | определяемого |
|      |        |           |                      |                                                 |              |                    |                | компонента, % |
| -    |        | +         | acetaldehyde         | ацетальдегид                                    | от 0 до 100  | от 0 до 2          | 4,0            | 0,20          |
| 2    | •      | +         | acetic acid          | уксусная кислота                                | от 0 до 100  | от 0 до 2          | 4,0            | 0,20          |
| 3    | -      | +         | acetic anhydride     | уксусный ангидрид                               | от 0 до 100  | от 0 до 1          | 2,0            | 0,10          |
| 4    | +      | +         | acetone              | ацетон                                          | от 0 до 100  | от 0 до 1,25       | 2.5            | 0,13          |
| 2    |        | +         | acetylene            | ацетилен                                        | от 0 до 100  | от 0 до 1,15       | 2,3            | 0,12          |
| 9    | +      | +         | ammonia              | аммиак                                          | от 0 до 100  | от 0 до 7,5        | 15,0           | 0,75          |
| 7    | -      | +         | aniline              | анилин                                          | от 0 до 100  | от 0 до 0,6        | 1,2            | 90'0          |
| 8    | +      | +         | benzene              | бензол                                          | от 0 до 100  | от 0 до 0,6        | 1,2            | 90'0          |
| 6    |        | +         | 1,3-butadiene        | 1,3-бутадиен                                    | от 0 до 100  | от 0 до 0,7        | 1,4            | 20'0          |
| 10   | 1      | +         | iso-butane           | изобутан                                        | от 0 до 100  | от 0 до 0,65       | 1,3            | 0,07          |
| 11   | +      | +         | n-butane             | н-бутан                                         | от 0 до 100  | от 0 до 0,7        | 1,4            | 20'0          |
| 12   | 1      | +         | 1-butene             | 1-бутен (С4Н8)                                  | от 0 до 100  | от 0 до 0,8        | 1,6            | 80'0          |
| 13   | •      | +         | cis-butene-2         | цис-бутен-2 (С4Н8)                              | от 0 до 100  | от 0 до 0,85       | 1,7            | 60'0          |
| 14   | •      | +         | trans-butene-2       | транс-бутен-2 (С4Н8)                            | от 0 до 100  | от 0 до 0,85       | 1,7            | 60'0          |
| 15   | -      | +         | iso-butyl alcohol    | изобутиловый спирт (2-бутанол)                  | от 0 до 100  | от 0 до 0,95       | 1,9            | 0,10          |
| 16   | +      | +         | n-butyl alcohol      |                                                 | от 0 до 100  | от 0 до 0,85       | 1,7            | 60'0          |
| 17   | •      | +         | tert-butyl alcohol   | терт-бутиловый спирт (2-метил-2-                | от 0 до 100  | от 0 до 0,9        | 1,8            | 60'0          |
|      |        |           |                      | пропанол)                                       |              |                    |                |               |
| 18   | ,      | +         | iso-butylene         | изобутилен (2-метил-1-пропен)                   | от 0 до 100  | от 0 до 0,8        | 1,6            | 0,08          |
| 19   | •      | +         | n-butyric acid       | С4Н8О2, масляная кислота (1-бутен-1,4-<br>диол) | от 0 до 100  | от 0 до 1,1        | 2,2            | 0,11          |
| 20   |        | +         | carbon monoxide      | оксид углерода                                  | от 0 до 100  | от 0 до 5,45       | 10,9           | 0,55          |
| 21   | 1      | +         | carbonyl sulfide     | карбонил сульфид (углерод<br>сульфидоксид)      | от 0 до 100  | от 0 до 3,25       | 6,5            | 0,33          |
| 22   |        | +         | chlorobenzene        | хлорбензол                                      | от 0 до 100  | от 0 до 0,7        | 1,4            | 0,07          |
| 23   | +      | +         | cyclohexane          | циклогексан                                     | от 0 до 100  | от 0 до 0,6        | 1,2            | 90'0          |
| 24   | -      | +         | cyclopropane         | циклопропан                                     | от 0 до 100  | от 0 до 1,2        | 2,4            | 0,12          |
| 25   | •      | +         | n-decane             | н-декан                                         | от 0 до 100  | от 0 до 0,35       | 2'0            | 0,0           |
| 56   |        | +         | diethyl ether        | диэтиловый эфир                                 | от 0 до 100  | от 0 до 0,85       | 1,7            | 60'0          |
| 27   | •      | +         | di(iso-propyl) ether | диизопропиловый эфир                            | от 0 до 100  | от 0 до 0,5        | 1,0            | 0,05          |
| 28   | •      | +         | dimethyl butane      | диметилбутан                                    | от 0 до 100  | от 0 до 0,65       | 1,3            | 20'0          |
| 29   | -      | +         | dimethyl ether       | диметиловый эфир                                | от 0 до 100  | от 0 до 1,35       | 2,7            | 0,14          |
| 30   | •      | +         | dimethyl sulfide     | диметилсульфид                                  | от 0 до 100  | от 0 до 1,1        | 2,2            | 0,11          |
| 31   | -      | +         | 1,4-dioxane          | 1,4-диоксан                                     | от 0 до 100  | от 0 до 0,95       | 1,9            | 0,10          |
| 32   | +      | +         | ethane               | этан                                            | от 0 до 100  | от 0 до 1,25       | 2,5            | 0,13          |
|      |        |           |                      |                                                 |              |                    |                | Ī             |

|     |            |           |                     |                                                     | Therefore      |                    | TIVILID 07     |               |
|-----|------------|-----------|---------------------|-----------------------------------------------------|----------------|--------------------|----------------|---------------|
|     |            |           |                     |                                                     | диапазон       |                    | (06 T) B       | пределен      |
|     |            |           |                     |                                                     | IIONGSGRRR, 70 | Лиапазон измерений | (AC.A.) B      | основной      |
| 2   | į          | Satellite | Наименование        |                                                     | JINII<br>JEL   | объемной доли      | COOLBEICIBUM C | абсолютной    |
|     | APEX       | X         | (2000)              | Наименование (рус.)                                 | (131)          | CIONABIADADO       | 1001           | NO CONTRACTOR |
|     |            | ξ.        | (amb)               |                                                     |                | компонента %       | 51330.19-99    | объемная доля |
|     |            |           |                     |                                                     |                | 3                  |                |               |
|     |            |           |                     |                                                     |                |                    |                | компонента %  |
| 33  | +          | +         | ethyl acetate       | этипапетат                                          | от 0 ло 100    | от 0 до 1.1        | 2.2            | 0.11          |
| 3 2 |            | +         | ethyl alcohol       | STANDONIA COUNT                                     | OT 0 100       | or 0 no 1 55       | 3.1            | 0.16          |
| 5 2 |            |           | cury arconor        | CINICORNI CIMO                                      | 01 0 TO        | 01 0 do 1,00       | 2,0            | 272           |
| ၵ   | •          | +         | etnyl amine         | ЭТИЛАМИН                                            | 01 0 A0 100    | 91 U 40 1,34       | 2,00           | 0,13          |
| 36  | •          | +         | ethyl benzene       | этилбензол                                          | от 0 до 100    | от 0 до 1          | 2,0            | 0,05          |
| 37  | -          | +         | ethyl bromide       | этилбромид                                          | от 0 до 100    | от 0 до 3,35       | 6,7            | 0,34          |
| 38  | •          | +         | ethyl chloride      | этилхпорид                                          | от 0 до 100    | от 0 до 1,8        | 3,6            | 0,18          |
| 39  | •          | +         | ethyl formate       | этилформиат                                         | от 0 до 100    | от 0 до 1,35       | 2,7            | 0,14          |
| 9   | ·          | +         | ethyl mercaptan     | этилмеркаптан (этантиол)                            | от 0 до 100    | от 0 до 1,4        | 2,8            | 0,14          |
| 41  |            | +         | ethyl methyl ether  | метилэтиловый эфир                                  | от 0 до 100    | от 0 до 1          | 2,0            | 0,10          |
| 42  | +          | +         | methyl ethyl ketone | метилэтилкетон (2-бутанон)                          | от 0 до 100    | от 0 до 0,95       | 1,9            | 0,10          |
| 43  | +          | +         | ethylene            | этилен                                              | от 0 до 100    | от 0 до 1,15       | 2,3            | 0,12          |
| 4   |            | +         | ethylene dichloride | Этилен дихлорид (1,2-дихлорэтан)                    | от 0 до 100    | от 0 до 3,1        | 6,2            | 0,31          |
| 45  | +          | +         | ethylene oxide      | этиленоксид                                         | от 0 до 100    | от 0 до 1,3        | 2,6            | 0,13          |
| 46  |            | +         | iso-heptane         | изогептан (2-метилгексан)                           | от 0 до 100    | от 0 до 0,55       | 1,1            | 90'0          |
| 47  | +          | +         | n-heptane           | н-гептан                                            | от 0 до 100    | от 0 до 0,55       | 1,1            | 90'0          |
| 48  |            | +         | iso-hexane          | изо-гексан                                          | от 0 до 100    | от 0 до 0,58       | 1,16           | 90'0          |
| 64  | +          | +         | n-hexane            | н-гексан                                            |                | от 0 до 0,5        | 1,0            | 0,05          |
| 20  |            | +         | hvdrazine           | гидразин N2H4                                       |                | от 0 до 2,35       | 4,7            | 0,24          |
| 21  | +          | +         | hydrogen            | водород                                             | Г              | от 0 до 2          | 4,0            | 0,20          |
| 52  |            | +         | hydrogen sulfide    | сероводород                                         |                | от 0 до 2          | 4,0            | 0,20          |
| 23  | +          | +         | methane             | метан                                               |                | от 0 до 2,2        | 4,4            | 0,22          |
| 2   | •          | +         | methyl acetate      | метилацетат                                         |                | от 0 до 1,6        | 3,2            | 0,16          |
| 55  | +          | +         | methyl alcohol      | метанол                                             | от 0 до 100    | от 0 до 2,75       | 5,5            | 0,28          |
| 26  | -          | +         | methyl amine        | метиламин                                           | от 0 до 100    | от 0 до 2,1        | 4,2            | 0,21          |
| 22  |            | +         | methyl bromide      | метилбромид (бромметан)                             | от 0 до 100    | от 0 до 5          | 10,0           | 0,50          |
| 28  | -          | +         | methyl chloride     | метилхлорид (хлорметан)                             | от 0 до 100    | от 0 до 3,8        | 2,6            | 0,38          |
| 29  | -          | +         | methyl cyclohexane  | метилциклогексан                                    | от 0 до 100    | от 0 до 0,55       | 1,1            | 90'0          |
| 9   | •          | +         | methyl formate      | метилформиат                                        | от 0 до 100    | от 0 до 2,5        | 5,0            | 0,25          |
| 61  | •          | +         | methyl mercaptan    | метилмеркаптан (метантиол)                          | от 0 до 100    | от 0 до 2,05       | 4,1            | 0,21          |
| 62  | •          | +         | methyl propionate   | метил пропионат, метиловый эфир пропионовой кислоты | от 0 до 100    | от 0 до 1,1        | 2,2            | 0,11          |
| ន   | •          | +         | methyl propyl       | метилпропилкетон, 2-пентанон                        | от 0 до 100    | от 0 до 0,78       | 1,56           | 80'0          |
| 2   | •          | +         | methylene chloride  | метиленхпорид (дихлорметан)                         | от 0 до 100    | от 0 до 7          | 14,0           | 0,70          |
| 55  |            | +         | nitromethane        |                                                     | от 0 ло 100    | от 0 ло 3.65       | 7.3            | 0.37          |
| 8   | <u> </u> . | +         | n-nonane            | н-нонан                                             | от 0 до 100    | or 0 40 0.35       | 0,7            | 20,0          |
| 67  | +          | +         | n-octane            | н-октан                                             | от 0 до 100    | от 0 до 0,4        | 0,8            | 0,04          |
| ,   |            |           | 2000                |                                                     |                |                    |                |               |

| <b>%</b> ~ | APEX | Satellite<br>XT | Наименование<br>(англ.)  | Наименование (рус.)                                                | Диапазон<br>показаний, %<br>НКПР<br>(LEL) | Диапазон измерений<br>объемной доли<br>определяемого<br>компонента, % | HKПР, %<br>(об.д.) в<br>соответствии с<br>ГОСТ Р<br>51330.19-99 | Пределы допускаемой основной абсолютной погрешности, объемная доля определяемого компонента, % |
|------------|------|-----------------|--------------------------|--------------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| 88         |      | +               | iso-pentane              | изопентан (2-метилбутан)                                           | от 0 до 100                               | от 0 до 0,68                                                          | 1,36                                                            | 0,07                                                                                           |
| 69         |      | +               | n-pentane                | н-пентан                                                           | от 0 до 100                               | от 0 до 0,7                                                           | 1,4                                                             | 20,0                                                                                           |
| 2          |      | +               | neo-pentane              | неопентан (2,2-диметилпропан,<br>тетраметилметан, 2-метилизобутан) | от 0 до 100                               | от 0 до 0,69                                                          | 1,38                                                            | 20'0                                                                                           |
| 71         |      | +               | 1-pentene                | 1-пентен (амилен, пропилэтилен)                                    | от 0 до 100                               | от 0 до 0,7                                                           | 4.                                                              | 20'0                                                                                           |
| 72         | +    | +               | propane                  | неиоди                                                             | от 0 до 100                               | от 0 до 0,85                                                          | 1,7                                                             | 60'0                                                                                           |
| 73         | +    | +               | propene                  | пропен (пропилен)                                                  | от 0 до 100                               | от 0 до 2                                                             | 4,0                                                             | 0,10                                                                                           |
| 74         | +    | +               | iso-propyl alcohol       | изопропиловый спирт (2-пропанол)                                   | от 0 до 100                               | от 0 до 1                                                             | 2,0                                                             | 0,10                                                                                           |
| 75         |      | +               | n-propyl alcohol         | пропиловый спирт (1-пропанол)                                      | от 0 до 100                               | от 0 да 1,1                                                           | 2,2                                                             | 0,11                                                                                           |
| 92         |      | +               | n-propyl amine           | пропиламин                                                         | от 0 до 100                               | от 0 до 1                                                             |                                                                 | 0,10                                                                                           |
| 12         |      | +               | n-propyl chloride        | 1-хлорпропан                                                       | от 0 до 100                               | от 0 до 1,2                                                           |                                                                 | 0,12                                                                                           |
| 28         | -    | +               | 1,2-propylene oxide      | 1,2-пропиленоксид (эпоксипропен)                                   | от 0 до 100                               | от 0 до 0,95                                                          | 1,9                                                             | 0,10                                                                                           |
| 2          |      | +               | propyne                  | пропин (метилацетилен)                                             | от 0 до 100                               | от 0 до 0,85                                                          | 1,7                                                             | 60'0                                                                                           |
| 8          | +    | +               | toluene                  | толуол                                                             | от 0 до 100                               | от 0 до 0,55                                                          |                                                                 | 90'0                                                                                           |
| 2          | +    | +               | triethyl amine           | триэтиламин                                                        | от 0 до 100                               | от 0 до 0,6                                                           |                                                                 | 90'0                                                                                           |
| 82         |      | +               | trimethyl amine          | триметиламин                                                       | от 0 до 100                               | от 0 до 1                                                             |                                                                 | 0,10                                                                                           |
| 83         | -    | +               | vinyl chloride           | винилхлорид                                                        | от 0 до 100                               | от 0 до 0,9                                                           | 1,8                                                             | 60'0                                                                                           |
| 8          |      | +               | m-xylene                 | м-ксилол (1,3-диметилбензол)                                       | от 0 до 100                               | от 0 до 0,55                                                          | 1,1                                                             | 90'0                                                                                           |
| 82         |      | +               | o-xylene                 | о-ксилол (1,2-диметилбензол)                                       | от 0 до 100                               | от 0 до 0,5                                                           | 1,0                                                             | 0,05                                                                                           |
| 88         |      | +               | p-xylene                 | п-ксилол (1,4-диметилбензол)                                       | от 0 до 100                               | от 0 до 0,55                                                          | 1,1                                                             | 90'0                                                                                           |
| 87         | +    | •               | 3-ethoxy-1-propanol      | 3-этокси-1-пропанол                                                | от 0 до 100                               | от 0 до 1,15                                                          | 2,3                                                             | 0,12                                                                                           |
| 88         | +    | •               | 4-Methyl-2-<br>pentanone | 4-метил-2-пентанон                                                 | от 0 до 100                               | от 0 до 0,6                                                           | 1,2                                                             | 90'0                                                                                           |
| 88         | +    | •               | Buthylacetate<br>(n-)    | Бутилацетат                                                        | от 0 до 100                               | от 0 до 0,65                                                          | 1,3                                                             | 0,07                                                                                           |
| 8          | +    | 1               | Cyclohexanon             | Циклогексанон                                                      | от 0 до 100                               | от 0 до 0,5                                                           | 1,0                                                             | 0,05                                                                                           |
| 9          | +    | 1               | Propyleneoxide           | Пропиленоксид                                                      | от 0 до 100                               | от 0 до 0,95                                                          | 1,9                                                             | 0,10                                                                                           |
| 35         | +    | 1               | Styrene (styrol)         | Стирол                                                             | от 0 до 100                               | от 0 до 0,55                                                          | 1,1                                                             | 90'0                                                                                           |
| 8          | +    | •               | Tetrahydrofuran          | Тетрогидрофуран                                                    | от 0 до 100                               | от 0 до 0,75                                                          | 1,5                                                             | 0,08                                                                                           |

Время установления показаний 70,9 датчиков горючих газов и паров, с, не более: - APEX – 10 - Satellite XT – 15.

- 2. При контроле в воздухе рабочей зоны газов и паров, не указанных в таблицах 1, 2 и 3, датчики APEX и Satellite XT применяются в качестве индикаторов для предварительной оценки содержания компонентов с последующим анализом по методикам выполнения измерений (МВИ), разработанным и аттестованным в соответствии с ГОСТ Р 8.563-96.
- 3. Предел допускаемой вариации показаний не более 0,5 предела основной погрешности.
- 4. Предел допускаемого изменения выходного сигнала (показаний) за 30 суток при непрерывной работе в течение 24 ч не более 0,5 предела допускаемой основной погрешности.
- 5. Предел допускаемой дополнительной погрешности от влияния температуры окружающей среды в рабочем диапазоне на каждые 10 °C не более 0,3 предела допускаемой основной погрешности за счет температурной компенсации микропроцессора сенсора.
- 6. Предел допускаемой дополнительной погрешности от влияния изменения относительной влажности окружающей среды в диапазоне от 20 до 90 % в долях от предела допускаемой основной погрешности, не более:
  - 0,5 для электрохимических датчиков;
  - 1,0 для термокаталитических датчиков.
- 7. Предел допускаемой дополнительной погрешности от влияния атмосферного давления на каждые 3,3 кПа не более 0,3 предела допускаемой основной погрешности.
- 8. Суммарная дополнительная погрешность для каждого определяемого компонента от влияния неизмеряемых компонентов не превышает 1,5 основной погрешности.
  - 9. Средний срок службы сенсоров:
  - горючие газы и пары 3 года.
  - токсичные газы от 1,5 до 3 лет.
  - кислород 2 года.
  - 10. Средний срок службы датчиков (исключая сенсоры) 15 лет.
  - 11. Масса датчика:
  - APEX 5,2 кг;
- Satellite XT 0.65 кг (с электрохимическим сенсором), 0.7 кг (с термокаталитическим сенсором).
  - 12. Электропитание (18–32) В постоянного тока.
  - 13. Условия эксплуатации:
  - диапазон температуры окружающей среды:
    - от минус 40 до +65 °C (APEX);
    - от минус 20 до +40 °C (SATELLITE XT);
  - диапазон атмосферного давления от 90 до 110 кПа;
  - диапазон относительной влажности окружающего воздуха от 10 до 99 %.
  - 14. Время подготовки к работе не более 30 мин.
  - 15. Потребляемая мощность не более 3,6 ВА на каждый измерительный канал.
  - 16. Степень защиты:
  - APEX IP 66/67;
  - Satellite XT IP 52 (IP 65 опция).
  - 17. Габаритные размеры, мм
  - APEX 140x150x152 - Satellite XT 145x95x50

## ЗНАК УТВЕРЖДЕНИЯ ТИПА

Знак утверждения типа наносится на титульный лист руководства по эксплуатации типографским способом и на корпус прибора в виде наклейки.

# комплектность

Комплектность поставки определяется заказом и отражается в спецификации. Комплект поставки датчиков АРЕХ приведен в таблице 4.

# Таблица 4

| Основной комплект:                                                |        |
|-------------------------------------------------------------------|--------|
| 1. Преобразователь*                                               | 1 шт.  |
| 2. Корпус датчика *                                               | 1 шт.  |
| 3. Крышка датчика *                                               | 1 шт.  |
| 4.Фильтр в сборе*                                                 | 1 шт.  |
| 5. Картридж датчика*                                              | 1 шт.  |
| 6. Руководство по эксплуатации                                    | 1 экз. |
| 7. Методика поверки                                               | 1 экз. |
| * - поставляется по отдельности или в сборе                       |        |
| Дополнительное оборудование:                                      |        |
| - адаптер кислородного картриджа                                  | 1 шт.  |
| - соединительная коробка для дистанционного монтажа датчика АРЕХ, | 1 шт.  |
| сертифицированная для опасных зон                                 |        |
| - кабельные уплотнения (кол-во указано в упаковочном листе),      | 1 шт.  |
| - кабель (длина указана в упаковочном листе),                     | 1 шт.  |
| - устройство для подключения калибровочных газов                  | 1 шт.  |
| - устройство защиты от погодных условий                           | 1 шт.  |
| - защитный фильтр датчика                                         | 1 шт.  |
| - противосолнечный экран                                          | 1 шт.  |
| - устройство настройки                                            | 1 шт.  |
| - газосборная воронка                                             | 1 шт.  |

Комплект поставки датчиков SATELLITE XT приведен в таблице 5.

# Таблица 5

| Основной комплект:                                                                     |        |
|----------------------------------------------------------------------------------------|--------|
| 1. Преобразователь Satellite XT * (версии: Satellite XT 4 - 20 мA, Satellite XT 4 - 20 | 1 шт.  |
| MA/R, Satellite XT 4 - 20 MA/C, Satellite XT 4 - 20 MA/C/R)                            |        |
| 2. Датчик *                                                                            | 1 шт.  |
| 3. Руководство по эксплуатации                                                         | 1 экз. |
| 4. Методика поверки                                                                    | 1 экз. |
| * - поставляется по отдельности или в сборе                                            |        |
| Дополнительное оборудование:                                                           | is     |
| Экстрактивный модуль XT                                                                | 1 шт.  |
| Пиролизирующий модуль XT                                                               | 1 шт.  |
| Монтажная рейка, стандартная                                                           | 1 шт.  |
| Монтажная пластина стандарта DIN, опция                                                | 1 шт.  |
| L-образная монтажная пластина с рейкой стандарта DIN, опция                            | 1 шт.  |
| Удлинитель датчика, 2 м                                                                | 1 шт.  |
| Удлинитель датчика, 3 м                                                                | 1 шт.  |
| Удлинитель датчика, 1 м                                                                | 1 шт.  |
| Удлинитель датчика горючих газов, 2 м                                                  | 1 шт.  |
| Калибровочная крышка                                                                   | 1 шт.  |
| Соединительная коробка, не более, чем на 2 узла                                        | 1 шт.  |
| Соединительная коробка, не более, чем на 6 узлов                                       | 1 шт.  |
| Соединительная коробка на 1 узел /для модификации R                                    | 1 шт.  |
| 3-жильный экранированный кабель, 3х1,0 мм2, бухта 100 м                                | 1 шт.  |
| Блок электропитания 24 В постоянного тока, выходной ток 2,5 А, 230/115 В               | 1 шт.  |

| переменного тока                                                        |       |
|-------------------------------------------------------------------------|-------|
| Блок электропитания 24 В постоянного тока, выходной ток 5 А, 230/115 В  | 1 шт. |
| переменного тока                                                        |       |
| Блок электропитания 24 В постоянного тока, выходной ток 10 А, 230/115 В | 1 шт. |
| переменного тока                                                        |       |
| оправка для установки в воздуховоде (в сборе), 4 дюйма                  | 1 шт. |
| оправка для установки в воздуховоде (в сборе), 6 дюймов                 | 1 шт. |
| оправка для установки в воздуховоде (в сборе), 8 дюймов                 | 1 шт. |
| оправка для установки в воздуховоде (в сборе), 10 дюймов                | 1 шт. |
| оправка для установки в воздуховоде (в сборе), 12 дюймов                | 1 шт. |
| оправка для установки в воздуховоде (в сборе), 1,5 дюйма                | 1 шт. |
| оправка для установки в воздуховоде (в сборе), 2 дюйма                  | 1 шт. |
| оправка для установки в воздуховоде (в сборе), 2,5 дюйма                | 1 шт. |
| оправка для установки в воздуховоде (в сборе), 3 дюйма                  | 1 шт. |
| оправка для установки в воздуховоде (в сборе), плоская                  | 1 шт. |

#### ПОВЕРКА

Поверка систем производится в соответствии с документом «Датчики горючих и токсичных газов стационарные APEX и Satellite XT. Методика поверки», разработанным и утвержденным ГЦИ СИ ОАО ФНТЦ « Инверсия» в октябре 2010 г.

### Основные средства поверки:

- генератор газовых смесей ГГС-03-03 по ШДЕК.418313.001 ТУ;
- генератор термодиффузионный ТДГ-01 по ШДЕК.418319.001 ТУ;
- генератор озона ГС-024 ИРМБ.413332.001 ТУ;
- ГСО-ПГС состава SO2/N2, H2S/N2, NH3/N2, NH3/воздух, NO/N2, NO2/N2, CO/N2, O2/N2, H2/N2 в баллонах под давлением по ТУ 6-16-2956-92;
- ГСО-ПГС состава метан/воздух, пропан/воздух, бутан/воздух, этилен/воздух в баллонах под давлением по ТУ 6-16-2956-92;
- газовые смеси состава пентан/воздух ЭМ 06.02.632, ЭМ 06.02.633 по МИ 2590-2008;
- источники микропотоков ИМ-HCl, ИМ-HF, ИМ-NO2, ИМ-Br2, ИМ-Cl2, ИМ-C2H4O, по ИБЯЛ.4186319.013 ТУ;
- источники микропотоков ИМ-BF3 ЭС-ХД 2.706.139-ЭТ18, ИМ-С3Н6О ЭС 2.706.140 ЭТ58, ИМ-ТЕОЅ ЭС 2.706.140-ЭТ57, ИМ-НМОЅ ЭС ХД. 2.706.140-ЭТ56, ИМ-тиофен ЭС 2.706.140-ЭТ59, ИМ-триметилсилан ЭС-ХД 2.706.140-ЭТ55;
- ПГС в баллонах NF3/азот ЭС Хд.2.706.136-ЭТ223, F2/азот ЭС Хд.2.706.136-ЭТ220, B2H6/азот ЭС Хд.2.706.136-ЭТ217, CH3F/азот ЭС Хд.2.706.136-ЭТ218, 1,2 дихлорэтилен/азот ЭС Хд.2.706.136-ЭТ.219, GeH4/азот ЭС Хд.2.706.136-ЭТ221, HBr/азот ЭС Хд.2.706.136-ЭТ222, SiH4/азот ЭМ 06.01.920, SF6/азот ЭМ 06.01.920;
- газоаналитический комплекс «МОГАИ-6» для получения ПГС на основе цианистого водорода;
- установка газодинамическая высшей точности УВТ-Ф № 60-А-89, для получения ПГС на основе фосфина;
- установка высшей точности УВТ-Ар № 59-А-89, для получения ПГС на основе арсина;
- установка газодинамическая ГДУ-34 г.Я.6434.00.00.000 РЭ для получения ПГС на основе фосгена;
- установка динамическая ГДУ-3Л гЯ.6433.00.00.000 ТО для получения ПГС на основе диметиламина, триметиламина, диэтиламина, триэтиламина, гидразина.

### НОРМАТИВНЫЕ И ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

- 1 ГОСТ 8.578-2002 «Государственная поверочная схема для средств измерений содержания компонентов в газовых средах».
- 2 ГОСТ 13320-81 «Газоанализаторы промышленные автоматические. Общие технические условия».
- 3 ГОСТ Р 52931-2008 «Приборы контроля и регулирования технологических процессов. Общие технические условия».
- 4 ГОСТ 27540-87 «Сигнализаторы горючих газов и паров термохимические. Общие технические условия».
- 5 ГОСТ 12.1.005-88 «Общие санитарно-гигиенические требования к воздуху рабочей зоны».
- 6 ГОСТ Р 51330.0-99 (МЭК 60079-0-98) «Электрооборудование взрывозащищенное. Часть 0. Общие требования».
- 7 ГОСТ Р 51330.1-99 (МЭК 60079-1-99) «Электрооборудование взрывозащищенное. Часть 1. Взрывозащита вида «взрывонепроницаемая оболочка».
- 8 ГОСТ Р 51330.10-99 (МЭК 60079-11-99) «Электрооборудование взрывозащищенное. Часть 11. Искробезопасная электрическая цепь і».
- 9 Техническая документация фирмы-изготовителя.

#### **ЗАКЛЮЧЕНИЕ**

Тип датчиков горючих и токсичных газов стационарных APEX и Satellite XT утвержден с техническими и метрологическими характеристиками, приведенными в настоящем описании типа, метрологически обеспечен при ввозе в страну и в эксплуатации согласно государственной поверочной схеме.

Датчики APEX имеют сертификат соответствия НАНИО «ЦСВЭ» № РОСС GB.ГБ05.В03002 от 25.03.2010 г. и разрешение Федеральной службы по экологическому, технологическому и атомному надзору № РРС 00-40696 от 14.10.2010 г. на применение во взрывоопасных зонах.

#### **ИЗГОТОВИТЕЛЬ**

Фирма ««Honeywell Analytics Ltd», Великобритания Hatch Pond House, 4 Stinsford Road, Nuffield Estate Pool, Dorset, BH 17, Great Britain; Tel: +44(0)1202 676161; Fax: +44(0)1202 678011

### ПРЕДСТАВИТЕЛЬСТВО В МОСКВЕ

Honeywell Analytics

121059, Москва, ул. Киевская д.7, Тел.: +7 495 797 9926, Факс: +7 495 796 9893

Mobile: +7 495 960 9573

email: maxim.sverchkov@honeywell.com, www.honeywellanalytics.com

Директор по продажам Россия (жей Бай Арад фирмы Honeywell Analytics 4 Stinsford Albad Poole, Dorset Poole, Dorset UK BH17 0RZ UK

Теl: +44 (0)1202-676161

Тезх: +44 (0)1202-678011

Главный метролог ОАО ФИТЦ «Инверсия» If Illy Н.В.Ильина