

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

СВИДЕТЕЛЬСТВО

об утверждении типа средств измерений

RU.E.34.004.A № 42262

Срок действия бессрочный

НАИМЕНОВАНИЕ ТИПА СРЕДСТВ ИЗМЕРЕНИЙ Система автоматизированная информационно-измерительная коммерческого учета электроэнергии-1 (АИИС КУЭ-1) ЗАО "Белгородский Цемент"

заводской номер 01

ИЗГОТОВИТЕЛЬ
ООО "Киловатт-Техно", г.Екатеринбург

РЕГИСТРАЦИОННЫЙ № 46427-11

ДОКУМЕНТ НА ПОВЕРКУ МП 46427-11

Серия СИ

ИНТЕРВАЛ МЕЖДУ ПОВЕРКАМИ 4 года

Тип средств измерений утвержден приказом Федерального агентства по техническому регулированию и метрологии от **04 марта 2011 г.** № **894**

Описание типа средств измерений является обязательным приложением к настоящему свидетельству.

Заместитель Руководителя		В.Н.Крути	іков
Федерального агентства			
	"	" 20	Γ.

№ 000210

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии-1 (АИИС КУЭ-1) ЗАО «Белгородский Цемент»

Назначение средства измерений

Настоящее описание типа системы автоматизированной информационно-измерительной коммерческого учета электроэнергии-1 (АИИС КУЭ-1) ЗАО «Белгородский Цемент» является дополнением к описанию типа системы автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) ЗАО «Белгородский Цемент», Госреестр № 31549-06 от 31.03.2006, и включает в себя дополнительные измерительные каналы, соответствующие точкам измерений № 19, 20.

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии-1 (АИИС КУЭ-1) ЗАО «Белгородский Цемент» (далее — АИИС КУЭ-1) предназначена для измерения активной и реактивной электроэнергии и мощности, потребленной за установленные интервалы времени отдельными технологическими объектами, сбора, хранения и обработки полученной информации. Результаты измерений системы могут быть использованы для коммерческих расчетов.

АИИС КУЭ-1 решает следующие задачи:

- автоматическое выполнение измерений 30-минутных приращений активной и реактивной электроэнергии, мощности на 30-минутных интервалах;
- периодический (1 раз в 30 минут, час, сутки) и /или по запросу автоматический сбор привязанных к единому календарному времени измеренных данных о приращениях электроэнергии с дискретностью учета (30 мин) и данных о состоянии средств измерений;
- автоматическое сохранение результатов измерений в специализированной базе данных, отвечающей требованию повышенной защищенности от потери информации (резервирование баз данных) и от несанкционированного доступа;
- передача результатов измерений на сервер АИИС КУЭ-1 и автоматизированные рабочие места (АРМы);
- предоставление по запросу доступа к результатам измерений, данным о состоянии объектов и средств измерений со стороны сервера организаций участников оптового рынка электроэнергии;
- обеспечение защиты оборудования, программного обеспечения и данных от несанкционированного доступа на физическом и программном уровне (установка пломб, паролей и т.п.);
- диагностику и мониторинг функционирования технических и программных средств АИИС КУЭ-1;
- конфигурирование и настройку параметров АИИС КУЭ-1;
- ведение системы единого времени в АИИС КУЭ-1 (коррекция времени).

Описание средства измерений

АИИС КУЭ-1 представляет собой многоуровневую систему с централизованным управлением и распределенной функцией измерения.

АИИС КУЭ-1 включает в себя следующие уровни:

1-й уровень - измерительные трансформаторы тока (ТТ) классов точности 0,5 по

ГОСТ 7746, измерительные трансформаторы напряжения (ТН) класса точности 0,5 по ГОСТ 1983, счётчики активной и реактивной электроэнергии СЭТ-4ТМ.03М класса точности 0,5S, по ГОСТ Р 52323 для активной электроэнергии и 1,0 по ГОСТ Р 52425-05 для реактивной электроэнергии, установленные на объектах, указанных в таблице 1.

2-й уровень - устройство сбора и передачи данных (УСПД) «ЭКОМ-3000» со встроенным приемником синхронизации времени на базе GPS и технические средства приемапередачи данных.

3-й уровень – сервер сбора и баз данных, который обеспечивает связь с УСПД, автоматизированные рабочие места (APMы), каналообразующая аппаратура.

Первичные токи и напряжения трансформируются измерительными трансформаторами в аналоговые сигналы низкого уровня, которые по проводным линиям связи поступают на соответствующие входы электронного счетчика электрической энергии. В счетчике мгновенные значения аналоговых сигналов преобразуют в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются мгновенные значения активной и полной мощности, которые усредняются за период 0,02 с. Средняя за период реактивная мощность вычисляется по средним за период значениям активной и полной мощности.

Электрическая энергия, как интеграл по времени от средней за период 0,02 с мощности, вычисляется для интервалов времени 30 мин.

Средняя активная (реактивная) электрическая мощность вычисляется как среднее значение мощности на интервале времени усреднения 30 мин.

Цифровой сигнал с выходов счетчиков по линиям связи поступает на входы УСПД, где осуществляется хранение измерительной информации, ее накопление и передача накопленных данных по линиям связи на третий уровень системы (сервер БД).

На верхнем – третьем уровне системы выполняется дальнейшая обработка измерительной информации, в частности вычисление электроэнергии и мощности с учетом коэффициентов трансформации ТТ и ТН, формирование и хранение поступающей информации, оформление справочных и отчетных документов. Передача информации в организации—участники оптового рынка электроэнергии осуществляется от сервера БД, через основной или резервные каналы связи сетей провайдеров Интернет.

АИИС КУЭ-1 оснащена системой обеспечения единого времени (СОЕВ), состоящей из устройства синхронизации системного времени (УССВ) на базе GPS-приемника. Время сервера синхронизировано с временем УССВ, погрешность синхронизации не более ± 1 с. Время УСПД ЭКОМ-3000 синхронизировано с временем сервера, погрешность синхронизации не более ± 1 с. Сличение времени счетчиков со временем УСПД ЭКОМ-3000 происходит каждые 30 мин, корректировка времени счетчиков при расхождении со временем УСПД ± 1 с. Погрешность системного времени не превышает ± 5 с.

Метрологические и технические характеристики

Таблица 1 - Состав измерительных каналов АИИС КУЭ-1 ЗАО «Белгородский Це-

мент» и их основные метрологические характеристики.

		Состав измерительного канала					Метрологиче- ские характери- стики ИК	
Наименование объекта и поряд- ковый номер точ- ки измерений		TT	ТН	Счетчик	УСПД	Вид электро- энергии	Ос- новная по- греш- ность,	ность в рабочих условиях
19	ПС 6 кВ Центральная яч. 32 ввод №2	ТОЛ-10-I 200/5 Кл. т. 0,5 Зав. № 12884 Зав. № 12882	НТМИ-6- 66 6000/100 Кл. т. 0,5 Зав. № 5ТКЛ	СЭТ- 4ТМ.03М.0 5 Кл. т. 0,5S/1,0 3ав. № 0808100483	ЭКОМ-	Активная	±1,0	±3,1
20	ПС 6 кВ Центральная яч. 18 ввод №1	ТОЛ-10-I 200/5 Кл. т. 0,5 Зав. № 12880 Зав. № 12879	НТМИ-6- 66 6000/100 Кл. т. 0,5 Зав. № 404	СЭТ- 4ТМ.03М.0 5 Кл. т. 0,5S/1,0	Зав. № 08050997	Реактив- ная	±2,4	±5,0

Примечания:

- 1. Характеристики погрешности ИК даны для измерения электроэнергии и средней мощности (получасовая);
- 2. В качестве характеристик относительной погрешности указаны границы интервала, соответствующие вероятности 0,95;
- 3. Нормальные условия:
- параметры сети: напряжение $(0.98 \div 1.02)$ Uном; ток $(1 \div 1.2)$ Іном, $\cos \varphi = 0.9$ инд.; температура окружающей среды (20 ± 5) °C.
- 4. Рабочие условия:
- параметры сети для ИК: напряжение $(0.9 \div 1.1)$ Uном; сила тока $(0.05 \div 1.2)$ Іном; 0.5 инд. $\le \cos \phi \le 0.8$ емк;
- допускаемая температура окружающей среды для измерительных трансформаторов от минус 40 до + 70 °C, для счетчиков от минус 40 до + 70 °C; для УСПД от минус 10 до +50 °C, для сервера от +15 до +35 °C.
- 5. Погрешность в рабочих условиях указана для $\cos \varphi = 0.8$ инд и температуры окружающего воздуха в месте расположения счетчиков электроэнергии от 10 до +30 °C.
- 6. Трансформаторы тока по ГОСТ 7746, трансформаторы напряжения по ГОСТ 1983, счетчики электрической энергии СЭТ-4ТМ.03М по ГОСТ Р 52323-05 в режиме измерения активной электроэнергии и ГОСТ Р 52425-05 в режиме измерения реактивной электроэнергии.
- 7. Допускается замена измерительных трансформаторов и счетчиков на аналогичные (см. п. 6 Примечаний) утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в Таблице 1. Допускается замена УСПД на однотипный утвержденного типа. Замена оформляется актом в установленном на ЗАО «Белгородский Цемент» порядке.

Акт хранится совместно с настоящим описанием типа АИИС КУЭ-1 как его неотъемлемая часть

Надежность применяемых в системе компонентов:

- электросчётчик СЭТ-4TM.03 среднее время наработки на отказ не менее T = 90000 ч, среднее время восстановления работоспособности tB = 2 ч;
- электросчётчик СЭТ-4ТМ.03М среднее время наработки на отказ не менее T = 140000 ч, среднее время восстановления работоспособности t = 2 ч;
- УСПД среднее время наработки на отказ не менее T = 75000 ч, среднее время восстановления работоспособности t = 0.5 ч;
- сервер коэффициент готовности не менее 0,99, среднее время восстановления работоспособности 1 ч.

Надежность системных решений:

- защита от кратковременных сбоев питания УСПД с помощью источника бесперебойного питания;
- резервирование каналов связи: информация о результатах измерений может передаваться в организации—участники оптового рынка электроэнергии с помощью электронной почты и сотовой связи;

В журналах событий фиксируются факты:

- журнал счётчика:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в счетчике;
- журнал УСПД:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в счетчике и УСПД;
 - пропадание и восстановление связи со счетчиком;
 - выключение и включение УСПД;

Защищённость применяемых компонентов:

- механическая защита от несанкционированного доступа и пломбирование:
 - электросчётчика;
 - промежуточных клеммников вторичных цепей напряжения;
 - испытательной коробки;
 - УСПД;
 - сервера;
- защита на программном уровне информации при хранении, передаче, параметрировании:
 - -электросчетчика,
 - УСПД,
 - сервера.

Защита программного обеспечения ПК «Энергосфера» обеспечивается применением электронной цифровой подписи, разграничением прав доступа, использованием ключевого носителя.

Возможность коррекции времени в:

- электросчетчиках (функция автоматизирована);
- УСПД (функция автоматизирована);
- ИВК (функция автоматизирована).

Возможность сбора информации:

- о состоянии средств измерений (функция автоматизирована);

- о результатах измерений (функция автоматизирована).
 Шикличность:
- измерений 30 мин (функция автоматизирована);
- сбора 30 мин (функция автоматизирована).

Глубина хранения информации:

- электросчетчик СЭТ.4.ТМ.03 тридцатиминутный профиль нагрузки в двух направлениях не менее 100 суток; при отключении питания не менее 10 лет;
- электросчетчик СЭТ.4.ТМ.03М тридцатиминутный профиль нагрузки в двух направлениях не менее 100 суток; при отключении питания не менее 10 лет;
- УСПД суточные данные о тридцатиминутных приращениях электропотребления по каждому каналу и электропотребление за месяц по каждому каналу - 60 сут (функция автоматизирована); сохранение информации при отключении питания – 10 лет;
- Сервер БД хранение результатов измерений, состояний средств измерений не менее 3,5 лет (функция автоматизирована).

Программное обеспечение

В АИИС КУЭ-1 ЗАО «Белгородский Цемент» используется программнотехнический комплекс (ПТК) «ЭКОМ», Госреестр № 19542-05, представляющий собой совокупность технических устройств (аппаратной части ПТК) и программного комплекса (ПК) «Энергосфера» в состав которого входит специализированное ПО указанное в таблице 2. ПК «Энергосфера» обеспечивает защиту программного обеспечения и измерительной информации паролями в соответствии с правами доступа. Средством защиты данных, передаваемых из УСПД ИВКЭ в ИВК по интерфейсу Ethernet, является кодирование данных, обеспечиваемое программными средствами ПК «Энергосфера». Категория уровня защиты программного обеспечения используемого в АИИС КУЭ-1 ЗАО «Белгородский Цемент» от непреднамеренных и преднамеренных изменений – С (в соответствии с МИ 3286-2010).

Таблица 2 - Идентификационные данные программного обеспечения (ПО)

Наименова-	Идентификационное на-	Номер версии	Цифровой иденти-	Алгоритм
ние про-	именование программно-	(идентифика-	фикатор программ-	вычисления
граммного	го обеспечения	ционный	ного обеспечения	цифрового
обеспечения		номер) про-	(контрольная сумма	идентифика-
		граммного	исполняемого кода)	тора про-
		обеспечения		граммного
				обеспечения
	Конфигуратор УСПД, config.exe	6.3.XX.XXX	нет данных	-
	Архив, archiv.exe	6.3.XX.XXX	нет данных	-
ПК «Энерго- сфера» Версия 6.3	Консоль Администратора, adcenter.exe	6.3.XX.XXX	нет данных	-
	Сервер опроса, рѕо.ехе	6.3.XX.XXX	нет данных	-
	Редактор АРМов, controlage.exe	6.3.XX.XXX	нет данных	-

Окончание таблицы 2

Наименова-	Идентификационное на-	Номер версии	Цифровой иденти-	Алгоритм
ние про-	именование программно-	(идентифика-	фикатор программ-	вычисления
граммного	го обеспечения	ционный	ного обеспечения	цифрового
обеспечения		номер) про-	(контрольная сумма	идентифика-
		граммного	исполняемого кода)	тора про-
		обеспечения		граммного
				обеспечения
	Редактор расчетных схем, admtool.exe	6.3.XX.XXX	нет данных	-
ПК «Энерго-	Ручной ввод данных, handinput.exe	6.3.XX.XXX	нет данных	-
сфера» Версия 6.3	Модуль оперативного контроля, alarmservice.exe	6.3.XX.XXX	нет данных	1
	«TunnelIECOM». Тоннелепрокладчик, tunnel.exe	6.3.XX.XXX	нет данных	-
	Модуль импорта/экспорта expimp.exe, expimpsvc.exe	6.3.XX.XXX	нет данных	-

Знак утверждения типа

Знак утверждения типа наносится на титульные листы эксплуатационной документации на систему автоматизированную информационно-измерительную коммерческого учета электроэнергии-1 (АИИС КУЭ-1) ЗАО «Белгородский Цемент».

Комплектность средства измерений

Комплектность АИИС КУЭ-1 ЗАО «Белгородский Цемент» определяется проектной документацией на систему.

В комплект поставки входит техническая документация на систему и на комплектующие средства измерений.

Поверка осуществляется по документу «Система автоматизированная информационно— измерительная коммерческого учета электроэнергии-1 (АИИС КУЭ-1) ЗАО «Белгородский Цемент». Измерительные каналы. Методика поверки», утвержденной ФГУП «ВНИИМС» в январе 2011 года.

Средства поверки – по НД на измерительные компоненты:

- $-TT \pi o \Gamma OCT 8.217-2003;$
- TH по МИ 2845-2003, МИ 2925-2005 и/или по ГОСТ 8.216-88;
- Счетчик СЭТ-4ТМ.03 по методике поверки «Счетчик электрической энергии многофункциональный СЭТ-4ТМ.03. Методика поверки» ИЛГШ.411152.124 РЭ1;
- Счетчик СЭТ-4ТМ.03М по методике поверки «Счетчик электрической энергии многофункциональный СЭТ-4ТМ.03М. Методика поверки» ИЛГШ.411152.145 РЭ1;
- УСПД ЭКОМ-3000 –по методике поверки МП 26-262-99;

Приемник сигналов точного времени.

Сведения о методиках (методах) измерений

Методика измерений содержится в документе «Методика измерений электрической энергии и мощности с использованием автоматизированной информационно-измерительной системы коммерческого учета (АИИС КУЭ) ЗАО «Белгородский Цемент». Сведения об аттестации методики измерений отсутствуют.

Нормативные документы, устанавливающие требования к автоматизированной информационно-измерительной системе коммерческого учета электроэнергии-1 (АИИС КУЭ-1) ЗАО «Белгородский Цемент»

ΓΟCT 1983-2001	«Трансформаторы напряжения. Общие технические условия».
ГОСТ 7746-2001	«Трансформаторы тока. Общие технические условия».
ГОСТ Р 52323-2005	«Аппаратура для измерения электрической энергии переменного то-
	ка. Частные требования. Часть 22. Статические счетчики активной
	энергии классов точности 0,2S и 0,5S».
ГОСТ Р 52425-2005	«Аппаратура для измерения электрической энергии переменного то-
	ка. Частные требования. Часть 23. Статические счетчики реактивной
	энергии».
ГОСТ 22261-94	Средства измерений электрических и магнитных величин. Общие
	технические условия.
ГОСТ Р 8.596-2002	ГСИ. Метрологическое обеспечение измерительных систем. Основ-
	ные положения.
МИ 3290-2010	«Рекомендация по подготовке, оформлению и рассмотрению ма-
	териалов испытаний средств измерений в целях утверждения ти-
	па».
МИ 3286-2010	«Проверка защиты программного обеспечения и определение ее
111111111111111111111111111111111111111	уровня при испытаниях средств измерений в целях утверждения
	типа».
	inita//.

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений - осуществление торговли, выполнение государственных учетных операций, осуществление мероприятий государственного контроля (надзора) (п.п. 7, 8, 17 пункта 3 статьи 1 Федерального закона об обеспечении единства измерений ФЗ №102- Φ 3 от 26.06.2008 г.).

Изготовитель ООО «Киловатт-Техно»

Юридический адрес: 620026, г. Екатеринбург, ул. Мамина-Сибиряка, 126 Почтовый адрес: 620146, г. Екатеринбург, ул. Решетникова, 22а, офис 405

Тел.: 8 (343) 270 55 57

Испытательный центр ГЦИ СИ ФГУП «ВНИИМС»

Адрес: 119361, Москва, ул. Озерная, 46

Тел.: 8 (495) 437 55 77 Факс: 8 (495) 437 56 66

Электронная почта: office@vniims.ru

Аттестат аккредитации – зарегистрированный в Государственном реестре

средств измерений № 30004-08 от 27.06.2008 года.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

В.Н. Крутиков

«»	2011 г
----	--------