ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Каналы измерительные нейтронные системы контроля, управления и защиты ядерного реактора КИН СКУЗ

Назначение средства измерений

Каналы измерительные нейтронные системы контроля, управления и защиты ядерного реактора КИН СКУЗ (далее в тексте — каналы КИН) предназначены для измерения нейтронной мощности ядерной реакторной установки, периода изменения нейтронной мощности и реактивности от расположенных в реакторе датчиков нейтронного потока.

Измеряемыми величинами являются:

- нейтронная мощность реактора (N), пропорциональная плотности потока нейтронов в точке расположения нейтронного детектора датчика и представляемая в процентах от номинального значения мощности $(N_{\text{ном}})$ реактора;
- период изменения нейтронной мощности (T) в секундах и реактивность (R) в единицах β эфф, получаемые путем приема, преобразования и соответствующей обработки токовых (сила постоянного тока) и/или импульсных сигналов (скорость счета импульсов) от датчиков нейтронного потока в ядерном реакторе.

Каналы КИН применяются в составе комплексной системы контроля, управления и защиты (КСКУЗ) и временной системы управления и защиты (СУЗ - В) реактора большой мощности канального (РБМК) атомных электростанций для безопасного и оптимального ведения технологического процесса в режимах от полностью заглушенного состояния до номинального уровня мощности.

Описание средства измерений

Каналы КИН представляют собой функционально выделенную часть системы контроля, управления и защиты (СКУЗ) реактора РБМК. Каналы КИН реализуют законченную измерительную функцию от восприятия нейтронного потока в реакторной установке до получения результатов измерений, выражаемых числом или соответствующим ему кодом.

В состав канала КИН входят:

- -датчики нейтронного потока для регистрации плотности потока нейтронов в реакторе; конструктивно оформлены в виде подвесок, размещенных в ядерном реакторе;
- -блоки нормирования сигналов от датчиков, выносные и размещенные в аппаратурных стойках;
 - -блоки преобразования сигналов в цифровой код;
- -модули программно-технические, выполняющие функции преобразования и вычисления для получения выходных сигналов, соответствующих измеренным значениям нейтронной мощности реактора, периода изменения нейтронной мощности и реактивности;
 - -блоки (стойки) концентрации информации и организации локальных сетей данных;
 - -рабочие станции отображения информации РСО;
 - -комплект кабелей линии связи для передачи массива данных;
- -блоки формирования требуемого вторичного электропитания аппаратуры канала КИН, встроенные в состав аппаратуры канала и подключенные к системе бесперебойного электроснабжения (БЭС) комплексной системы СКУЗ.

Каналы КИН комплектуются для конкретного объекта и могут отличаться количеством и типами используемых датчиков, количеством блоков и устройств преобразования и соединений, иметь различную конфигурацию и компоновку. Вариант

комплектования определяется Заказчиком и указывается в заказе-заявке на поставку.

Рисунок 1 – Внешний вид приборной стойки

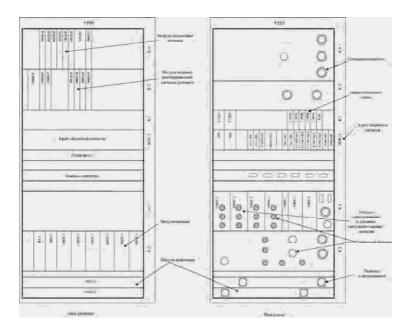


Рисунок 2 - Расположение компонентов канала КИН в приборной стойке

Основным программно-техническим фактором, определяющим защиту от несанкционированного доступа к информации, является организация однонаправленных, асин-

хронных, жестко структурированных потоков данных в системе. Такая организация потоков данных полностью исключает возможность несанкционированного доступа через основные линии связи и интерфейсы. Исключены технические средства интерфейса, посредствам которых может быть осуществлен доступ к компьютерам: отключены клавиатуры, устройства указания, мониторы, отсутствуют дисководы гибких дискет и CD. На уровне BIOS заблокирована работа неиспользуемых устройств, посредством которых возможен доступ к контроллерам стоек. С носителей информации устройств КСКУЗ удалены все исходные тексты ПО, трансляторы и средства отладки. Автоматический контроль целостности программного обеспечения осуществляется при запуске программного обеспечения.

Средства физической защиты от несанкционированного доступа к каналам КИН и его программному обеспечению (ПО) включают в себя: защиты помещений от несанкционированного доступа - контролируются электронными системами и сигнализацией; порты и интерфейсы, через которые может быть осуществлен доступ к ПО, закрыты заглушками, кабеля и трассы проложены в металлических коробах.

Программное обеспечение

Идентификационные данные программного обеспечения (ПО) приведены в таблице 1 Таблица 1

Наименование про-	Идентифика-	Номер версии	Цифровой	Алгоритм
граммного обеспече-	ционное на-	(идентифика-	идентифика-	вычисления
ния	именование	ционный но-	тор про-	цифрового
	программного	мер) про-	граммного	идентифика-
	обеспечения	граммного	обеспечения	тора
		обеспечения		
Комплекс ПО стойки				
АКК РЩУ. Программа	RU.73555510.0	01	Не используется	
стойки АКК РЩУ.	31590-01 12 01	O1		
Текст программы.				
Комплекс ПО кон-				
троллеров стоек ЦОУ-			Не используется	
В. Комплекс ПО кон-	RU.73555510.0	0.4		
троллеров КЦО. Про-	31011-01 12 01	01		
грамма контроллера				
КЦО. Текст програм-				
МЫ.				
Комплекс ПО кон-				
троллеров стоек ЦОУ-				
В. Комплекс ПО кон-	RU.73555510.0	01	Не используется	
троллеров КПП. Про-	31012-01 12 01	01		
грамма контроллера КПП. Текст програм-				
1 1				
мы.				

Продолжение таблицы 1

Продолжение таблицы 1				
Наименование про- граммного обеспече- ния	Идентифика- ционное на- именование программного обеспечения	Номер версии (идентифика- ционный но- мер) про- граммного обеспечения	Цифровой идентифика- тор про- граммного обеспечения	Алгоритм вычисления цифрового идентифика- тора
Комплекс ПО контроллеров КИ-В. Программа контроллера К1. Текст программы.	RU.73555510.0 31071-01 12 01	01	Не используетс	R
Комплекс ПО контроллеров КИ-В. Программа контроллера К2. Текст программы.	RU.73555510.0 31072-01 12 01	01	Не используетс	RS
Комплекс ПО стоек A3C. Программа стоек A3C. Текст программы.	RU.73555510.0 14760-01 12 01	01	Не используетс	R
Комплекс ПО стойки УАЗ. Программа стой- ки УАЗ. Текст программы.	RU.73555510.0 31840-01 12 01	01	Не используетс	RS
Комплекс ПО стойки УБСМ. Программа стойки УБСМ. Текст программы.	RU.73555510.0 31850-01 12 01	01	Не используетс	R
Комплекс ПО стойки УУ. Программа стойки УУ. Текст программы.	RU.73555510.0 31860-01 12 01	01	Не используетс	R
Комплекс ПО стойки ВК-М. Программа стойки ВК-М. Текст программы.	RU.73555510.0 31870-01 12 01	01	Не используется	
Комплекс ПО стоек УПП-М. Программа стойки УПП-М. Текст программы.	RU.73555510.0 31880-01 12 01	01	Не используется	
Программное обеспечение стойки ЦОУ А3. Спецификация.	ACET2.703.23 6-900-01	01	Не используется	

Окончание таблицы 1

Наименование про-	Идентифика-	Номер версии	Цифровой	Алгоритм
граммного обеспече-	ционное на-	(идентифика-	идентифика-	вычисления
ния	именование	ционный но-	тор про-	цифрового
	программного	мер) про-	граммного	идентифика-
	обеспечения	граммного	обеспечения	тора
		обеспечения		
Программное обеспечение стойки ЦОУ БСМ. Спецификация.	ACET2.703.23 7-900-01	01	Не используетс	R
Программное обеспечение стойки ЦОУ У. Спецификация.	ACET2.703.23 8-900-01	01	Не используется	
Программное обеспечение стойкек УПП. Спецификация.	ACET2.702.00 1-01 ACET2.702.00 1-01-01	01	Не используется	

Применяемые способы защиты информации соответствуют требованиям РД «Автоматизированные системы. Защита от несанкционированного доступа к информации Классификация автоматизированных систем и требования по защите информации», Утвержден решением председателя Государственной технической комиссии при Президенте Российской Федерации от 30 марта 1992 г., что соответствует уровню защиты «С» в соответствии с МИ 3286-2010.

Метрологические и технические характеристики

Каналы КИН СКУЗ обеспечивают измерения и преобразования аналоговых сигналов от первичных преобразователей в цифровую форму:

1. Нейтронная мощность (**N**) в диапазоне от 10^{-8} (заглушенное состояние реактора) до значения 150 % от $N_{\text{ном}}$. ($N_{\text{ном}}$ – номинальная нейтронная мощность реактора)

Пределы допускаемой относительной погрешности измерения нейтронной мощности при использовании датчиков нейтронного потока с выходным импульсным сигналом в диапазоне от 10^{-8} до 20 % от $N_{\text{ном}} \pm 10$ %.

Пределы допускаемой относительной погрешности измерения нейтронной мощности при использовании датчиков нейтронного потока с выходным токовым сигналом в диапазоне от 0,15 до 150 % от $N_{HOM} \pm 10$ %;

2. Скорости счета импульсных сигналов от камер деления подвесок в диапазоне от 1 ло 10 ⁶ c⁻¹.

Пределы допускаемой относительной погрешности:

- в диапазоне от 1 до $10 \, \mathrm{c}^{-1}$ $\pm 8 \, \%$, в диапазоне свыше 10 до $10^2 \, \mathrm{c}^{-1}$ $\pm 2 \, \%$,
- в диапазоне свыше 10^2 до 10^6 с⁻¹ ± 0.5 %:
- 3. Токовых сигналов от камер деления подвесок в диапазоне от $2\cdot10^{-7}$ до $2\cdot10^{-4}$ A, что соответствует значениям мощности реактора в диапазоне от 0,01 до 10 % от $N_{\text{ном}}$ и от 10^{-4} до 10^{-1} % $N_{\text{ном}}$.

Пределы допускаемой относительной погрешности $(\delta, \%)$ определяются по формуле:

$$\delta = \pm \left[0.5 + 0.01 \times \left(\frac{Vmax}{Vtek} - 1 \right) \right]$$
 (1)

где V_{max} =10 - максимальное значение выходного сигнала V_{tek} - текущее значение выходного сигнала;

4. Токовых сигналов от борных камер подвесок в диапазоне от $2,3\cdot10^{-7}$ до $2,3\cdot10^{-4}$ А, что соответствует значениям мощности реактора в диапазоне от 0,15 до 150 % от $N_{\text{ном}}$.

Пределы допускаемой относительной погрешности определяются по формуле (1). где V_{max} =60000 - максимальное значение выходного сигнала;

 V_{tek} - текущее значение выходного сигнала;

5. Токовых сигналов от гамма-камеры подвесок в диапазоне от 0,5 до 50 мкА.

Пределы допускаемой относительной погрешности $(\delta, \%)$ преобразования определяются по формуле:

$$\delta = \pm \left[1 + 0.06 \times \left(\frac{Vmax}{Vtek} - 1 \right) \right]$$
 (2)

где $V_{max} = 10$ - максимальное значение выходного сигнала; V_{tek} - текущее значение выходного сигнала;

6. Токовых сигналов от подвесок в диапазоне от $3\cdot10^{-2}$ до 3 мкA, что соответствует значениям мощности реактора в диапазоне от 1 до 130 % от $N_{\text{ном}}$.

Пределы допускаемой относительной погрешности $(\delta, \%)$ определяются по формуле:

$$\delta = \pm \left[0.5 + 0.06 \times \left(\frac{Vmax}{Vtek} - 1 \right) \right]$$
 (3)

где V_{max} =10 - максимальное значение выходного сигнала; Vtek - текущее значение выходного сигнала;

7. Токовых сигналов от подвесок в диапазоне от $1\cdot 10^{-2}$ до 1 мкA, что соответствует значениям мощности реактора от 1 до 130 % от $N_{\text{ном}}$.

Пределы допускаемой относительной погрешности определяются по формуле (3)

8. Логарифмическое преобразование токовых сигналов от подвесок диапазоне значений от 10^{-10} до 10^{-3} A в соответствии с формулой

$$NI = 1 + Lg \frac{I}{Io}$$
 (4)

где: N_I – выходной сигнал, I - входной ток (токовый сигнал от подвески), A, $I_0 = 10^{-10}$ A – минимальное значение входного тока.

Пределы допускаемой приведенной погрешности ± 2 % от максимального значения выходного сигнала ($N_{IMAX} = 10$).

9. Сигналы периода экспоненциального изменения входного сигнала от подвесок в диапазоне от $10\ \text{дo}\ 400\ \text{c}.$

Пределы допускаемой относительной погрешности формирования сигнала периода составляют $\pm~10~\%$.

10. Реактивности (R) реактора по информации от подвесок в интервале от минус 15 до плюс 0,7 βэфф.

Пределы допускаемой относительной погрешности \pm 5 %.

- рабочие условия применения (без использования принудительной вентиляции): температура окружающего воздуха в помещениях от +10 до +35 °C при относительной влажности воздуха от 25 до 75 % при +35 °C и более низких температурах без конденсации влаги; давление атмосферного воздуха от 84 до 106,7 кПа; запыленность воздуха не более 0,75 мг/м 3 при размерах частиц пыли не более 3 мкм;
- аварийные условия применения: эксплуатация не более 8 часов при температуре окружающего воздуха от плюс 5 до плюс 10 °C и от плюс 35 до плюс 40 °C и при влажности воздуха в помещении от 15 до 25 % и от 75 до 90 % при плюс 40 °C и более низких температурах без конденсации влаги.

Питание аппаратуры каналов КИН должно осуществляться по двум однофазным вводам (по схеме «фаза-нуль») переменным током с напряжением $220 \, \mathrm{B}$ и частотой $(50\pm1) \, \mathrm{\Gamma u}$ с содержанием гармоник до $5 \, \%$ и допустимым отклонением напряжения от номинального значения от минус 15 до плюс $10 \, \%$. При отключении напряжения питания по одному из вводов работоспособность аппаратурных стоек не нарушается.

Потребляемая мощность не превышает 1000 В·А.

Напряжение питания ионизационных камер и камер деления стабилизированными напряжениями постоянного тока в зависимости от используемого типа подвесок может быть: (390 \pm 10) B, от минус 110 до минус 2 B (регулируемое) и (110 \pm 10) B; от минус 270 до минус 2 B (регулируемое) и (270 \pm 10) B; (300 \pm 10) B.

Потребляемый ток для каждой подвески не превышает 3 мА.

Длина линий связи до средств отображения не более 400 м.

Время установления рабочего режима не более 1 ч.

Время наработки на отказ – не менее 10000 ч.

Срок службы не менее 10 лет.

Среднее время восстановления работоспособности не превышает 1 ч.

Габаритные размеры (длина \times ширина \times высота) одной аппаратурной стойки не превышают ($603 \times 852 \times 2162$) мм.

Масса одной аппаратурной стойки не более 300 кг.

Знак утверждения типа

наносят на титульный лист руководства по эксплуатации еЦ2.702.397 РЭ типографским способом, а также на шильдики аппаратурных стоек фотохимическим способом.

Комплектность средства измерений Комплектность поставки (в зависимости от кода заказа) определяется таблицей 2.

Обозначение*	Наименование	Примечание		
Ooosiia ieiine	Датчики нейтронного потока	приметание		
РБМ-К9.Сб.241	подвеска с датчиком КНТ-24			
РБМ-К7.Сб.232	подвеска с дат иками КНУ-3			
РБМ-К7.Сб.232-01	подвеска с датчиками КНУ-3-1, КГТ 27			
Дт.4.000	подвеска с дат ижами киз -3-1, ки т 2/			
Дтэ.14.000	подвеска с датчиком ВГД-В			
РБМ-К9.Сб.39	подвеска е дат-иком вт д-в			
(РБМ-К9.Сб.240)	подвески с датчиком КНК-17-1			
PEM-K15.C6.38	*****			
(РБМ-К9.Сб.242)	подвески с датчиком КНК-22			
РБМ-К9.Сб.235	подвеска с датчиком КНТ-23			
РБМ-К9.Сб.235-01	подвеска с датчиком КНТ-23-1			
РБМ-К9.Сб.245	подвеска с датчиком СУЗ-В			
	Блоки нормирования			
еЦ2.032.016	блок УсЛ			
еЦ5.035.079	блок БВУ.1			
еЦ5.035.093	блок БВУ.2			
еЦ5.035.115	блок БВУ.3			
еЦ5.035.117	блок БВУ.4			
еЦ5.035.119	блок БВУ.5			
еЦ5.035.121	блок БВУ.6			
еЦ5.008.048	блок БПН.2			
еЦ5.008.049	блок БПН.3			
еЦ5.008.045	блок БВП-Р			
еЦ5.008.046	блок БВП-В			
PC5.035.001	модуль МВУ.1			
PC5.035.002	модуль МВУ.2			
PC5.035.003	модуль МВУ.3			
PC5.008.005	модуль МПН.1			
PC5.008.006	модуль МПН.2			
PC5.008.001	модуль МВП-Р			
PC5.008.002	модуль МВП-В			
Блоки преобразования в цифровой код				
еЦ2.702.309	стойка УПП	Часть блоков		
еЦ2.702.438	стойка УПП-М	Часть блоков		
еЦ2.702.315	стойка АЗС	Часть блоков		
еЦ2.702.396	стойка ЦОУ-В	Часть блоков		
еЦ2.702.394	стойка АКК РЩУ	Часть блоков		
Блоки функциональной обработки и вычисления параметров				
PC2.703.237-500	стойка ЦОУ БСМ	Часть блоков		
PC2.703.238-500	стойка ЦОУ У	Часть блоков		
еЦ2.702.440	стойка У БСМ	Часть блоков		
еЦ2.702.442	стойка У У	Часть блоков		
еЦ2.702.315	стойка АЗС	Часть блоков		
еЦ2.702.394	стойка АКК РЩУ	Часть блоков		
еЦ2.702.396	стойка ЦОУ-В (СУЗ-В)	Часть блоков		
	1.011mm 401 B (010 B)	TWO ID CVIOROD		

Окончание таблица 2

Обозначение*	Наименование	Примечание	
Блоки отображения информации			
PC2.703.240-500	стойка КИ		
PC2.703.275277-500	рабочая станция РСО		
еЦ3.031.153	рабочая станция РСО РЩУ		
Линия связи			
-	Комплект кабелей линии связи	**	
ЗИП и эксплуатационная документация			
еЦ2.702.397 ЗИ	Запасные блоки, части и принадлежности в соответствии с ведомостью ЗИП	***	
еЦ2.702.397 ВЭ	Ведомость эксплуатационных документов		
еЦ2.702.397 ЭД	Комплект эксплуатационных документов согласно ведомости		

Примечания:

- * В таблице приведен образец записи идентификационного номера блоков аппаратуры. Конкретные децимальные номера соответствуют поставочному образцу на АЭС и для различных энергоблоков различаются последними тремя цифрами.
- ** Волоконно-оптическая линия связи в комплект поставки канала КИН не входит, обеспечивается заказчиком.
- *** Включены в состав аппаратуры соответствующих стоек.

Поверка

осуществляется по разделу 4 документа еЦ2.702.397 РЭ «Канал измерительный нейтронный системы контроля, управления и защиты ядерного реактора КИН СКУЗ. Руководство по эксплуатации», утвержденного ГЦИ СИ ФГУП «ВНИИМС» в декабре 2010 г.

Перечень основного оборудования для поверки:

вольтметр универсальный цифровой B7-34A (Tr.2.710.010 TO), пределы допускаемой погрешности $\pm [0.015+0.002(Uk/U-1)]$ %;

генератор Γ 5-60 (3.269.080 TO) с аттенюатором 20 дБ, погрешность задания периода повторения $\pm 10^{-6}$ T;

программно-технический комплекс «Автотест-М» (188.09.00.000 РЭ), диапазон задания периода от 10 до 400 с и реактивности от минус 25 плюс 0,7 β эфф. с погрешностью задания ± 1 %, частота выходных сигналов от 10^2 до 10^6 Γ ц с погрешностью задания $\pm [0.05+100/(Fk\cdot t)]$;

программно-технические комплексы УКФП-C1, УКФП-C2 (43618-002-73555510-10) диапазон задания периода от 1 до 400 с и реактивности от минус 15 до плюс 0,7 β эфф. с погрешностью задания \pm 2 %, частота выходных сигналов УКФП-C2 от 1 до $2*10^6$ Γ ц с погрешностью задания \pm 0,1 % ;

ампервольтметр Ц4311, погрешность \pm 1%.

Сведения о методиках (методах) измерений приведены в разделах 3, 4 документа еЦ2.702.397 РЭ «Каналы измерительные нейтронные системы контроля, управления и защиты ядерного реактора КИН СКУЗ».

Нормативные документы, устанавливающие требования к каналам измерительным нейтронным системы контроля, управления и защиты ядерного реактора КИН СКУ3

- 1. ГОСТ Р 52931-2008г. Приборы контроля и регулирования технологических процессов. Общие технические требования.
- 2. ГОСТ 27445-87. Системы контроля нейтронного потока для управления и защиты ядерных реакторов. Общие технические требования.
- 3. ГОСТ 29075-91. Системы ядерного приборостроения для атомных станций. Общие требования.
- 4. ГОСТ Р50746-2000. Совместимость технических средств электромагнитная. Технические средства для атомных станций. Технические требования и методы испытаний.
- 5. ПНАЭ Г-01-011-97. Общие положения обеспечения безопасности станций ОПБ-88/97 НП-001-97.
- 6. ТУ 4362-001-73555510-10. Каналы измерительные нейтронные системы контроля, управления и защиты ядерного реактора КИН СКУЗ. Технические условия.

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

- при осуществлении деятельности в области охраны окружающей среды;
- при выполнении работ по обеспечению безопасных условий и охраны труда;
- при осуществлении производственного контроля за соблюдением установленных законодательством Российской Федерации требований промышленной безопасности к эксплуатации опасного производственного объекта.

Изготовители

ООО ОКСАТ НИКИЭТ 107140 Москва, ул. Малая Красносельская, д.2/8

ЗАО «СКБ ОРИОН» 194044 Санкт-Петербург, ул. Тобольская, д.12

Испытательный центр

ГЦИ СИ ФГУП «ВНИИМС»

Аттестат аккредитации – зарегистрирован в Государственном реестре СИ под № 30004-08.

Москва, 119361, ул. Озерная, д. 46

Тел. (495) 437-55-77, (495) 430-57-25

Факс (495) 437-56-66, (495) 430-57-25

E-mail: 201-vm@vniims.ru

Заместитель Руководителя Федерального агентства по техническому регулированию и

В.Н. Крутиков 2011 г.