

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

СВИДЕТЕЛЬСТВО

об утверждении типа средств измерений

ES.C.39.083.A № 42935

Срок действия до 16 июня 2016 г.

НАИМЕНОВАНИЕ ТИПА СРЕДСТВ ИЗМЕРЕНИЙ Анализаторы биохимические полуавтоматические BTS-350

ИЗГОТОВИТЕЛЬ
Фирма "BioSystems S.A.", Испания

РЕГИСТРАЦИОННЫЙ № 47032-11

ДОКУМЕНТ НА ПОВЕРКУ МП 47032-11

ИНТЕРВАЛ МЕЖДУ ПОВЕРКАМИ 1 год

Тип средств измерений утвержден приказом Федерального агентства по техническому регулированию и метрологии от 16 июня 2011 г. № 2871

Описание типа средств измерений является обязательным приложением к настоящему свидетельству.

Заместитель Руководителя Федерального агентства Е.Р.Петросян

"...... 2011 г.

№ 000859

Серия СИ

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Анализаторы биохимические полуавтоматические BTS-350

Назначение средства измерений

Анализаторы биохимические полуавтоматические BTS-350 (далее - анализаторы) предназначены для измерения оптической плотности биологических жидкостей с целью определения концентрации биохимических компонентов в пробах.

Описание средства измерений

Принцип действия анализаторов биохимических полуавтоматических BTS-350 основан на сравнении двух световых потоков: полного, соответствующего нулю оптической плотности, и ослабленного при прохождении через исследуемый образец.

Анализаторы состоят из следующих узлов:

- источник света (светодиод, отдельный для каждой длины волны);
- комплект интерференционных светофильтров в спектральном диапазоне от 340 до 700 нм (с максимумами пропускания на длинах волн, например, 340, 405, 450, 505, 535, 560, 600, 635, 670 нм);
 - фокусирующая оптическая система;
- термостатируемое кюветное отделение для размещения кюветы с исследуемым образцом или раствором, две термостатируемые ячейки под стандартные кюветы;
 - приемник излучения (фотодиод);
 - система электропитания и микропроцессор.

В кюветное отделение устанавливается проточная кювета, через которую прокачивается жидкость встроенным перистальтическим насосом. На цифровой жидкокристаллический дисплей и на встроенный термопринтер выводится результат измерения оптической плотности образца, помещенного в кюветное отделение, или результат пересчета оптической плотности образца в концентрацию раствора в соответствии с уравнением Ламберта-Бера по задаваемой программе измерений.

Анализаторы биохимические полуавтоматические BTS-350 имеют графический жидкокристаллический дисплей с разрешением 320×240 точек, расположение текста и данных зависит от выполняемой работы. Управление режимами работы производится функциональными клавишами и цифровой клавиатурой.

Все устройство смонтировано в едином корпусе.

Управление анализатором осуществляется с клавиатуры, встроенной в прибор, дополнительно к этому - с внешнего компьютера, оснащенного программой, производства компании BioSystems S.A.

Структура программного обеспечения выражена в системе меню, выполняющих различные функции. Меню сгруппированы по темам.

Главное меню имеет опции:

- 1. Концентрация опция, позволяющая вычислять концентрацию для различных методов, предварительно запрограммированных и сохраненных в одной из 150 доступных ячеек.
- 2. Абсорбция опция, позволяющая проводить измерения оптической плотности и напрямую считывать измеренные значения.
- 3. Конфигурация опция для некоторых настроек анализатора под нужды пользователя (язык, контраст экрана, активация принтера, контраст принтера, звуковой сигнал, промывка, код пациента и другие).
- 4. Утилиты опция, содержащая несколько операций по обслуживанию и настройке анализатора (установка новой программы, даты и времени, настройка помпы, тест помпы, оп-

ределение величины светового потока, восстановление удаленных тестов, загрузка заводских настроек).

- 5. Программирование опция, позволяющая выполнять программирование тестов и введение единиц измерения.
- 6. Контроль качества опция, обеспечивающая доступ к программе контроля качества, основанной на графиках Леви-Дженингса и правилах Вестгарда.
- 7. Код оператора опция, позволяющая активировать или деактивировать запрос кода оператора при включении прибора.
 - 8. Архив опция, позволяющая просмотреть архивные результаты тестов пациентов.

Программное обеспечение

Идентификационные данные программного обеспечения в соответствии с таблицей 1 Таблица 1

Наименова ние про- граммного обеспечени	ционное на-	Номер версии (идентифика- ционный но- мер) про- граммного обеспечения	Цифровой идентификатор программного обеспечения (контрольная сумма исполняемого кода)	Алгоритм вычисления цифрового идентификатора программного обеспечения
BTS-350	BTS-350.bin	1.2	Checksum=0x9B9917	Не определен

Программное обеспечение не влияет на метрологические характеристики анализаторов.

Уровень защиты программного обеспечения от непреднамеренных и преднамеренных изменений соответствует уровню А по МИ 3286-2010.

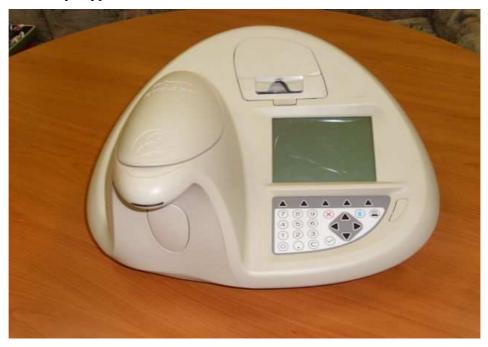


Рисунок 1 – Общий вид анализатора биохимического полуавтоматического BTS-350

Рисунок 2 - Места пломбирования анализатора биохимического полуавтоматического BTS-350

Метрологические и технические характеристики

Диапазон измерений оптической плотности, Б от 0,2 до 3,5;						
Пределы допускаемой систематической составляющей абсолютной погрешности измерений						
в диапазоне измерений оптической плотности, Б $\pm 0,040;$						
Пределы допускаемой случайной составляющей						
погрешности измерений оптической плотности (СКО)						
Дискретность показаний оптической плотности, Б						
Спектральный диапазон, нм						
Полоса пропускания интерференционного фильтра, нм						
Смещение длины волны в максимуме пропускания, нм±2;						
Температура термостатирования в проточных кюветах, °С						
Погрешность поддержания температуры термостатирования, °С $\pm 0,5;$						
Тип кювет для измерений - макро-, полумикро-, микро- кюветы из стекла и пластика;						
Размеры пробирок (диаметр×высота), мм						
Проточная система - перистальтическая помпа объем дозирования, мкл от 100 до 5000;						
Напряжение питания, В от 100 до 240;						
Частота, Гц						
Потребляемая мощность, Вт						
Габаритные размеры, мм, (длина \times ширина \times высота)						
Масса, г						
Условия эксплуатации:						
- температура окружающей среды, °С						
- относительная влажность, %						

Знак утверждения типа

Знак утверждения типа наносится печатным способом на титульные листы эксплуатационной документации и корпус анализатора.

Комплектность средства измерений

Комплект поставки соответствует приведенному в таблице 2.

Таблица 2

Наименование	Количество
Анализатор биохимические полуавтоматические BTS-350	1
ЗИП:	
коробка 1 – аксессуары	1
коробка 2 – блок питания и набор кабелей	1
Контрольная сыворотка производства фирмы BioSystems S.A. (Испания)	1
Руководство по эксплуатации	1
Методика поверки	1

Поверка

осуществляется в соответствии с документом «Анализаторы биохимические полуавтоматические BTS-350. Методика поверки», утвержденным ГЦИ СИ Φ ГУ «Менделеевский ЦСМ» в апреле 2011 г.

Основное поверочное оборудование:

Комплект светофильтров КНС-10.2,

пределы допускаемых абсолютных погрешностей измерений СКНП в спектральном диапазоне от 400 до 850 нм, отн. ед.:

для светофильтров № 1 - 4 $\pm 0,0025$; для светофильтров № 5 - 8 $\pm 0,0015$.

Сведения о методиках (методах) измерений

Анализаторы биохимические полуавтоматические BTS-350. Руководство пользователя.

Нормативные документы, устанавливающие требования к анализаторам биохимическим полуавтоматическим BTS-350.

ГОСТ Р 50444-92 Приборы, аппараты и оборудование медицинские. Общие технические условия.

ГОСТ 8.588-2006 ГСИ. Государственная поверочная схема для средств измерений оптической плотности материалов

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

- в области здравоохранения (для определения концентрации аналитов в биохимических жидкостях).

Изготовитель

Фирма «BioSystems S.A.», Испания Costa Brava 30, 08030 Barcelona, Spain

Заявитель

Представительство Общества "БиоСистемс, С.А." (Испания),

Адрес юридический: РФ, 109428, Москва, ул. Михайлова, д. 4А

Адрес фактический: 334119, Москва, 5-й Донской проезд, д. 15, стр. 5 офис 108.

Тел.+7(495)792-38-28, Факс +7(495)792-38-27

Испытательный центр

Государственный центр испытаний средств измерений Федеральное государственное учреждение «Менделеевский центр стандартизации, метрологии и сертификации» (ГЦИ СИ ФГУ «Менделеевский ЦСМ»)

Юридический и почтовый адрес:

пос. Менделеево, Солнечногорский р-н, Московская обл., 141570

Тел. (495) 994-22-10 Факс (495) 994-22-11 www.mencsm.ru, E-mail: info@mencsm.ru

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

			Е.Р. Петросян
М.п.	«	»	2011 г.