

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

СВИДЕТЕЛЬСТВО

об утверждении типа средств измерений

GB.C.34.004.A № 42635

Срок действия до 18 мая 2016 г.

НА<mark>ИМЕНО</mark>ВАНИЕ ТИПА СРЕДСТВ ИЗМЕРЕНИЙ

Мультиметры цифровые прецизионные 8000-R модификаций 8081-R
и 8071-R

ИЗГОТОВИТЕЛЬ
Фирма "Transmille Ltd.", Великобритания

РЕГИСТРАЦИОННЫЙ № 46795-11

ДОКУМЕНТ НА ПОВЕРКУ МП 46795-11

ИНТЕРВАЛ МЕЖДУ ПОВЕРКАМИ 1 год

Тип средств измерений утвержден приказом Федерального агентства по техническому регулированию и метрологии от 18 мая 2011 г. № 2245

Описание типа средств измерений является обязательным приложением к настоящему свидетельству.

Заместитель Руководителя		В.Н.Крутико
Федерального агентства		
	""	2011 г.

№ 000579

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Мультиметры цифровые прецизионные 8000-R модификаций 8081-R и 8071-R

Назначение средства измерений

Мультиметры цифровые прецизионные 8000-R модификаций 8081-R и 8071-R предназначены для:

- измерения напряжения постоянного и переменного тока;
- измерения силы постоянного и переменного тока;
- измерения электрического сопротивления;
- измерения частоты;
- измерения угла сдвига фаз;
- измерения температуры.

Описание средства измерений

Мультиметры цифровые прецизионные 8000-R модификаций 8081-R и 8071-R представляют собой цифровые измерительные приборы. Принцип работы мультиметров заключается в измерении мгновенных значений входных аналоговых сигналов, преобразовании результатов измерений в цифровую форму с помощью АЦП, дальнейшей его обработке и отображении результатов измерений на дисплее.

Обработка результатов измерений и управление всеми процессами осуществляется встроенным микропроцессором.

Мультиметры обладают функциями автоматического выбора диапазона измерений, самодиагностики, автокалибровки, запоминания рабочих установок пользователя. Калибровочные константы и коэффициенты хранятся в электронно-стираемом ПЗУ. Для обеспечения высокой точности измерений в мультиметрах применены высокостабильные меры напряжения постоянного тока и электрического сопротивления.

Приборы имеют функцию компаратора для сравнения двух величин (относительные измерения)

Мультиметры позволяют измерять силу тока до 30 A без использования внешних шунтов. Измерение температуры приборы обеспечивают при подключении внешних термометров сопротивления и термопар (погрешность не нормируется).

Приборы выполнены в виде моноблока в стандартных металлических корпусах, которые могут помещаться в стенд (стойку) размером 19 дюймов.

На передней панели расположены измерительные входы, двойной вакуумный флуоресцентный дисплей, функциональные клавиши. Для сигнализации о правильном подключении при измерениях мультиметры имеют светодиодную индикацию. Для удобного размещения на столе в приборах предусмотрены подъемные ножки.

На задней панели расположены дополнительные измерительные входы, предохранители, разъем для подключения датчика давления (опция), разъемы интерфейсов RS-232, USB, GPIB (IEEE-488), LAN, выключатель питания, разъем кабеля питания.

Для защиты от несанкционированного доступа на части корпуса приборов нанесены наклейки, при снятии или повреждении которых остается несмываемый след.

Мультиметры выпускаются в двух модификациях 8081-R и 8071-R, идентичных по дизайну и отличающихся между собой набором выполняемых функций и пределами допускаемых погрешностей.

Программное обеспечение

Мультиметры имеют встроенное и внешнее программное обеспечение (ПО). Их характеристики приведены в таблице 1.

Встроенное ПО (микропрограмма) — внутренняя программа микропроцессора для обеспечения нормального функционирования прибора, управления интерфейсом и т.д. Оно реализовано аппаратно и является метрологически значимым. Микропрограмма заносится в программируемое постоянное запоминающее устройство (ППЗУ) приборов предприятиемизготовителем и не может быть изменена пользователем.

Внешнее ПО ProCal — это комплекс программных инструментов для калибровки мультиметров. Он обеспечивает настройку и конфигурирование приборов, создание и управление процедурами измерений, выполнение измерений и/или вывод независимо полученных данных из систематизированной базы на дисплей, печать сертификатов и протоколов калибровки. ПО ProCal является метрологически значимым.

ПО ProCal интегрируется с программным пакетом ProCal-Track, включающим журнал регистрации всего парка измерительной техники предприятия, места ее нахождения, текущее состояние, прохождение переданных на поверку/калибровку изделий от заказчиков, печать необходимой сопроводительной документации и отгрузку возвращаемой заказчикам услуг техники. ПО ProCal-Track не является метрологически значимым.

Таблица 1 – Характеристики программного обеспечения (ПО)

Тип прибора	Наиме-	Идентифика-	Номер	Цифровой идентификатор	Алгоритм
	нование	ционное	версии	ПО (контрольная сумма	вычисления
	ПО	наименование	(идентифика-	исполняемого кода)	цифрового
		ПО	ционный	·	идентифика-
			номер) ПО		тора ПО
8081-R и	Внутрен	Микропрограмма	2.04	-	-
8071-R	нее				
	Внешнее	ProCal	4.20	5303A931368742577258B	md5
				EF3777FC75C	
	Внешнее	ProCal-Track	4.20	51E6EB3EB996CB8A07F0	md5
				26B4B973C683	

Уровень защиты программного обеспечения от непреднамеренных и преднамеренных изменений – «С» в соответствии с МИ 3286-2010.

Метрологические и технические характеристики

Таблица 2 — Основные метрологические характеристики мультиметров 8081-R в режиме измерений напряжения постоянного тока, силы постоянного тока, электрического

сопротивления постоянному току

Измеряемая	Предел	Разрешение	Пределы допускаемой погрешности ± (% от
величина	измерений		показаний + % от значения предела измерений)
	100 мВ	1 нВ	0,00048 + 0,00017
Напряжение	1 B	10 нВ	0,00039 + 0,00006
постоянного	10 B	100 нВ	0,00039 + 0,00006
тока	100 B	1 мкВ	0,00058 + 0,00008
	1000 B	10 мкВ	0,00058 + 0,00012
	10 нА	0,01пА	0.5 + 0.008
	100 нА	0,1 пА	0,18 + 0,0034
	1 мкА	1 пА	0.02 + 0.0017
	10 мкА	10 пА	0,003 + 0,001
Сила	100 мкА	10 пА	0,0007 + 0,0004
постоянного	1 мА	100 пА	0,0007 + 0,0004
тока	10 мА	1 нА	0,0009 + 0,0004
	100 мА	10 нА	0,003 + 0,0006
	1 A	100 нА	0,015 + 0,0013
	10 A	1 мкА	0,036 + 0,0035
	30 A	10 мкА	0,049 + 0,0145
	1 Ом	0,01 мкОм	0,0015 + 0,0006
Электрическо	10 Ом	0,1 мкОм	0,001 + 0,0003
e	100 Ом	1 мкОм	0,0009 + 0,0001
сопротивлени	1 кОм	10 мкОм	0,0008 + 0,00008
e	10 кОм	100 мкОм	0,00095 + 0,00008
постоянному	100 кОм	1 мОм	0,001 + 0,00008
току	1 МОм	10 мОм	0,0011 + 0,0002
	10 МОм	100 мОм	0,0015 + 0,0008

Таблица 3 — Основные метрологические характеристики мультиметров 8081-R в режиме

измерений напряжения переменного тока, силы переменного тока, частоты

Измеряемая	Предел	Разрешение	Частота	Пределы допускаемой погрешности
величина	измерений			\pm (% от показаний + % от значения
				предела измерений)
1	2	3	4	5
Напряжение			10 Гц – 40 Гц	0,05 + 0,015
переменного			40 Гц – 200 Гц	0,021 + 0,009
тока	100 мВ	0,1 мкВ	200 Гц – 2 кГц	0,017 + 0,008
		<u> </u>	2 к Γ ц $ 20$ к Γ ц	0,025 + 0,01
			20 κΓιι – 100 κΓιι	0,06 + 0,05
			10 Гц – 40 Гц	0,04 + 0,015
			40 Гц – 200 Гц	0,019 + 0,006
	1 B	1 мкВ	200 Гц – 2 кГц	0,015 + 0,006
	1 Б	1 MKD	$2 к\Gamma$ ц $-20 к\Gamma$ ц	0,025 + 0,01
			20 κΓιι – 100 κΓιι	0,06 + 0,05
			100 кГц – 1 МГц	1 + 2,5

1	2	3	4	5
			10 Гц – 40 Гц	0,04 + 0,015
			40 Гц – 200 Гц	0,019 + 0,006
	10 D	10 x 22 D	200 Гц – 2 кГц	0,015 + 0,006
	10 B	10 мкВ	2 кГц – 20 кГц	0,025 + 0,01
			20 κΓц – 100 κΓц	0,06+0,05
			100 κΓц – 200 κΓц	1 + 2,5
			10 Гц – 40 Гц	0,05+0,015
			40 Гц – 200 Гц	0,02 + 0,009
	100 B	100 мкВ	200 Гц – 2 кГц	0,018 + 0,007
			2 кГц – 20 кГц	0,03 + 0,01
			20 кГц – 50 кГц	0,08 + 0,05
			10 Гц – 40 Гц	0,05+0,015
			40 Гц – 200 Гц	0,02 + 0,009
	1000 B	1 мВ	200 Гц – 2 кГц	0,018 + 0,007
			2 кГц – 20 кГц	0,03 + 0,01
			20 кГц – 50 кГц	0.08 + 0.05
	100 мкА	0,1 нА	10 Гц – 40 Гц	0,05 + 0,015
			40 Гц – 1 кГц	0,03 + 0,012
			1 кГц – 10 кГц	0.07 + 0.03
	1 мА		10 Гц – 40 Гц	0,05 + 0,015
		1 нА	40 Гц – 1 кГц	0,03 + 0,012
			1 кГц – 10 кГц	0,07 + 0,03
			10 Гц – 40 Гц	0.05 + 0.015
	10 мА	10 нА	40 Гц – 1 кГц	0.03 + 0.012
Сила			1 кГц – 10 кГц	0,07 + 0,03
переменного			10 Гц – 40 Гц	0,05 + 0,015
тока	100 мА	100 нА	40 Гц – 1 кГц	0.03 + 0.012
			1 кГц – 10 кГц	0,07 + 0,03
			10 Гц – 40 Гц	0,06 + 0,02
	1 A	1 мкА	40 Гц – 1 кГц	0,04 + 0,015
			1 кГц – 10 кГц	0,07 + 0,05
	10 A	10 мкА	10 Гц – 40 Гц	0,08 + 0,04
	10 A	IU MKA	40 Гц – 1 кГц	0,07 + 0,03
	30 A	100 vac A	10 Гц – 40 Гц	0,08 + 0,04
		100 мкА	40 Гц – 1 кГц	0,07 + 0,03
Угол сдвига	359,9°	100 c	от 0 до 359,9°	0,2° + 6 мкс
фаз				
Частота	1 МГц	1 Гц	1 Гц – 1 МГц	0,0005 + 2 Гц

Таблица 4 — Основные метрологические характеристики мультиметров 8071-R в режиме измерений напряжения постоянного тока, силы постоянного тока, электрического сопротивления постоянному току

Измеряемая	Предел	Разрешение	Пределы допускаемой погрешности ± (% от
величина	измерений		показаний + % от значения предела измерений)
1	2	3	4
Напряжение	100 мВ	1 нВ	0,0012 + 0,0004
постоянного	1 B	10 нВ	0,0009 + 0,00014
тока	10 B	100 нВ	0,0009 + 0,00014

1	2	3	4
	100 B	1 мкВ	0,0014 + 0,00018
	1000 B	10 мкВ	0,0014 + 0,00028
	100 мкА	100 пА	0,0025 + 0,0014
	1 мА	1 нА	0,0025 + 0,0014
Сила	10 мА	10 нА	0,0035 + 0,0014
постоянного	100 мА	100 нА	0,011 + 0,0022
тока	1 A	1 мкА	0,055 + 0,0045
	10 A	10 мкА	0,15 + 0,0120
	30 A	100 мкА	0,2+0,05
	10 Ом	1 мкОм	0,003 + 0,0008
Dwarmarra area	100 Ом	10 мкОм	0,0025 + 0,0003
Электрическое	1 кОм	100 мкОм	0,002 + 0,0002
сопротивление	10 кОм	1 мОм	0,0025 + 0,0002
постоянному току	100 кОм	10 мОм	0,003 + 0,0002
	1 МОм	100 мОм	0,0035 + 0,0005
	10 МОм	1 Ом	0,0048 + 0,002

Таблица 5 — Основные метрологические характеристики мультиметров 8071-R в режиме измерений напряжения переменного тока, силы переменного тока, частоты

Измеряемая	Предел	Разрешение	Частота	Пределы допускаемой
величина	измерений			погрешности
				\pm (% от показаний + % от
				значения предела измерений)
1	2	3	4	5
			10 Гц – 40 Гц	0,2 + 0,08
			40 Гц – 200 Гц	0,08 + 0,05
	100 мВ	1 мкВ	200 Гц – 2 кГц	0,07 + 0,04
			$2 к\Gamma$ ц $-20 к\Gamma$ ц	0,1+0,05
			20 κΓц – 100 κΓц	0,3+0,2
			10 Гц – 40 Гц	0,18 + 0,08
			$40 \ \Gamma$ ц $- \ 200 \ \Gamma$ ц	0,07 + 0,05
	1 B	10 мкВ	200 Гц – 2 кГц	0,05 + 0,03
			$2 к\Gamma$ ц $-20 к\Gamma$ ц	0,1+0,05
			20 кГц – 100 кГц	0,3+0,2
Напряжение			10 Гц – 40 Гц	0,18 + 0,08
переменного		100 мкВ	40 Гц – 200 Гц	0,07 + 0,05
тока	10 B		200 Гц – 2 кГц	0,05+0,03
			2 кГц – 20 кГц	0,1+0,05
			20 кГц – 100 кГц	0,3+0,2
			10 Гц – 40 Гц	0,18 + 0,09
	100 B	1 мВ	40 Гц – 200 Гц	0.08 + 0.06
	100 B	1 MD	200 Гц – 2 кГц	0,06 + 0,03
			2 кГц – 20 кГц	0,1+0,05
			10 Гц – 40 Гц	0,18 + 0,09
	1000 B	10 мВ	40 Гц – 200 Гц	0,08 + 0,06
	1000 D	TO MID	200 Гц – 2 кГц	0,06+0,03
			2 кГц – 20 кГц	0,1+0,05

1	2	3	4	5
			10 Гц – 40 Гц	0,13 + 0,04
	100 мкА	0,1 нА	40 Гц – 1 кГц	0.08 + 0.03
			1 кГц – 10 кГц	0,3+0,09
			10 Гц – 40 Гц	0,13 + 0,04
	1 мА	1 нА	40 Гц – 1 кГц	0,08 + 0,03
			1 кГц – 10 кГц	0,3+0,09
			10 Гц – 40 Гц	0,13 + 0,04
	10 мА	10 нА	40 Гц – 1 кГц	0,08 + 0,03
Сила			1 кГц – 10 кГц	0.3 + 0.09
переменного	100 мА	100 нА	10 Гц – 40 Гц	0,13 + 0,04
тока			40 Гц – 1 кГц	0,08 + 0,03
			1 кГц – 10 кГц	0,3+0,09
	1 A	1 мкА	10 Гц – 40 Гц	0,2+0,06
			40 Гц – 1 кГц	0,1+0,05
			1 кГц – 10 кГц	0,3+0,15
	10 A	10 мкА	10 Гц – 40 Гц	0,3+0,1
	10 71	TO WIKI	40 Гц – 1 кГц	0,4+0,1
	30 A	100 мкА	10 Гц – 40 Гц	0,3+0,1
	30 A 1	100 MKA	40 Гц – 1 кГц	0,4+0,1
Частота	1 МГц	1 Гц	1 Гц – 1 МГц	0,0005 + 2 Гц

Таблица 6 – Общие технические характеристики мультиметров 8081-R и 8071-R

Характеристика	Значение
Интерфейс связи с ПК	RS-232, USB, GPIB
	(IEEE-488), LAN
Напряжение сети питания, В	230
Частота напряжения сети питания, Гц	50/60
Габаритные размеры, мм, (длина × ширина × высота)	460×440×95
Масса, кг	7
Рабочие условия применения:	
- температура окружающего воздуха, °С	от 0 до + 40
- относительная влажность воздуха, %	до 90

Знак утверждения типа

Знак утверждения типа наносится методом трафаретной печати на лицевую панель приборов и типографским способом на титульный лист руководства по эксплуатации.

Комплектность средства измерений

Таблица 7 – Комплектность (обязательная поставка)

№ п/п	Наименование	Количество
1.	Мультиметр	1
2.	Кабель для измерений	2
3.	Кабель сети питания	1
4.	Кабель RS-232	1
5.	Руководство по эксплуатации	1
6.	Методика поверки	1

Таблица 8 – Комплектность (опциональная поставка)

No	Наименование	Количество	Обозначение
п/п			
1.	Набор для крепления в стенд размера19 дюймов	1	RACK
2.	Сканер 10-и канальный	1	8500
3.	Набор специализированных проводо	1	8000LEAD
4.	Набор специализированных проводов для сканера 8500	1	8500LEAD
5.	Мягкий кейс	1	SOFTCASE
6.	Жесткий кейс	1	TRANCASE
7.	Программное обеспечение для калибровки	1	ProCal
8.	Программное обеспечение для лабораторного комплекса	1	ProCal-Track
9.	Набор платиновых термометров (диапазон от - 80 до 670 °C)	1	8000PRT
10.	Набор платиновых термометров (диапазон от - 200 до 670 °C)	1	8000SPRT
11.	Блок для измерения частоты до 10 МГц	1	EXT10

Поверка

осуществляется по документу «Мультиметры цифровые прецизионные 8000-R модификаций 8081-R и 8071-R. Методика поверки», утвержденному ГЦИ СИ ФГУП «ВНИИМС» в феврале 2011 г.

Средства поверки: калибратор многофункциональный Fluke 5720A (\pm (0,0002 $X_{_{изм.}}$ + 2,5 мкВ)); калибратор многофункциональный Transmille 3010 (\pm (0,016 $X_{_{изм.}}$ + 300 мкА)); генератор сигналов произвольной формы 33220A (\pm 20×10⁻⁶); стандарт частоты рубидиевый Fluke 909 (\pm 5×10⁻¹¹); калибратор фазы Ф1-4 (\pm 0,03°).

Сведения о методиках (методах) измерений

Сведения о методиках (методах) измерений приведены в руководствах по эксплуатации.

Нормативные и технические документы, устанавливающие требования к мультиметрам цифровым прецизионным 8000-R модификаций 8081-R и 8071-R

- 1. ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия.
- 2. ГОСТ 14014-91 Приборы и преобразователи измерительные цифровые напряжения, тока, сопротивления. Общие технические требования и методы испытаний».
- 3. Техническая документация фирмы «Transmille Ltd.», Великобритания.

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

- «выполнении работ по оценке соответствия промышленной продукции и продукции других видов, а также иных объектов установленным законодательством Российской Федерации обязательным требованиям» (п. 14 ч. 3 ст. 1 Федерального Закона от 26.06.2008 г. № 102-ФЗ «Об обеспечении единства измерений»).

Изготовитель

Фирма «Transmille Ltd.», Великобритания.

Адрес: Unit 4, Select Business Centre, Lodge Road, Staplehurst, Kent TN12 0QW, United Kingdom.

Тел.: +44(0)1580 890700 Факс: +44(0)1580 890711

Web-сайт: http://www.transmille.co.uk

Заявитель

ЗАО «ТЕККНОУ», г. Санкт-Петербург.

Адрес: 199155, г. Санкт-Петербург, ВО, ул. Уральская д. 17, корп.3, литер Е, пом.1-Н.

Тел. (812) 324-56-27 Факс: (812) 324-56-29

Web-сайт: www.tek-know.ru

Испытательный центр

Государственный центр испытаний средств измерений Федеральное государственное унитарное предприятие «Всероссийский научно-исследовательский институт метрологической службы» (ГЦИ СИ ФГУП «ВНИИМС»).

Юридический адрес: 119361, г. Москва, ул. Озерная, д. 46.

Тел. 8 (495) 437 55 77; Факс 8 (495) 437 56 66; E-mail: office@vniims.ru.

Номер аттестата аккредитации 30004-08 от 27.06.2008 г.

Заместитель

Руководителя Федерального агентства по техническому регулированию и метрологии

В.Н. Крутиков

М.П.