всего листов 6

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

СОГЛАСОВАНО

Зам. генерального директора

центр испытаний
средств измерений

(ГЦИ СИ)

ж оксимобря 2010 г.

Система автоматизированная информацион но-измерительная коммерческого учета электрической энергии АИИС КУЭ - "ПС 500 кВ Абаканская"

вые в Государственный реестр средств измерений

Регистрационный номер № 46480-10

Изготовлена по технической документации ООО «Энсис Технологии», г. Москва. Заводской номер 06075.

НАЗНАЧЕНИЕ

Система автоматизированная информационно-измерительная коммерческого учета электрической энергии АИИС КУЭ - "ПС 500 кВ Абаканская" (далее по тексту - АИИС КУЭ) предназначена для измерения активной и реактивной электроэнергии, для осуществления эффективного автоматизированного сбора, обработки, хранения, отображения информации по всем расчетным точкам учета и передачи ее в ОАО «АТС», ОАО «СО ЕЭС», ОАО «ФСК-ЕЭС» в рамках согласованного регламента.

Полученные данные и результаты измерений могут использоваться для коммерческих расчетов и оперативного управления энергопотреблением.

ОПИСАНИЕ

АИИС состоит из измерительных каналов (далее ИК), включающих следующие средства измерений:

- измерительные трансформаторы тока (ТТ) по ГОСТ 7746-2001;
- измерительные трансформаторы напряжения (ТН) по ГОСТ 1983-2001;
- многофункциональные счетчики электрической энергии.

АИИС КУЭ решает следующие задачи:

- измерение 30-минутных приращений активной и реактивной электроэнергии;
- периодический (1 раз в сутки) и /или по запросу автоматический сбор привязанных к единому календарному времени результатов измерений приращений электроэнергии с заданной дискретностью учета (30 мин);
- хранение результатов измерений в специализированной базе данных, отвечающей требованию повышенной защищенности от потери информации (резервирование баз данных) и от несанкционированного доступа;
- передача в организации—участники оптового рынка электроэнергии результатов измерений;
- предоставление по запросу контрольного доступа к результатам измерений, данных о состоянии объектов и средств измерений со стороны сервера организаций участников оптового рынка электроэнергии;
- обеспечение защиты оборудования, программного обеспечения и данных от несанкционированного доступа на физическом и программном уровне (установка паролей и т.п.);

- диагностика и мониторинг функционирования технических и программных средств АИИС КУЭ;
- конфигурирование и настройка параметров АИИС КУЭ;
- ведение системы единого времени в АИИС КУЭ (коррекция времени).

Принцип действия:

Первичные токи и напряжения преобразуются измерительными трансформаторами в аналоговые унифицированные сигналы, которые по проводным линиям связи поступают на измерительные входы счетчика электроэнергии. В счетчике мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются соответствующие мгновенные значения активной, реактивной и полной мощности без учета коэффициентов трансформации, которые усредняются за 0,02 с. Средняя за период реактивная мощность вычисляется по средним за период значениям активной и полной мощности.

Средняя активная (реактивная) электрическая мощность вычисляется как среднее значение вычисленных мгновенных значений мощности на интервале времени усреднения 30 мин.

Цифровой сигнал с выходов счетчиков при помощи технических средств приемапередачи данных поступает на входы УСПД уровня, где производится обработка измерительной информации (умножение на коэффициенты трансформации), сбор и хранение результатов измерений. Далее информация поступает на ИВК.

АИИС КУЭ оснащена системой обеспечения единого времени (СОЕВ). В СОЕВ входят средства измерений, обеспечивающие измерение времени, также учитываются временные характеристики (задержки) линий связи, которые используются при синхронизации времени.

Синхронизация времени производится с помощью GPS-приемника, принимающего сигналы глобальной системы позиционирования, входящего в комплект УССВ, подключаемого к УСПД. От УССВ синхронизируются внутренние часы УСПД, а от них — внутренние часы счетчиков, подключенных к УСПД. Уставка, при достижении которой происходит коррекция часов УСПД, составляет 1 с. Синхронизация внутренних часов счетчика с верхним уровнем АИИС КУЭ происходит при каждом обращении (каждый сеанс связи). ПО позволяет назначить время суток, в которое можно производить коррекцию времени. Рекомендуется для этой операции назначить время с 00:00 до 03:00 часов.

Журналы событий счетчика электроэнергии и УСПД отражают время (дата, часы, минуты) коррекции часов указанных устройств и расхождение времени в секундах, корректируемого и корректирующего устройств в момент непосредственно предшествующий корректировке.

Предел допускаемой абсолютной погрешности хода часов АИИС КУЭ ±5 с/сут.

МЕТРОЛОГИЧЕСКИЕ И ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Состав измерительных каналов АИИС КУЭ с указанием наименования ввода, типов и классов точности средств измерений, входящих в состав ИК, номера регистрации средств измерений в Государственном реестре средств измерений представлен в таблице 1.

Состав измерительных каналов АИИС КУЭ приведен в таблице 1.

Таблица	1	- Состав	изме	рительных	каналов

Тафинца 1 - Состав измерительных каналов						Вид	
№	Код	ا ہے ا	Состав измерительного канала				
ИИК	НΠ	Наименование объекта	Трансформатор тока	Трансформатор	Счётчик электри-	электро-	
n/π	ATC		трансформатор тока	напряжения	ческой энергии	энергии	
1	2	3	4	5	6	7	
			ТЛО-10-I-2У2	НТМИ-10	A1805RL-P46-DW4		
	8	1Т-10 (РУСН-1-10 кВ на	кл. т 0,5S	кл. т 0,5	кл. т 0,2S/0,5		
	192030002413104	СШ-10кВ)	$K_{TT} = 300/5$	$K_{TH} = 10000/100$	Зав. № 01196257		
1			Зав. № 66493	Зав. № 2249	Госреестр № 16666-07	активная реактивная	
			Зав. № 64550	Зав. №		p • • • • • • • • • • • • • • • • • • •	
	920		Зав. № 66497	Зав. №			
	_		Госреестр № 25433-08	Госреестр № 831-53			
			ТВЛМ-10	НТМИ-10	A1805RL-P46-DW4		
	02	ВЛ 10 кВ Абаканская- Аба-	кл. т 0,5	кл. т 0,5	кл. т 0,2S/0,5		
	D 192030002413102	кан- районная с отпайкой на	$K_{TT} = 400/5$	$K_{TH} = 10000/100$	Зав. № 01196256		
2		ПС Райково (ф.01-08)	Зав. № 9186	Зав. № 2249	Госреестр № 16666-07	активная реактивная	
_	300		Зав. № 8170	Зав. №			
920			Зав. №	Зав. №			
	-		Госреестр № 1856-63	Госреестр № 831-53			

Таблица 2 – Метрологические характеристики ИИК (активная энергия)

Границы допускаемой относительной погрешности измерения активной электрической						
энергии в рабочих условиях эксплуатации АИИС КУЭ						
	cosφ	δ _{1(2)%} ,	δ5%,	δ ₂₀ ‰	δ ₁₀₀ %,	
Номер ИИК		$I_{1(2)} \le I_{H3M} < I_{5\%}$	I ₅ %≤ I _{изм} < I _{20 %}	I ₂₀ %≤ I _{изм} < I ₁₀₀ %	$I_{100} \% \le I_{120} \%$	
	1,0	±1,9	±1,2	±1,0	±1,0	
1	0,9	±2,2	±1,4	±1,2	±1,2	
	0,8	±2,6	±1,7	±1,4	±1,4	
	0,7	±3,2	±2,1	±1,6	±1,6	
(TT 0,5S; TH 0,5; C4 0,2S)	0,5	±4,8	±3,0	±2,3	±2,3	
	1,0		±1,9	±1,2	±1,0	
2		-	±2,4	±1,4	±1,2	
		-	±2,9	±1,7	±1,4	
	0,7	-	±3,6	±2,0	±1,6	
(ТТ 0,5; ТН 0,5; Сч 0,2S)	0,5	-	±5,5	±3,0	±2,3	

Таблица 3 — Метрологические характеристики ИИК (реактивная энергия)

Границы допускаемой относительной погрешности измерения реактивной электрической						
энергии в рабочих условиях эксплуатации АИИС КУЭ						
	cosφ	δ _{1(2)%} ,	δ ₅ ‰,	δ ₂₀ %,	δ ₁₀₀ ‰,	
Номер ИИК		$I_{1(2)} \le I_{H3M} < I_{5\%}$	I ₅ %≤ I _{изм} < I ₂₀ %	I ₂₀ %≤ I _{изм} < I ₁₀₀	$I_{100} \% \le I_{M3M} < I_{120} \%$	
	0,9	±6,8	±4,1	±2,9	±2,9	
1	0,8	±4,3	±2,7	±2,0	±1,9	
	0,7	±3,6	±2,3	±1,7	±1,7	
(ТТ 0,58; ТН 0,5; Сч 0,5)	0,5	±2,7	±1,8	±1,3	±1,3	
	0,9	-	±7,1	±3,9	±2,9	
2	0,8	-	±4,5	±2,5	±1,9	
	0,7	-	±3,7	±2,1	±1,7	
(ТТ 0,5; ТН 0,5; Сч 0,5)	0,5	-	±2,7	±1,6	±1,3	

Примечания:

- 1. Характеристики относительной погрешности ИИК даны для измерения электроэнергии и средней мощности (30 мин.).
- 2. В качестве характеристик относительной погрешности указаны границы интервала, соответствующие вероятности 0,95.
- 3. Нормальные условия эксплуатации компонентов АИИС КУЭ:
 - напряжение питающей сети: напряжение (0,98...1,02)· Uном, ток $(1 \div 1,2)$ · Іном, со ϕ =0,9 инд;
 - температура окружающей среды (20 \pm 5) °C.
- 4. Рабочие условия эксплуатации компонентов АИИС КУЭ:
 - напряжение питающей сети (0,9...1,1)·Uном, сила тока (0,01...1,2)·Іном;
 - температура окружающей среды:
 - счетчики электроэнергии «Альфа» от минус 40 $\,^\circ$ С до плюс 55 $\,^\circ$ С
 - УСПД от плюс 5 до плюс 35 °С;
 - трансформаторы тока по ГОСТ 7746;
 - трансформаторы напряжения по ГОСТ 1983.
- 5. Трансформаторы тока по ГОСТ 7746, трансформаторы напряжения по ГОСТ 1983, счетчики электроэнергии по ГОСТ Р 52323 в режиме измерения активной электроэнергии, по ГОСТ 26035 в режиме измерения реактивной электроэнергии;
- 6. Допускается замена измерительных трансформаторов и счетчиков электроэнергии на аналогичные (см. п. 6 Примечания) утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в Таблице 1. Допускается замена компонентов системы на однотипные утвержденного типа. Замена оформляется актом в установленном на объекте порядке. Акт хранится совместно с настоящим описанием типа АИ-ИС КУЭ как его неотъемлемая часть.

Параметры надежности применяемых в АИИС КУЭ измерительных компонентов:

- счетчик электроэнергии "Альфа" среднее время наработки на отказ не менее 120000 часов;
- УСПД среднее время наработки на отказ не менее 35000 часов;

Среднее время восстановления, при выходе из строя оборудования:

- для счетчика Тв ≤ 2 часа;
- для сервера Тв ≤ 1 час;
- для УСПД Тв ≤ 1 час;
- для компьютера APM Тв ≤ 1 час;
- для модема Тв ≤ 1 час.

Защита технических и программных средств АИИС КУЭ от несанкционированного доступа:

- клеммники вторичных цепей измерительных трансформаторов имеют устройства для пломбирования;
- панели подключения к электрическим интерфейсам счетчиков защищены механическими пломбами;
- наличие защиты на программном уровне возможность установки многоуровневых паролей на счетчиках, УСПД, сервере, АРМ;
- организация доступа к информации ИВК посредством паролей обеспечивает идентификацию пользователей и эксплуатационного персонала;
- защита результатов измерений при передаче.

Наличие фиксации в журнале событий счетчика следующих событий

- фактов параметрирования счетчика;
- фактов пропадания напряжения;
- фактов коррекции времени.

Возможность коррекции времени в:

- счетчиках (функция автоматизирована);
- УСПД (функция автоматизирована);
- сервере (функция автоматизирована).

Глубина хранения информации:

- счетчики электроэнергии "Альфа" до 30 лет при отсутствии питания;
- ИВК хранение результатов измерений и информации о состоянии средств измерений за весь срок эксплуатации системы.

МЕСТО И СПОСОБ НАНЕСЕНИЯ ЗНАКА УТВЕРЖДЕНИЯ ТИПА

Знак утверждения типа наносится на титульные листы эксплуатационной документации АИИС КУЭ типографским способом.

комплектность поставки

Комплектность АИИС КУЭ определяется проектной документацией на систему. В комплект поставки входит техническая документация на систему и на комплектующие средства измерений.

ПОВЕРКА

Поверка проводится в соответствии с документом «ГСИ. Система автоматизированная информационно-измерительная коммерческого учета электрической энергии АИ-ИС КУЭ - "ПС 500 кВ Абаканская». Методика поверки». МП-951/446-2010 утвержденным ГЦИ СИ ФГУ «Ростест-Москва» в ноябре 2010 г.

Средства поверки – по НД на измерительные компоненты:

- TT πο ΓΟCT 8.217-2003;
- TH по МИ 2845-2003, МИ 2925-2005 и/или по ГОСТ 8.216-88;
- Счётчики A1800 по методике поверки МП-2203-0042-2006 утверждённой ГЦИ СИ «ВНИИМ им. Д.И. Менделеева» в мае 2006 г.;
- УСПД RTU-325 в соответствии с документом ДЯИМ.466453.005 МП утвержденным ГЦИ СИ ФГУП «ВНИИМС».
- Радиочасы МИР РЧ-01, принимающие сигналы спутниковой навигационной системы Global Positioning System (GPS). (Госреестр № 27008-04);
- Переносной компьютер с ПО и оптический преобразователь для работы со счетчиками системы, ПО для работы с радиочасами МИР РЧ-01;
- Термометр по ГОСТ 28498, диапазон измерений 40...+60°C, цена деления 1°C.

Межповерочный интервал – 4 года.

СВЕДЕНИЯ О МЕТОДИКАХ (МЕТОДАХ) ИЗМЕРЕНИЙ

Измерения производятся в соответствии с документом: «Методика измерений электрической энергии и мощности с использованием системы автоматизированной информационно-измерительной коммерческого учета электрической энергии АИИС КУЭ - "ПС 500 кВ Абаканская"».

НОРМАТИВНЫЕ ДОКУМЕНТЫ

1. ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия.

- 2. ГОСТ 34.601-90 Информационная технология. Комплекс стандартов на автоматизированные системы. Автоматизированные системы. Стадии создания.
- 3. ГОСТ Р 8.596-2002 ГСИ. Метрологическое обеспечение измерительных систем. Основные положения.
 - 4. ГОСТ 7746-2001 Трансформаторы тока. Общие технические условия.
 - 5. ГОСТ 1983-2001 Трансформаторы напряжения. Общие технические условия.
- 6. ГОСТ 26035-83 Счетчики электрической энергии переменного тока электронные. Общие технические условия.
- 7. ГОСТ Р 52323-2005 Аппаратура для измерения электрической энергии переменного тока. Частные требования. Часть 22. Статические счетчики активной энергии классов точности 0,2S и 0,5S.
- 8. ГОСТ Р 52425-2005 Аппаратура для измерения электрической энергии переменного тока. Частные требования. Часть 23. Статические счетчики реактивной энергии.
- 9. МИ 2999-2006 «Рекомендация. ГЦИ. Системы автоматизированные информационно-измерительные коммерческого учета электрической энергии. Рекомендации по составлению описания типа».

ИЗГОТОВИТЕЛЬ

ООО «Энсис Технологии»

Адрес: 111250, г. Москва, проезд завода «Серп и Молот», д. 6

Тел. (495) 797-99-66 Факс (495) 797-99-67 http://www.ensyst.ru/

ЗАЯВИТЕЛЬ

Филиал ОАО «ИЦ ЕЭС» — «Фирма ОРГРЭС»

Адрес: 107023, г. Москва, Семеновский переулок, д. 15

Тел. (495) 223-41-14 Факс (495) 926-30-43 http://www.orgres-f.ru/

Директор Филиала ОАО «ИЦ ЕЭС»-«Фирма ОРГРЭС»

Р.А. Асхатов