

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

СВИДЕТЕЛЬСТВО

об утверждении типа средств измерений

RU.C.38.002.A № 42994

Срок действия до 27 июня 2016 г.

НАИМЕНОВАНИЕ ТИПА СРЕДСТВ ИЗМЕРЕНИЙ Устройства детектирования УДЖГ-101

ИЗГОТОВИТЕЛЬ

ООО НПП "Радико", г.Обнинск, Калужская обл.

РЕГИСТРАЦИОННЫЙ № 47077-11

ДОКУМЕНТ НА ПОВЕРКУ ВШКФ.414752.004 МП

ИНТЕРВАЛ МЕЖДУ ПОВЕРКАМИ 1 год

Тип средств измерений утвержден приказом Федерального агентства по техническому регулированию и метрологии от **27 июня 2011 г.** № **3042**

Описание типа средств измерений является обязательным приложением к настоящему свидетельству.

Заместитель Руководителя	Е.Р. Петросян
Федерального агентства	
	" 2011 г.

№ 000943

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Устройства детектирования УДЖГ-101

Назначение средства измерений

Устройства детектирования УДЖГ-101 (далее по тексту — УД) предназначены для измерения объемной активности гамма-излучающих радионуклидов. УД применяются для работы как в составе систем радиационного контроля (СРК), так и в автономном режиме на атомных станциях и других объектах атомной энергетики, где необходим оперативный контроль объемной активности жидкостей.

Описание средства измерений

В основу работы УД положен принцип преобразования энергии гамма-квантов в чувствительном объеме сцинтилляционного кристалла в световые вспышки с последующей их регистрацией с помощью фотоэлектронного умножителя и обработкой многоканальным амплитудным анализатором. УД представляет собой спектрометрический измерительный тракт, состоящий из блока детектирования на базе сцинтилляционного кристалла NaI(Tl) (далее по тексту - БД) и блока первичной обработки данных со световой и звуковой сигнализацией или без нее (далее по тексту – БПО-АТ). Способ измерения объемной активности жидкостей может быть погружной, проточный или приставной. При погружном методе измерении БД размещается в водонепроницаемом контейнере.

Внешний вид установки представлен на рисунке 1.

Рисунок 1 – Устройство детектирования УДЖГ-101.

Схема пломбировки от несанкционированного доступа, и обозначение мест несения оттисков клейм или размещения наклеек приведена на рисунке 2.

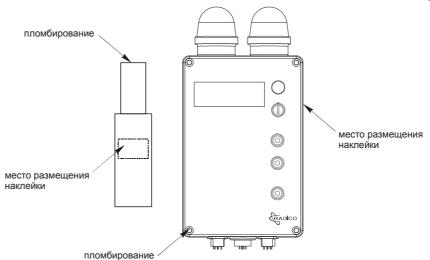


Рисунок 2 — Схема пломбирования и обозначение мест наклеек

Программное обеспечение

Программное обеспечение УД включает в себя:

- программу hal (Hardware abstract layer), предназначенную для опроса блока детектирования (БД). Программа hal обеспечивает получение текущего значения измеряемого параметра и передачу его в программу manager.
- программу manager, предназначенную для управления работой установки. Основные функции программы manager:
- идентификация подключенного БД;
- получение данных от БД;
- вывод текущего значения измеряемого параметра на дисплей БПО;
- передача данных на порты последовательного интерфейса RS485;
- сохранение архива данных;
- диагностика соединения с БД.
- программу БД BDKG21.
- прикладное программное обеспечение «КП-спектр», предназначенное для работы с архивом и для настройки УД.

Защита ПО от преднамеренного изменения обеспечивается средствами операционной системы путем установки прав доступа к файлам («Только для чтения»/«Read only»), а также с помощью шифрования файлов архива измерений.

Защита ПО от непреднамеренных воздействий обеспечивается функциями резервного копирования.

Таблица 1. Идентификационные данные программного обеспечения

Наименова-	Идентифика-	Номер версии	Цифровой идентификатор про-	Алгоритм вычис-
	ционное на-	(идентификаци-	граммного обеспечения (кон-	ления цифрового
граммного	именование	онный номер)	трольная сумма метрологиче-	идентификатора
обеспечения	программного	программного	ской значимой части ПО)	программного
ООССПСЧСКИЯ	обеспечения	обеспечения		обеспечения
Manager	manager	1.0.0	d8cba0bb91707bcd7b9fb1755abe9b21	MD5
Hal	hal	1.0.0	c5db58b0ca80a7a95a01f6a84311e60b	MD5
КП-Спектр	cp-spectrum.exe	1.0.0	fdb5d10f5ce4fe34469fb0156a5aeec3	MD5
BDKG21	bdkg21L.bin	01.07.2009	9de843c9e9d4e02e923e8d5ad0051	MD5
			db6	

Оценка влияния программного обеспечения на метрологические характеристики средства измерений произведена в соответствии с МИ 3286-2010.

Для СИ параметров ионизирующих излучений оценка влияния программного обеспечения на метрологические характеристики средства измерений проводится в виде исполнительной характеристики программного обеспечения, т.е. отличия результатов, полученных с помощью ПО от эталонного значения СИ - источника гамма-излучения типа ИМНГ-1 (прежнее название – ОСГИ) на основе радионуклида Cs-137.

Идентификация программного обеспечения осуществляется при каждом включении УД или подключении блока детектирования к блоку первичной обработки путем запуска соответствующего командного файла. По классу защиты программное обеспечение относится к категории А.

Метрологические и технические характеристики

Метрологические и технические характеристики УД приведены в таблице 2.

Таблица 2 - Метрологические и технические характеристики УД

таолица 2 - Метрологические и технические характеристики уд	
Диапазон регистрируемых энергий гамма-излучения, кэВ	от 50 до 3000
Диапазон измерений объемной активности в геометрии сосуда Маринелли	от 10^3 до $5 \cdot 10^8$
емкостью $0,5$ л, A_v , $Бк·м^{-3}$	
Пределы допускаемой основной относительной погрешности измерения объ-	$\pm 20(1+1500/A_y)$
емной активности в геометрии сосуда Маринелли емкостью 0,5 л, %, (Р=0,95)	где A_v - $Бк/м^3$
Интегральная нелинейность шкалы спектрометра	±1
в измеряемом диапазоне энергий гамма-квантов, %, не более	⊥1
Относительное энергетическое разрешение для линии гамма- излучения с	9,5
энергией 662 кэВ (¹³⁷ Cs), %, не более	ŕ
Максимальная входная статистическая загрузка, с-1	5· 10 ⁴
При возрастании входной статистической загрузки до 5·10 ⁴ с ⁻¹ :	
• относительное изменение энергетического разрешения спектрометра, %, не более	20
• относительное смещение положения центра тяжести пика полного поглоще-	
ния (далее по тексту - ППП) с энергией 661 кэВ (радионуклид ¹³⁷ Cs), %, не бо-	1
лее	
Нестабильность градуировочной характеристики преобразования БД за 24	
часа непрерывной работы (долговременная нестабильность), %, не более	1
Эффективность регистрации БД в пике полного поглощения (ППП) для энер-	
гии гамма–излучения 662 кэВ радионуклида ¹³⁷ Cs точечного источника	_
ОСГИ-3, размещаемого на расстоянии 100 мм от торцевой поверхности БД,	1,2.10-3
отн. ед., не менее	
Пределы допускаемой относительной погрешности эффективности регистра-	
ции для энергии гамма-излучения 662 кэВ радионуклида ¹³⁷ Cs точечного	± 10
источника ОСГИ-3, размещаемого на расстоянии 100 мм от торцевой по-	± 10
верхности БД, %, (Р=0,95)	
Эффективность регистрации в пике полного поглощения для энергии 662	$2,0.10^{-2}$
кэВ в геометрии сосуда Маринелли объемом 0,5 литра, отн. ед., не менее	·
Время установления рабочего режима УД, мин	10
Время непрерывной работы УД, ч, не менее	24
Нестабильность градуировочной характеристики преобразования за время	1
непрерывной работы, %, не более	1
Пределы допускаемой дополнительной относительной погрешности измере-	
ния объемной активности при изменении:	
– температуры окружающего воздуха в рабочем диапазоне температур, %	± 10
– влажности окружающего воздуха до 98% относительно нормальных условий, %	
– при крайних значениях питания, %	± 10
	± 5

Питание осуществляется от:	
- сети переменного тока, напряжение, В	220^{+22}_{-33}
 напряжения постоянного тока, В 	$24^{+2,4}_{-3,6}$
Потребляемая мощность, ВА, не более	35
Средняя наработка на отказ, ч, не менее	20000
Время непрерывной работы, ч, не менее	24
Средний срок службы, лет, не менее	15

Условия эксплуатации

- Температура воздуха, ${}^{^{\mathrm{o}}}\mathrm{C}$: БД от минус 20 до + 55; БПО-АТ от минус 30 до + 55;

 $-\;$ относительная влажность до 98 % при температуре +35 $^{\rm o}{\rm C}$ и более низких температурах без конденсации влаги;

- атмосферное давление, кПа от 84 до 106,7.

Таблица 3. Габаритные размеры и масса блоков УД

<u> </u>	<i>r</i> 1	
Наименование блока	Габаритные размеры, мм, не более	Масса, кг,
	(высота, ширина, глубина)	не более
БД	Ø78x315	1,9
БПО-АТ	272x185x160	5,0
Контейнер	$\emptyset 140 \times 473$	2,4

Знак утверждения типа

Знак утверждения типа наносится типографским способом в левый верхний угол титульного листа формуляра и руководства по эксплуатации ВШКФ.414752.004 РЭ и методом шелкографии на пленочную этикетку, клеящуюся на блок детектирования.

Комплектность средства измерений

В комплект поставки УД входят изделия и документы, указанные в таблице 4.

Таблица 4 Комплект поставки УД

Обозначение	Наименование	Кол - во
ВШКФ.414752.004	Устройство детектирования УДЖГ-101, в том числе:	1 шт.*
БДКГ-21	Блок детектирования гамма-излучения	1 шт.
Б ДК1 -21	Контейнер	1 шт.**
	Контрольная проба	1шт.
ВШКФ.468366.002	Блок первичной обработки данных БПО-АТ	1 шт.*
ВШКФ.414752.004РЭ	Руководство по эксплуатации	1 экз.
ВШКФ.414752.004ФО	Формуляр	1 экз.
ВШКФ.414752.004 МП	Методика поверки	1 экз.
ВШКФ.418624.008	Срумуород замууда	1 шт. ***
ОКП 69 8160	Свинцовая защита	
ВШКФ.418724.008	Иоморуталу мад омиосту	1 шт. ***
ОКП 69 8160	Измерительная емкость	
	ПО «КП-Спектр» (на компакт-диске)	1 экз.
_	Свидетельство о первичной поверке	1 экз.
_	Комплект запасных частей (ЗИП)	****
4 2		

- * Зависит от варианта исполнения
- ** Поставляется опционально для погружного варианта измерений
- *** Поставляется опционально для проточного варианта измерений
- **** Количественный состав ЗИП определяется Спецификацией поставки оборудования или Договором на поставку.

Поверка

осуществляется в соответствии с документом «Устройства детектирования УДЖГ-101. Методика поверки» ВШКФ.414752.004 МП, утвержденным ГЦИ СИ ФГУП «ВНИИФТРИ» в мае 2011г.

Основные средства поверки: эталонные источники гамма-излучения типа ИМНГ-1 в соответствии с ГОСТ 8.033-96 (активность $10^3 \div 10^5$ Бк и погрешность ± 3 %).

Сведения о методиках (методах) измерений

Руководство по эксплуатации ВШКФ.414752.004РЭ.

Нормативные документы, устанавливающие требования к устройствам детектирования УДЖГ-101

ГОСТ 27451-87 «Средства измерений ионизирующих излучений. Общие технические условия».

ГОСТ 29074-91 «Аппаратура контроля радиационной обстановки. Общие требования».

ГОСТ 26874-86 «Спектрометры энергий ионизирующих излучений. Методы измерений основных параметров».

ГОСТ 8.033-96 «ГСИ. Государственная поверочная схема для средств измерений активности радионуклидов, потока и плотности потока альфа-, бета-частиц и фотонов радионуклидных источников».

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

УД рекомендуется применять при:

– осуществлении производственного контроля за соблюдением установленных законодательством Российской Федерации требований промышленной безопасности при эксплуатации опасного производственного объекта.

Изготовитель

ООО НПП «Радико»

Адрес: 249035, г. Обнинск, Калужская обл., пр-т Маркса, 14

Тел.: +7(48439)49716; Факс: +7(48439)49768

E-mail: main@radico.ru

Испытатель

ГЦИ СИ ФГУП «ВНИИФТРИ», Регистрационный номер 300002-08 141570, п/о Менделеево, Солнечногорский р-н, Московская область Тел./факс (495) 744-81-12 director@vniiftri.ru

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

Е.Р. Петросян

М.п. «___»____2011 г.